
  Abstract—In this paper, hybrid particle swarm optimization 
(PSO) is proposed for solving the challenging multi-contingency 
transient stability constrained optimal power flow (MC-TSCOPF) 
problem. The objective of this nonlinear optimization problem is 
to minimize the total fuel cost of the system and at the same time 
fulfil the transient stability requirements. The optimal power flow 
(OPF) with transient stability constraints considered is 
re-formulated as an extended OPF with additional rotor angle 
inequality constraints, which is suitable for hybrid PSO to solve. 
Comparison between various existing hybrid PSO techniques is 
carried out by solving the New England 39-bus system. 
Experimental results indicate that the hybrid PSO integrated with 
the mutation operation of genetic algorithms is better than the 
other existing hybrid PSO methods in both solution quality and 
stability. As a result, reasonable solutions can be reached with 
faster convergence speeds and smaller computational efforts. 
 

Index Terms— Particle swarm optimization, genetic 
algorithms, transient stability, optimal power flow, constrained 
optimization.  

I. INTRODUCTION 
The MC-TSCOPF aims to achieve an optimal solution of a 

specific objective function, such as fuel cost, network loss, by 
setting the system control variables, while satisfying the system 
to withstand specified contingencies (disturbances) and reach 
an acceptable steady-state operating condition [1]. In solving 
MC-TSCOPF, the difficulty mainly comes from the 
non-convexity nature of OPF and the nonlinear 
differential-algebraic equations which describe the transient 
stability constraints of the power system. Nonlinear and 
semi-infinite programming [2,3] was proposed to solve the 
MC-TSCOPF. However, not only their formulation is complex 
and heavily tied to the system models, but also they rely on 
convexity to obtain the global optimum solution and as such are 
forced to simplify relationships in order to ensure convexity 
[4]. 

Particle swarm optimization (PSO) is a recently proposed 
population based stochastic optimization algorithm which was 
inspired by the social behaviors of animals such as fish 
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schooling and bird flocking [5]. Compared with other 
stochastic optimization methods, PSO has comparable or even 
superior search performance for many hard optimization 
problems with faster and stable convergence rates [6]. It 
requires only few parameters to be tuned and hence is attractive 
from an implementation viewpoint. It has attracted broad 
attention in the fields of evolutionary computing, optimization 
and many others. In recent years there have been a lot of 
reported works focused on the PSO. It has been applied widely 
in the function optimization, artificial neural networks 
development, fuzzy control and some other fields. 

However, it can be noticed that PSO performs well in the 
early state of the search, but the improvement decreases 
gradually along the searching stages. Its improvement even 
terminates in the later stages of the search. It behaves like the 
traditional local searching methods that drop into a local optima 
and cannot escape from it. 

Many improved PSO algorithms have been proposed by 
incorporating with other optimization methods, so as to explore 
better solutions. It can be found from the literatures that PSO 
algorithms could be enhanced by incorporation with GAs 
[7-10]. In these approaches, operations of PSO and GAs are 
crossed over the search simultaneously. GAs’ operations like 
crossover, mutation, selection are integrated into PSO. 
However, so far no conclusive conclusion has been reached in 
which hybrid PSO algorithm is better than the others. 

In this paper, we re-formulated a simple transformation of 
the multi-contingency-transient stability constraints to the 
optimal power flow problem, which is suitable for PSO 
algorithms to solve. A refined PSO is adopted as the main 
solver for this challenging MC-TSCOPF problem. Among all 
the existing hybrid PSO algorithms, four selected ones [7-10] 
have been implemented and tested on the New England 39 bus 
system. Experimental result shows that the hybrid PSO 
algorithm which integrates PSO with the mutation operation of 
GAs is better than the other existing hybrid PSO algorithms in 
both solution quality and solution stability in which smaller 
computational effort is required. 

II. MC-TSCOPF PROBLEM FORMULATION 
MC-TSCOPF is mathematically defined as 
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where ( )tx  is a dependent vector which includes active and 
reactive power of the swing bus, voltage angle and reactive 
power of generator buses, and voltage angle and magnitude of 
load buses. 0, ) ( , ecl clt t t t⎡ ⎤⎣ ⎦= ∪T  is the transient period from the 
occurrence of the disturbance at time 0t  to the clearing time clt  
and then to the ending time et . x  represents the initial value of 

( )tx  at 0t = . y  is a control which includes vector active 
power and voltage magnitude of generator buses, voltage angle 
and magnitude of the swing bus, and tap position of LTCs. f  
can be expressed as the total generation cost, total network loss, 
corridor transfer power, total cost of compensation, etc. g  is 
the set of equality constraints which are usually the power flow 
constraints for a specified operating condition. H  is inequality 
constraints for the steady-state security limits like bus voltage 
magnitude limits, generator power limits, thermal limits for 
transmission lines, etc. The dynamic security constraints set U  
is infinite in the functional space. Further details of the 
formulation of MC-TSCOPF are available in [3,11]. 

Since the equality constraints g are imposed implicitly by the 
power flow calculation incorporated within the algorithm and 
also the inequality constraints H  is directly satisfied by the 
PSO, the MC-TSCOPF can be formulated as a penalty function 
problem: 

 ( ) ( ){ }2min ( , ) max[ ( , ) ]F f β= +x x y U x t y  (5) 

Generally, transient stability constraints can be considered as 
hard constraints that should not be violated whilst the static 
constraints are soft in nature that slight violation could be 
tolerant. Compared with other constraint handling approaches 
[12,13], penalty function offers a simple and flexible strategy to 
effectively deal with mixed hard and soft constraints. In 
addition, there is no need to have separate penalty factors for 
each type of constraints. In (5), any transient instability would 
introduce a huge angle deviation and thus produce a large 
violation and thus discrimination even though the same penalty 
factor is used for all type of violations. Typically, 1000β =  
works very well in most power systems [11]. 

III. TSCOPF USING PARTICLE SWARM OPTIMIZATION 
PSO is a novel optimization method developed by Kennedy 

and Eberhart [5,6]. This type of algorithms is modeled on 
processes of the sociological behaviour associated with bird 
flocking, and is one of the evolutionary computation techniques 
essentially. It uses a number of particles that constitute a 
swarm. Each particle traverses the search space looking for the 
global minimum (or maximum). In a PSO system, particles fly 
around in a multidimensional search space. During flight, each 
particle adjusts its position according to its own experience, 
and the experience of neighbouring particles, making use of the 
best position encountered by itself and its neighbours. The 
swarm direction of a particle is defined by the set of particles 
neighbouring the particle and its history experience. 

The best previous position of a particle is recorded and 
represented as pbest. The position of the best particle among all 
the particles is represented as gbest. The velocity and position 
of each particle can be calculated using the following formulas 
[14]: 
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where xi and vi are the current position and velocity of particle 
at the ith generation respectively, w is inertia weight factor, 1ϕ  
and 2ϕ  are acceleration constants, rand() returns a uniform 
random number in the range of [0,1], k is constriction factor 
derived from the stability analysis of equation (6) to ensure the 
system to be converged but not prematurely [15]. 
Mathematically, k is a function of 1ϕ  and 2ϕ  as reflected in 
the following equation: 
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where 1 2ϕ ϕ ϕ= +  and 4ϕ > . 
PSO utilizes pbest and gbest to modify the current search 

point to avoid the particles moving in the same direction, but to 
converge gradually toward pbest and gbest. Suitable selection 
of inertia weight w provides a balance between global and local 
explorations. Generally, w can be dynamically set with the 
following equation [6]: 
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where imax is the maximum number of iterations, i is the current 
number of iterations, maxw  and minw  are the upper and lower 
limits of the inertia weight, and are set to 1.2 and 0.1, 
respectively, in the case studies. 

In the above procedures, the particle velocity is limited by a 
maximum value maxv . The parameter maxv determines the 
resolution, or fitness, with which regions are to be searched 
between the present position and the target position. This limit 
enhances the local exploration of the problem space and it 
realistically simulates the incremental changes of human 
learning. If maxv is too high, particles might fly past good 
solutions. If maxv is too small, particles may not explore 
sufficiently beyond local solutions. Based on our experiences 
with PSO, maxv  is often set at 10% to 20% of the dynamic range 
of the variable on each dimension. In this paper, 20% of the 
variable dynamic range is adopted as the limit of maxv . 

The following describes the incorporation of PSO algorithm 
(PSOTSCOPF) into the multi-contingency transient stability 
constrained optimal power flow. 

Step 1: Input system data, contingency set, PSO parameters 
and specify the lower and upper boundaries of each 
variable. Control variables include the active power 
and terminal voltage of each generator, voltage 
angle and magnitude of the swing bus, and tap 
position of each LTC. 

Step 2: Each particle in the swarm represents a feasible 
candidate solution to the optimization problem and 
is initialized randomly with all control variables 
satisfied their practical operation constraints. 
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Step 3: For each particle, an unconstrained Newton- 
Raphson power flow calculation is used to determine 
the power flow solution, which includes all the 
dependent variables, for a given set of control 
variables. 

Step 4: Evaluate the fitness of each particle using the 
evaluation function described in (5). Power flow 
solution obtained in Step 3 is used to evaluate the 
objective function (1) and the static violations 
(2)-(3). For transient stability violation evaluation 
(4), transient stability simulation is used to produce 
the generator rotor responses. The maximum rotor 
angle deviation from the COI, among all generators 
and contingencies, is then used to compute a 
transient stability penalty using (5). 

Step 5: Find the best position of the swarm gbest and the 
best position of each particle pbest by comparing the 
evaluation value ( )F x  of each particle with the 
one in pbest. If ( )F x  is better, then set pbest to the 
corresponding x. The best among pbest is denoted as 
gbest. 

Step 6: If there is any stopping criteria being satisfied, go to 
Step 11; otherwise, increment the iteration number i. 

Step 7: Update the inertia weight w according to equation 
(8). 

Step 8: Update the velocity v of each particle according to 
equation (6). 

 If v > vmax,  v = vmax. If v < −vmax,  v = −vmax. 
Step 9: Update the position of each particle. If a particle 

violates its position limits (i.e. limits of the control 
variables) in any dimension, set its position at the 
proper limit.  

Step 10: Return to Step 4 to repeat the evaluation process 
with updated position, until the termination 
condition is reached. 

Step 11: The particle that generates the latest gbest is the 
optimal value. 

IV. HYBRID PARTICLE SWARM OPTIMIZATION METHOD 
This section presents the operation of the four selected hybrid 
PSO methods [7-10] for solving the MS-TSCOPF problem: 

A. Ahmed et al’s hybrid PSO (AhmedPSO) 
Ahmed et al [7] observed that PSO performs well in the early 

iterations, but it usually presents problems reaching a 
near-optimal solution. The behavior of the PSO in the model 
presents some important aspects related with the velocity 
update. If a particle’s current position coincides with the global 
best position, the particle will only move away from this point 
if its inertia weigh w and velocity iv   are different from zero. If 
their velocities are very close to zero, then all the particles will 
stop moving once they catch up with the global best particle, 
which may lead to a premature convergence to the PSO. In fact, 
this does not even guarantee that the PSO has converged on a 
local minimum—it merely means that all the particles have 
converged to the best position discovered so far by the swarm. 

This phenomenon is known as stagnation [15]. To prevent it, 
Ahmed et al proposed to integrate the mutation of GAs into the 
PSO. This approach allows the search to escape from local 
optima and search in different zones of the search space. It 
starts with the random choice of a particle in the swarm and 
moves to different positions inside the search area. Ahmed et al 
employed the mutation operation by the following equation: 

 [ ]( ) [ ]( )1mut p k p k ω= × − +  (9) 

where [ ]p k  is the random choice particle from the swarm, and 
ω  is randomly generated within the range ( )[ ]max min0,0.1 x x× − , 
representing 0.1 times the length of the search space. The 
procedures of Ahmed et al [7]’s PSO (AhmedPSO) are shown: 
Step 1: Step 1 to Step 9 of PSOTSCOPF 
Step 2: Perform the mutation operation based on (9) 
Step 3: Step 10 to Step 11 of PSOTSCOPF 

B. Juang’s hybrid PSO (JuangPSO) 
Juang [8] observed that GA and PSO work with a population of 
solutions.  Originally, PSO works based on social adaptation of 
knowledge, and all particles are considered to be in the same 
iteration. On the contrary, GA works based on evolution from 
iteration to iteration, and the changes of particles (or 
chromosomes in GA’s terminology) in a single iteration are not 
considered. 

In the reproduction and crossover operation of GAs, particles 
are reproduced or selected as parents directly to the next 
generation without any enhancement. However, in nature, 
particles will grow up and become more suitable to the 
environment before producing offspring. To incorporate this 
phenomenon, PSO that is inspired by social interaction of 
knowledge is adopted to enhance the top-ranking particles on 
each iteration. It enhances particles by both sharing information 
between each other and their individually learned knowledge. 
Then, these enhanced particles are reproduced and selected as 
parents for crossover operation and mutation operation as in 
genetic algorithms. Offspring produced by the enhanced 
particles are expected to perform better than some of those 
particles in original iteration, and the poor-performed particles 
will be weeded out from iteration to iteration. The procedures 
of Juang’s hybrid PSO (JuangPSO) are shown: 
Step 1: Step 1 to Step 4 of PSOTSCOPF 
Step 2: Select top-half best performing particles as elites. 
Step 3: Perform the PSO operation (same as the one shown in 

Step 5 to Step 9 of PSOTSCOPF) on the selected elites 
rather than all particles.  

Step 4: Select two enhanced elites in Step 3 as two parents by 
tournament selection, in which two enhanced elites are 
selected randomly, and their fitness values are 
compared to select the elite with better fitness values 
as one parent, and then the other parent is selected in 
the same way. 

Step 5: Produce two offspring by performing two-point 
crossover on the two parents selected in Step 4. 
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Step 6: Repeat Step 4 and Step 5 until the reproduced 
offspring occupies the whole population of the elites. 

Step 7: Uniform mutation is adopted on offspring reproduced 
on Step 6, that the mutated gene is drawn randomly, 
uniformly from the corresponding search interval. A 
constant mutation probability 0.1mp =  is used. 

Step 8: Replace the bottom-half worst performing particles by 
the offspring produced in Step 7. 

Step 9: Step 10 to Step 11 of PSOTSCOPF. 

C. Noel and Jannett’s hybrid PSO (NoelPSO) 
Noel and Jannett [9] intended to increase the convergence 
speed of the PSO by integrating the derivative information of 
gradient into the formulation of the velocity of each particle as 
in equation (6). The classical gradient descent is assumed as: 

 ( )
1i i i

x x C xη
+

= − ∇  (10) 

where C is a cost function (in our case the cost function is 
defined as (5)), η is the learning rate, and xi  is the current 
position of particle at the ith generation. 

An updated equation was proposed by combining (6) and 
(10): 
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where w is defined as in (8) and k is defined as in (7), ε  is a 
small constant, i

E is the thi standard basis vector for nR , and n 
is the number of variables of the cost function. 

The first term in (11) is the inertial term, the second term 
moves the particle towards the global best solution, and the 
third term moves the particle in the direction opposite the 
gradient. Noel and Jannett’s hybrid PSO (we call it NoelPSO) 
is identical to PSOTSCOPF except that the update equation (11) 
is used in Step 8 instead of using equation (6). 

D. Shi’s hybrid PSO (ShiPSO) 
The main idea of Shi’s hybrid PSO [10] is to run PSO and 

GA methods alternatively in series. It performs a pre-defined 
number of PSO iterations simultaneously at first. After the PSO 
iterations, the final particles are constituted the first population 
of GA. Then the population is evolved using GA-operators 
until the pre-defined number of iterations of GA reached. After 
running with the pre-defined number of iterations of GA, the 
reproduced population of GA is transmitted back to PSO as the 
first population of particles. Then the PSO operation performs 
until the pre-defined number of iterations of the second PSO 
termination condition reached. The procedures of Shi’s hybrid 
PSO are shown: 
Step 1: Step 1 to Step 9 of PSOTSCOPF 
Step 2: Return to Step 1 to repeat the PSO operations for 

particles updating until pre-defined number of PSO 
iterations is reached. 

/* Step 1 to Step 2 are the steps of PSO */ 

Step 3: Pass the final population of particles of the PSO to GA 
as its first population. 

Step 4: Select the parents in the population based on the 
roulette-wheel selection. 

Step 5: Product offspring by performing discrete crossover on 
the selected parents with the crossover rate 0.8cp = . 

Step 6: Mutate the produced offspring by performing 
mutation operator of Gaussian perturbation with the 
mutation rate 1/mp n= , where n is the number of 
variables of the cost function. 

Step 7: Return to Step 4 to repeat the evaluation process until 
the pre-defined number of iterations of GA is reached. 

/* Step 3 to Step 7 are the steps of GA */ 
Step 8: Pass the final population of GA to the second PSO as 

its first particles population. 
Step 9: Step 1 to Step 9 of PSOTSCOPF 
Step 10: Return to Step 9 to repeat the PSO operations for 

particles updating until the termination condition is 
reached. 

/* Step 8 to Step 10 are the steps of PSO */ 

V. CASE STUDY 
A case study of solving the optimal power flow problems 

with stability constraints on the New England 39-bus system is 
used to demonstrate the effectiveness and robustness of the 
hybrid PSO based approaches (PSOTSCOPF, AhmedPSO, 
JuangPSO, NeolPSO and ShiPSO) for solving MC-TSOCPF 
problems. All the hybrid PSO based approaches are coded in 
Matlab. The system data of the power system is collected in 
[16,17]. The New England 39-bus test system comprises 
10-generator, 39-bus, and 46-line. Power System Toolbox [16] 
is employed to perform time-domain transient stability 
simulations for determining generator rotor trajectories. The 
time step adopted is 0.01s and the integration time interval is 
fixed to 1.5s. The total load for the operating condition 
considered is 6,098 MW and 1,409 MVAr. There are three 
onload tap changers connected buses 11-12, 12-13 and 19-20.  

After a complete scan of all possible single line fault 
contingencies, the following two conflicting contingencies 
were identified. 

Contingency 1:  A three phase fault occurred at the end of line 
26-27 near bus 26. The fault was cleared by 
tripping the line at bus 26 after 110 ms and at 
bus 27 after 120 ms. 

Contingency 2:  A three phase fault occurred at the end of line 
16-17 near bus 16. The fault was cleared by 
tripping the line at bus 16 after 80 ms and at bus 
17 after 100 ms.   

With the above two contingencies, the following 4 cases 
were built. 

Case 1: conventional OPF without any transient stability 
constraints 

Case 2: transient stability constrained OPF with 
contingency 1 considered only 
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Case 3: transient stability constrained OPF with 
contingency 2 considered only 

Case 4: transient stability constrained OPF with 
contingency 1 and 2 considered 

The parameters used in all the hybrid PSO based approaches 
are followings: swarm size = 30, initial inertia weight w  = 1.2, 
acceleration constants 1ϕ  = 2ϕ  = 2.05, penalty factor β  = 
1000, pre-defined number of iterations = 50.  50 test runs were 
performed to collect the four statistics for the average, variance, 
best and worst results among the 50 test runs. 

Table I gives the average optimization results of the 50 runs 
for the above four cases. The number in bracket is their position 
ranking. 

Table I. Mean Cost in 50 Test Runs 
Methods Case 1 Case 2 Case 3 Case 4 

PSOTSCOPF 36279 
(3) 

36557 
(4) 

36395 
(3) 

36754 
(4) 

AhmedPSO 36240 
(1) 

36405 
(1) 

36306 
(1) 

36629 
(1) 

JuangPSO 36288 
(4) 

36437 
(2) 

36359 
(2) 

36666 
(2) 

NoelPSO 36380 
(5) 

36703 
(5) 

36572 
(5) 

36969 
(5) 

ShiPSO 36257 
(2) 

36524 
(3) 

36469 
(4) 

36750 
(3) 

 
It is observed that AhmedPSO algorithm achieves the best 

mean cost among the five PSO algorithms. In fact, the 
AhmedPSO obtains the lowest cost values in all cases. 

Table II shows the variance of the 50 runs. The smaller the 
variance means the closer the values cluster around the mean. 
Since three out of four of the variances of AhmedPSO are the 
smallest, it demonstrates that the algorithm is capable to 
approach and keep searching around the optimal mean closer. 

Table II. Variance in 50 Runs 
Methods Case 1 Case 2 Case 3 Case 4 

PSOTSCOPF 7574 20027 24449 26107 
AhmedPSO 1731 4105 8939 20525 

JuangPSO 4702 6287 21091 16117 
NoelPSO 25777 4783 40399 245074 

ShiPSO 5085 14829 22009 13893 
 
Therefore these results indicate that AhmedPSO algorithm is 

better than the other hybrid PSO based approaches in both 
solution quality and solution stability in solving the 
MC-TSOCPF problem. It demonstrates that PSO integrated 
with the mutation operation of GAs can make enhancement for 
searching better solutions. 

The convergence plots of all the PSO methods for cases 1-4 
are shown in Fig 1-4, respectively. They show the progresses of 
each PSO method through the searches for the first 50 
iterations. It can be observed clearly from the figures that the 
convergence speeds of AhmedPSO with integration of 
mutation operation are faster than the other four methods whilst 

its solution is also among the best. In other words, AhmedPSO 
is more likely to reach better solutions whilst pre-mature 
convergence is more unlikely to be happened in AhmedPSO 
than the other four PSO methods. 

For accessing the computational efforts required for each 
hybrid method to reach reasonable solutions, the solutions 
obtained from the standard PSO, i.e. PSOTSCOPF are used as 
the acceptable benchmark solutions of the MC-TSCOPF 
problems. Table III shows the number of iterations needed for 
each hybrid PSO method to reach the solutions found by 
PSOTSCOPF with 50 iterations. For the hybrid methods, the 
maximum number of iterations was set to 50. Any methods 
which cannot reach an acceptable solution as found by 
PSOTSCOPF would have a “Nil” in the table. Based on the 
number of iterations as well as the computation time, as 
detailed in Table III and IV, needed to reach an acceptable 
solution, the computational efforts of each hybrid method could 
be accessed and compared.   

It can be found from Table III and IV that AhmedPSO can 
reach the acceptable solutions with smallest numbers of 
computational iterations and shortest computational times than 
the rest four hybrid PSO methods.  

 
Table III. Number of iterations performed in the PSO 

methods until the acceptable solution reached 
Methods Case 1 Case 2 Case 3 Case 4 
PSOTSCOPF 50 50 50 50 
AhmedPSO 30 21 24 28 
JuangPSO Nil 26 35 39 

NoelPSO Nil Nil Nil Nil 

ShiPSO 45 46 Nil Nil 
 

Table IV. Computational time (in seconds) performed in the 
PSO methods until the acceptable solution reached 

Methods Case 1 Case 2 Case 3 Case 4 
PSOTSCOPF 13.74 360.54 336.32 680.18 
AhmedPSO 8.04 137.82 169.44 371.14 
JuangPSO Nil 187.40 241.66 527.10 

NoelPSO Nil Nil Nil Nil 

ShiPSO 15.74 307.48 Nil Nil 

VI. CONCLUSION 
In this paper, four hybrid particle swarm optimization 
algorithms have been selected from the existing hybrid 
methods published in recent years for solving the challenging 
multi-contingency transient stability constrained optimal power 
flow (MC-TSCOPF) problem. The feasibility and robustness of 
each hybrid PSO method for the TSCOPF problem are 
demonstrated on the New England 39-bus system. 
Experimental results indicate that the superiority of the hybrid 
PSO method, namely AhmedPSO,  which integrate the PSO 
with mutation operation of GA for solving multi-contingency 
TSCOPF in both solution quality and stability with smaller 
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computational effort over other existing hybrid PSO methods, 
have been tested. 

Since time-domain simulation is adopted for transient 
stability evaluation, the computation task of the OPF with 
transient stability constraints considered is fairly time- 
consuming. However, the proposed method shows the potential 
for on-line and off-line applications in a parallel computing 
environment. This is an area for the future work. Also standard 
mutation operation with constant mutation space is currently in 
use, which can be improved by replacing with an enhanced 
mutation operation with dynamic mutation space. The results 
will be reported in the near future. 
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Fig. 1 Convergence curves of various PSO methods for Case 1 
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Fig. 2 Convergence curves of various PSO methods for Case 2 
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Fig. 3 Convergence curves of various PSO methods for Case 3 
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Fig. 4 Convergence curves of various PSO methods for Case 4 
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