
 
 

 
 

 

  
Abstract—A high-resolution time conservative two dimensional 

flow solver has been developed and validated for inviscid and 

viscous flows. The method is based on a multiblock structured 

grid. The space-time conservation element and solution element 

discretization scheme, second-order in space and time, is 

employed. Several cases with a wide range of flow conditions have 

been computed to verify the accuracy of method and demonstrate 

its effectiveness. An unsteady Euler solution is obtained for a 

forward facing step to demonstrate the shock capturing capability 

of the numerical scheme. The Navier-Stokes solver is validated 

with a cavity flow benchmark problem and the solution of the 

Navier-Stokes equations is accelerated with a direct flux-based 

multigrid method. A large eddy simulation (LES) of turbulence is 

performed for a spatially evolving mixing layer and compared 

with the results of a high-order scheme. The results using the 

present 2nd order scheme show high accuracy and high resolution, 

comparable those of high-order numerical schemes. 

 
Index Terms—CE/SE method, computational aero-acoustics, 

large eddy simulation, multigrid. 

 

I. INTRODUCTION 

Computational aero-acoustics (CAA) is a tool that uses 
numerical simulations to predict flow induced sound. The 
modeling requirement of aeroacoustics problems is 
substantially different from traditional fluid dynamics 
problems. The acoustical signals are typically much smaller 
than those of mean flow variables and hence require much 
higher resolution and lower dissipations from computational 
methods. There are two approaches used to obtain accurate 
results for CAA problems. The first one employs standard 
computational fluid dynamics (CFD) methods with much finer 
meshes and the second one employs high-order numerical 
schemes.  
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For the standard second-order CFD schemes (e.g. central 
schemes, upwind schemes), they are generally too dissipative to 
adequately compute and simulate aeroacoustics problems [1]. 
The numerical schemes should resolve acoustic waves with low 
dissipation and low dispersion. 

In the case of the high-order numerical schemes, they have 
been widely used for CAA applications. On the other hand, they 
attend to have difficulties in simulating regions with high 
gradients or discontinuities (e.g. at shock waves). The major 
drawbacks of the high-order schemes are the lack of a shock 
capturing property and difficulty to deal with the complex 
geometry. Spurious oscillations are frequently observed in the 
steep regions of the shock [2]. These non-physical oscillations 
of the flow variables can be dampened by employing low-order 
smoothing in the vicinity of large gradients. However, the 
smoothing would complicate and prevent the numerical scheme 
from being general. Furthermore, the smoothing would result in 
loss of accuracy [3]. The other difficult aspect of the high-order 
scheme is in application of the boundary conditions. The order 
of the schemes tends to be reduced on the boundaries which 
results in more complicated boundary condition treatments and 
again reduction of accuracy.  

Therefore, there is a need for further development to address 
these issues associated with the standard second-order CFD 
schemes and the high-order schemes. The approach taken here 
is further advanced high resolution, low dissipation 
second-order scheme, aimed at solving complex unsteady 
aerodynamic and aeroacoustics problems with higher accuracy. 
The time conservative finite volume scheme, which is a good 
compromise between them, has been employed. This method is 
known as the space-time conservation element and solution 
element method, or the CE/SE method for short, originally 
proposed by Chang [4] at NASA Glenn Research Centre. In this 
method, space and time discretizations are coupled. The 
conservation of space-time flux is enforced over the surface of 
the control volume. On the other hand, the traditional methods 
focus only on the conservation of the spatial flux and they 
employ a separate discretization in space and in time. 
Furthermore, the flow variables and spatial derivative of the 
flow variables (i.e. gradients) are treated as unknowns. No 
knowledge of the waves or the direction of wave propagation is 
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required for the present scheme. Hence, the convective fluxes at 
the face of the control volume can be evaluated without using a 
Riemann solver. Another unique feature of the time 
conservative finite volume scheme is that simple but effective 
non-reflecting boundary conditions can be used due to the 
flux-based nature of the method. A detailed discussion of the 
CE/SE method based on coupled space and time discretization 
can be found in [4]. The CE/SE scheme was modified for a 
two-dimensional case using regular structured grid by Zhang 
and Yu [5]. A generalized structured grid extension for a single 
block can be found in Zhang et al. [6]. In this study, the 
numerical scheme given by Zhang et al. [6] is employed with 
some geometrical modifications. 

The time conservative finite volume method is an explicit 
time-stepping scheme. The maximum permissible time step is 
restricted by the smallest grid cell due to the stability 
limitations. Particularly for viscous flows and highly stretched 
grid cells, time-step limitation results in a slow convergence. In 
order to accelerate the convergence of the Navier-Stokes solver 
the direct flux-based multigrid method is employed. 
Furthermore, the multiblock meshing is used for geometrically 
complex configurations. For simplicity, the number of grid 
points is taken as equal at both sides of a block interface. Hence, 
exchanging the physical quantities between the blocks becomes 
very straightforward. 

In this study, Large Eddy Simulation (LES) is employed to 
simulate turbulent flows, since LES is well suited for detailed 
studies of complex unsteady flows and aerodynamic noise. 
Furthermore, LES is a good compromise between 
Reynolds-Averaged Navier-Stokes equations (RANS) and 
Direct Numerical Simulation (DNS).  

For RANS calculations, the instantaneous flow quantities are 
represented by the sum of a mean value and a time-dependent 
fluctuating value. In order to compute the mean flow properties 
of turbulent flow, a time-averaged rate of momentum transfer 
(i.e. Reynolds stress tensor) need to be computed. Hence, the 
time averaging would result in loss of accuracy for detailed 
studies of complex unsteady flows. Furthermore, all scales of 
turbulence need to be modeled.  

In the case of DNS, no turbulence model is required. 
However, DNS calculations are very expensive even at 
moderately high Reynolds number since all scales of turbulence 
have to be calculated directly.   

In LES, all of the flow variables are decomposed into 
resolved (large) scales and subgrid (small) scales. The large 
scales are responsible for the most of momentum and energy 
transport. In contrast, the small scales are much weaker and also 
they have similar structure and characteristics. Hence, it is 
reasonable to directly compute the large scales and model the 
effect of the small ones. LES requires a higher grid resolution 
with respect to the RANS calculations. However, it is 
considerably cheaper than the DNS calculations [7]. 

 

II. METHODOLOGY 

A. Flow Governing Equations and Subgrid-Scale Model 

For compressible turbulent flows the Favre averaging 
together with the spatial filtering is a common approach since it 
does not alter the conservative form of the unfiltered governing 
equations. Furthermore, using any other filtering approach 
would introduce more complicated subgrid-scale terms in the 
governing equations due to additional correlation involving 
density fluctuations. Decomposition of the flow variables is 
given by 
 

fff ′′+=
~  (1) 

 
where f

~  represents the resolved part or a Favre-filtered and 

f ′′  the unresolved part of the flow variable. In fact, the 

governing equations are not explicitly filtered for the finite 
volume discretization method. The grid and the discretization 
errors are assumed to provide an implicit filter for the large 
eddies. The filtered variable is obtained as follows 
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LES equations can be obtained now by sorting all the above 

contributions and terms into the governing equations. The 
resulting equations describe the evolution of the resolved field 
and contain the subgrid-scale parts, which represent the effects 
of the instantaneous small-scale fluctuations on the resolved 
field. The Favre-filtered compressible Navier-Stokes equations 
are expressed as 
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where te  is the total energy and defined as 
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ˆijσ , ijτ , ˆiq and iQ  are resolved viscous stress tensor, 

subgrid-scale stress tensor, resolved heat flux and subgrid-scale 
heat flux, respectively.  

The resolved scales can be solved directly by the 
Favre-filtered Navier-Stokes equations whereas to simulate 
momentum and energy transfer between the large and the 
subgrid scales. The subgrid-scale terms have to be modeled.  
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In this study due to its simplicity the classical Smagorinsky 
subgrid scale (SGS) model [8] is employed. The resolved 
viscous stress tensor is defined as: 
 

1
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where  

ijδ  is the Kronecker delta and 
ijS
~  is the Favre-filtered 

strain rate tensor is defined as 
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The subgrid-scale stress tensor is given by 
 

�( )ij i j i ju u u uτ ρ= − − ɶ ɶ  (9) 

 
and is modeled as   
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ijijM SSS = , CR and CI are the Smagorinsky model 

constants and ∆ is the filter width. The first term appearing in 
the right-hand side of relation (10) is the incompressible term in 
Smagorinsky’s model [9] and the second term is the 
compressible correction known as Yoshizawa’s expression 
[10]. 

The resolved heat flux is defined as  
 

ˆi p
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where CP, µ~  and Pr are the specific heat a, the molecular 

viscosity and Prandtl number, respectively. 
 The subgrid-scale heat flux is given by  
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and the subgrid-scale heat flux is modeled using a temperature 
gradient approach as 
 

it

MR
pi

x

T

Pr

SC
CQ

∂
∂∆

−=
~~2ρ  (13) 

 
 In order to close the system of equations, the perfect gas 
relation and the Sutherland’s law, respectively, are defined as 
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where R is the ideal gas constant, 

refT  and 
refµ  are the 

reference temperature and the reference viscosity, respectively. 
S is chosen as 110K. 

The Navier-Stokes computations without turbulence terms 
can be carried out by replacing all filtered variables with their 
unfiltered forms and setting the subgrid-scale stress tensor and 
the subgrid-scale heat flux terms to be zero. Furthermore, for the 
inviscid Euler computations the viscous stress tensor set to zero. 

B. Discretization 

The time and space discretizations are coupled in the time 
conservative finite volume method. The computational domain 
is divided into quadrilateral grid cells, Fig. 1(a). The vertex of 
each grid cell is denoted by a circle symbol (i.e. A(i,j)), whereas 
the centroid of each grid cell is shown by a square symbol (i.e. 
C(i,j)). B1(i,j), B2(i,j), B3(i,j) and B4(i,j) are the midpoints of the 
cell-vertex. 

Consider Fig. 1(b), the point denoted by the superscript ' is 
the point at time 1 2n +  level. For time-marching from 0t t=  

to 1 2nt t += , the control volume is represented by the 
hexahedral A(i,j) A(i+1,j) A(i+1,j+1) A(i,j+1) A'(i,j) A'(i+1,j) 
A'(i+1,j+1) A'(i,j+1). Initially, the flow variables and the spatial 
derivatives of the flow variables are assumed to be known at the 
vertex of each grid cells (i.e. A(i,j)) at time level 0t t= . Then, 
the conservation of space-time flux is enforced over the surface 
of the control volume to calculate the flow variables associated 
with point C'(i,j) at time level 1 2nt t += . A central difference 
approach is employed to calculate the spatial derivative of the 
flow variables. 
 

 
(a) 2-D structured grid  
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(b) Control volume  

Fig. 1 Structured grid and control volume for the 2-D 
Euler/Navier-Stokes solver for time-marching from 0t t=  to 

1 2nt t +=  
 

For time-marching from 1 2nt t +=  to 1nt t += , consider Fig. 
2(a) and Fig. 2(b), the point represented by the superscript " is 
the point at time 1n +  level. Similarly, at time level 1nt t +=  to 
evaluate the flow variables and the gradients associated with 
point A"(i+1,j+1) the same procedure repeated for the control 
volume C'(i,j) C'(i+1,j) C'(i+1,j+1) C'(i,j+1) C"(i,j) C"(i+1,j) 
C"(i+1,j+1) C"(i,j+1). Thus, the numerical scheme alternates 
between the cell-vertex and the cell-centre of the grid cells.  
 

 
(a) 2-D structured grid 

 
(b) Control volume  

Fig. 2 Structured grid and control volume for the 2-D 
Euler/Navier-Stokes solver for time-marching from 1 2nt t +=  to 

1nt t +=  
 

The main advantage of this modification is apparent that all 
of the control volume is left inside the physical domain at the 
boundary. Hence, there is no need to generate dummy cells 
outside the physical domain and this leads to decreased 
discretization error in comparison to the numerical scheme 
given by Zhang et al. [6].  
The conservative variables and the convective fluxes are 

assumed to be linear whereas the viscous fluxes are assumed to 
be constant in the control volume. The conservative variables 
and the convective fluxes are discretize by the first order Taylor 
series expansion. 
 

C. Direct Flux-Based Multigrid Method 

In order to reduce the run-time requirement of the simulations 
for the viscous flows and the highly stretched grid cells, a direct 
flux-based multigrid method at two-level proposed by He [11] is 
employed as a convergence acceleration technique in this study. 
 For the two-level time integration method the solution is 
marched first on the fine grid and then on a coarser one. Hence, 
the overall time step is much larger than the one level temporal 
change and the accuracy of the solution is controlled by the fine 
grid. The temporal change of the flow variables on the fine grid 
is given by 
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where the subscript f and c denote the fine and coarse grid, 
respectively. ∆t and R are the permissible time step and the net 
flux for the finite volume on the corresponding grid, 
respectively. Implementation of the direct flux-based multigrid 
method is much easier and numerically cheaper than the 
conventional one. A detailed discussion of the two-level 
multigrid method can be found in [11]. 
 

III. RESULTS AND DISCUSSION 

A. Flow over a Forward Facing Step 

A supersonic flow over a forward facing step problem is 
solved to demonstrate the robustness of the present numerical 
scheme. This benchmark problem is the same as the one studied 
by Woodward and Colella [12]. It was also used by 
Giannakouros and Karniadakis [13]. The physical domain is 
first divided into three multiblocks. The present computations 
are carried out by using a 2-D multiblock Euler solver. The 
computational domain is 3.0 m × 1.0 m. Uniform structured 
mesh is used with ∆x = 0.0125 m and ∆y = 0.01 m grid spacing 
in the x and y directions, respectively. The free stream Mach 
number is 3.0, the stagnation pressure is 105 Pa and the 
stagnation temperature is 300 K. These flow conditions are 
imposed on the left-hand boundary as the supersonic inlet 
boundary condition.  The upper and the lower boundaries are an 
inviscid wall, where a slip boundary condition is imposed. 
Lastly, the supersonic outflow boundary condition is applied on 
the right-hand boundary. 

 

 
(a) t = 2.8 × 10-2 s 

 
(b) t = 4.0 × 10-2 s 

Fig. 3 Density contours with 30 levels  
 

Calculated density profiles with 30 contours at t = 2.8 × 10-2 s 
and t = 4.0 × 10-2 s are shown in Fig. 3(a) and Fig. 3(b), 
respectively. The Mach stem in the lower wall, expansion fan at 
the corner of the step and the interaction between the reflected 
shocks with rarefaction waves are accurately calculated with 
high resolution. According to Woodward and Colella [12], 
without applying special numerical treatment at the corner of 
the step, calculations would be affected by large numerical 
errors. However, the present calculations are carried out without 
employing any special treatment at the corner of the step and no 
numerical oscillations are detected around a shock wave 
 

B. Driven Cavity Flow 

The driven cavity flow in a square cavity is used as a 
validation case for a Navier-Stokes solver. Direct flux-based 
multigrid method is employed at two-level in order to reduce to 
run-time requirement of the simulation. Although the cavity 
geometry is simple, this benchmark problem displays several 
complex flow phenomena, such as corner separations, 
longitudinal vortices and interaction between vortices 
depending on the Reynolds number.  
The flow conditions are a free stream Mach number of 0.1, 

Reynolds number of 1000 based on the cavity length, stagnation 
pressure of 105 Pa and stagnation temperature of 300 K. The 
nonuniform mesh density is 129 × 129 in the x and y directions, 
respectively. The upper boundary is moving at a speed of free 
stream Mach number and the other three boundaries are 
stationary (i.e. viscous) walls where a no-slip boundary 
condition is imposed.  
A primary vortex inside the cavity and two smaller 

reverse-rotating vortices at both corners of the bottom wall can 
be observed with Mach number contours and the streamlines in 
Fig. 4. For the two-level multigrid method, u-velocity profile 
along the vertical line and v-velocity profile along the horizontal 
line through the geometric centre of the cavity are compared 
with Ghia’s results [14] in Fig 5 and Fig. 6, respectively. The 
results using the present 2nd order scheme are in good agreement 
with Ghia’s results [14], showing high accuracy.  
The comparison of residual history for the driven cavity flow 

is presented in Fig. 7. The comparison shows the improvement 
by employing a multigrid method with respect to a single grid 
calculation. The steady state is reached when the residual 
dropped approximately 5.5 - 6 orders of magnitude and due to 
the use of the larger time step the steady state can be quickly 
reached in multigrid solutions without losing any significant 
accuracy.  
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Fig. 4 Mach number contours and streamlines 
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Fig. 5 u-velocity profile along the vertical line through the 
geometric centre of cavity 
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Fig. 6 v-velocity profile along the horizontal line through the 
geometric centre of cavity 
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Fig. 7 Comparison of residual history of momentum in x 
direction for laminar flow over a flat plate 
 

C. Large Eddy Simulation of Mixing Layer 

A two-dimensional spatially evolving mixing layer problem 
is solved. This test case was also studied by Uzun [8] and Bogey 
[15]. In this study, a smaller computational domain (i.e. no 
sponge region) is used due to the present effective 
non-reflecting boundary conditions. The in-flow hyperbolic 
tangent velocity profile and the transverse velocity with random 
perturbations are, respectively, expressed as 
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where U1 = 50 m/s and U2 = 100 m/s are the lower and upper 
velocities, respectively. δω0 = 1.6 × 10

-3 m is the initial vorticity 
thickness. The transverse velocity with a random perturbation is 
given by: 
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where α = 0.0045, ∆y0 is the minimum grid spacing in the y 
direction and ∈  is a random number between -1 and 1.  The 
non-reflecting boundary conditions are imposed at the upper 
and the lower boundaries. The convective Mach number which 
measures the intrinsic compressibility of a mixing layer [16] is 
defined as: 
 

074.0
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=
∞c

UU
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 (19) 

 
where 

∞c  is the free stream speed of sound. The Reynolds 

number based on the initial vorticity thickness (δω0) and velocity 
difference is given by: 
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The mesh density is 625 × 301 in the x and y directions, 

respectively. The computational domain lies between 
m 4.00 ≤≤ x and m 16.0m 16.0 ≤≤− y . The mesh is 

uniform in the streamwise direction whereas in the transverse 
direction exponential grid stretching is applied. The minimum 
grid spacing is about 0.16δω0 at y = 0 and the maximum grid 
spacing around the lower and upper boundaries is 3.0δω0. 
 In Fig. 8, instantaneous vorticity contours are shown and 
vortex pairing at different locations can be observed. The 
vorticity thickness evaluation is shown in Fig. 9. After the initial 
transients, the vorticity thickness grows linearly. The spreading 
rate parameter is given by [17]:  
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The range of reported experimental results for the parameter 

S is from S ≈ 0.06 to S ≈ 0.11 [17]. The parameter S predicted by 
Smagorinsky model is within the range of experimental values. 
The normalized Reynolds stresses are defined as:  
 

2
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uu
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where 〈〉 denotes time-averaging. In Fig. 10 and Fig. 11 the 

turbulence intensities are compared with Uzun’s normalized 
Reynolds stress results [8] at different locations. For 
comparison the transversal direction is non-dimensionalized by 
the vorticity thickness δω(x). The calculated turbulence 
intensities are in good agreement with those using the 6th order 
tri-diagonal compact scheme of Uzun [8] whereas the present 
scheme is just 2nd order in space and time.  
 

 
Fig. 8 Instantaneous vorticity contours 
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Fig. 9 Vorticity thickness growth in the mixing layer 
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Fig. 10 Normalized Reynolds normal stress σxx profiles 
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Fig. 11 Normalized Reynolds normal stress σyy profiles 
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IV. CONCLUDING REMARKS 

This paper describes the first-known validation of a direct 
flux-based multigrid acceleration method for a Navier-Stokes 
solver employing the time conservative finite volume method.  

Flow over a forward facing step test case is solved to 
demonstrate the robustness of the time conservative scheme. 
High accuracy and high resolution results have been achieved 
with low dissipation and low dispersion errors. No numerical 
oscillations are observable in the steep region around a shock 
wave.  Furthermore, the simple but effective non-reflecting 
boundary conditions can be used with the present scheme.  

The driven cavity flow in a square cavity is solved to validate 
the Navier-Stokes solver. The direct flux-based multigrid 
method is coupled with the scheme to effectively accelerate the 
convergence of the steady flow solution. 

LES of turbulent flow is performed for a spatially evolving 
mixing layer and compared with the results from a sixth-order 
tri-diagonal compact scheme. The subgrid scale turbulence 
fluctuations are modelled with the Smagorinsky SGS model. 
The results are in good agreement with those from a high-order 
numerical scheme.  

The second-order time conservative finite volume method is 
less dissipative than the other second-order numerical schemes 
and gives comparable results with high-order numerical 
schemes. High accuracy and high resolution coupled with 
non-oscillatory property of the present 2nd order scheme make it 
a good candidate for complex unsteady flows and 
computational aero-acoustics (CAA) applications. 
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