
 
 

 

  

Abstract— An array antenna system with innovative signal 
processing can enhance the resolution of a signal direction of 
arrival (DOA) estimation.  Super resolution algorithms take 
advantage of array antenna structures to better process the 
incoming signals.  They also have the ability to identify multiple 
targets.  This paper explores the eigen-analysis category of 
super resolution algorithm.  A class of Multiple Signal 
Classification (MUSIC) algorithms known as a root-MUSIC 
algorithm is presented in this paper. 

The root-MUSIC method is based on the eigenvectors of the 
sensor array correlation matrix. It obtains the signal estimation 
by examining the roots of the spectrum polynomial. The peaks 
in the spectrum space correspond to the roots of the polynomial 
lying close to the unit circle.  

Statistical analysis of the performance of the processing 
algorithm and processing resource requirements are discussed 
in this paper. Extensive computer simulations are used to verify 
the performance of the algorithm for imperfect system 
calibration. 

 
Index Terms— Array antenna, Direction of arrival 

estimation, Signal processing. 
 

I. INTRODUCTION 

  Accurate estimation of a signal direction of arrival 
(DOA) has received considerable attention in communication 
and radar systems of commercial and military applications. 
Radar, sonar, seismology, and mobile communication are a 
few examples of the many possible applications.  For 
example, in defense application, it is important to identify the 
direction of a possible threat. One example of commercial 
application is to identify the direction of an emergency cell 
phone call in order to dispatch a rescue team to the proper 
location. 

DOA estimation using a fixed antenna has many 
limitations. Antenna mainlobe beamwidth is inversely 
proportional to its physical size. Improving the accuracy of 
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angle measurement by increasing the physical aperture of the 
receiving antenna is not always a practical option. Certain 
systems such as a missile seeker or aircraft antenna have 
physical size limitations; therefore they have relatively wide 
mainlobe beamwidth. Consequently, the resolution is quite 
poor and if there are multiple signals falling in the antenna 
mainlobe, it is difficult to distinguish between them. 

Instead of using a single antenna, an array antenna system 
with innovative signal processing can enhance the resolution 
of a signal DOA. An array sensor system has multiple sensors 
distributed in space. This array configuration provides spatial 
samplings of the received waveform. A sensor array has 
better performance than the single sensor in signal reception 
and parameter estimation. A sensor array also has 
applications in interference rejection [1], electronic steering 
[2], multi-beam forming [3], etc.  

There are many different super resolution algorithms 
including spectral estimation, model based, and 
eigen-analysis to name a few [4, 5, 6].   In this paper, we 
discuss the application of estimating the DOA of multiple 
signals using uniform linear array (ULA) antenna with a class 
of Multiple Signal Classification (MUSIC) algorithms 
known as root-MUSIC. It does not require using a scan 
vector; resolution improvement does not necessarily require 
additional processing power. Detailed simulation results for 
the algorithm to demonstrate the performance are presented 
in this paper. 

Although an ideal array antenna has uniform spacing 
between the array elements, there will be always some small 
deviation of spacing from an array element to adjacent 
elements. This small deviation causes an error in the 
electrical angle of each element. Additionally, when the array 
system is not perfectly calibrated, there will be a random 
phase error. Statistical analysis is carried out in this paper to 
investigate the effect of random element position variation 
and random phase variation on DOA estimation. 

Computer simulation programs using MATLAB were 
developed to evaluate the direction finding performance of 
an array processor. Statistical analysis for element position 
deviation and phase error due to imperfect system calibration 
are included in this simulation study. 

 

II. SENSOR ARRAY SYSTEM 

A sensor array system has multiple sensors distributed in 
space. This array configuration provides spatial sampling of 
the received waveform. We use an array antenna with an M 
element uniform linear array (ULA) in this paper.  Fig.1 
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shows the general configuration for a ULA antenna having M 
elements arranged along a straight line with the distance 
between adjacent sensor elements, be d = λ/2, where λ is the 
incoming signal wavelength.  The angle of the incoming 
signal, �, is measured relative to the antenna bore sight. 
 

 Figure 1. A uniformly spaced linear array antenna 
uniformly spaced 

For a conventional antenna, the main lobe beam width 
(MLBW) is given by, in radians 

    
MLBW m

D
λ=

           
(1) 

 where D is the length of the antenna array and m is a 
proportionality constant, in most cases m ≈ 1 [6]. 

Consider a uniformly spaced linear array of M sensors as 
shown in Fig. 1. The coordinate of the ith sensor is i = 0, 1, … 
, M-1. Suppose a plane target signal waveform comes from 
the direction of k = sinθ. The difference of the propagation 
path of this wave between the origin i=0 and the ith sensor ∆di 
is sini i id d θ∆ = . The corresponding propagation time 

delay τi is  
 

    
sini i i

i

d d
c c

θτ ∆= =          (2) 

 
where c is the speed of light. 

If the bandwidth of signals is sufficiently narrow, then the 
data picked up by different sensor elements are related by a 
pure phase factor. The relative phase shift of the ith sensor 
with respect to the reference sensor at the origin is  

 

    
2

sini i id
πβ θ
λ

= − .          (3) 

 
To avoid the effect of grating lobes, the distance between 

the two neighboring sensors has to be no more than one half 
of the wavelength.  If the reference sensor is located at the 
origin, and a waveform received by the reference sensor due 
to signal coming from direction of k is x(t), then the received 
waveform at ith sensor is xi(t) = x(t-τi).  

For the sensor array with M elements, we can define the 
array input vector x(t) and the array weighting vector w as  

 

   [ ]0 1 1( ) ( ), ( ), , ( )
T

Mt x t x t x t−=x � ,     (4) 

   [ ]0 1 1, , ,
T

Mw w w −=w � .         (5) 

 

where xi(t) is the data input to the ith sensor and *
iw  is the 

weight of the ith sensor. The sensor array output y(t) is 
 

    ( ) ( )Ht t=y w x             (6) 
 
where the superscript H represents the complex conjugate 
transpose (Hermitian) of the matrix. 

Suppose there are L independent signal sources impinging 
on the antenna and we want to use a sensor array system to 
identify their directions of arrival (DOA). The input signal to 
each individual sensor is the combination of L independent 
signals. Every sensor in the array also receives random 
environmental ambient noise. This noise is modeled as 
Additive White Gaussian Noise (AWGN). The input 
waveform of the ith sensor element xi(t) is given by  

 

 ,
1

( ) ( ) ( ), 0,1, 1
L

i k i i
k

x t s t n t i M
=

= + = −� �   (7) 

 
where sk,i(t) = sk,o(t-τk,i), and sk,o(t) denote the kth signal 
picked up by the sensor at the origin, ni(t) is the noise at ith 
sensor, and τk,i is the relative delay of kth signal at the ith 
sensor. 

For the narrowband input signals, signal sk,i(t) is related to 
the signal sk,o(t) by a phase shift factor of βk,i. If the input 
signals have a wide bandwidth, the delay time of signal at ith 
sensor from reference signal at the origin may not be an 
integer multiple of the sampling time; additional 
interpolation filtering is required to emulate their delay. The 
weighted sum of samples of all sensors forms the array 
output. To estimate the DOA of wideband signals, each 
single weight is replaced by a tape delay lines filter. Such a 
processor is referred to as the Space Time Adaptive 
Processor (STAP) [7]. In this paper, only narrowband signal 
is considered. 

 

III. ROOT-MUSIC ALGORITHM 

The eigen-analysis method assumes that the received data 
can be decomposed into two mutually orthogonal subspaces. 
One is the signal plus noise subspace, the other is the noise 
only subspace. There are several important eigen-analysis 
methods; the Pisarenko Harmonic Decomposition [8], 
Multiple Signal Classification (MUSIC) [9] and Estimation 
of Signal Parameters via Rotational Invariance Techniques 
(ESPRIT) [10]. The MUSIC algorithm, using temporal 
averaging and spatial smoothing, is briefly presented for 
convenience. 

Assume the number of signals impinging on the array 
antenna is L, and the array antenna has M elements, usually M 
> L. For finite number of data sequences, a sequence of 
received data can be considered as a vector in the sample 
space. If the noise is assumed to be white, it spans over the 
entire sample space. For signals with sufficient narrowband, 
they span over L dimensional subspace. For example, radar 
signal of a moving target is a sinusoid with a frequency equal 
to the Doppler frequency shift. If there are L targets, the 
received waveform at the reference sensor at the origin x0(n) 
can be expressed as  

1 2 3 4 0               1                   2                                                                          M-1 Sensor Elements 

d= λ/2 

Incoming 
Signal 

Bore sight 

�
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where αk, fk, and  k = 1, 2, . . , L are the complex amplitude 
and frequency of the kth sinusoid, and n0(n) is the additive 
white noise with variance σ2. Since the signal at the other 
sensors has a relative phase shift, the waveforms of the other 
sensors are 
 

 , ,2

1
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L
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k
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                       (9) 

where ,

2
sin , 1,2, ,k i i kx k L

πβ θ
λ

=− = �  for one dimensional 

array. 
One of the eigen-analysis methods is the “Multiple Signal 

Classification” (MUSIC). MUSIC is especially practical in 
handling radar signals.  

Define the signal matrix S as 
 

S = [s1, s2, . . , sL] = 
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                      (10) 
 
The correlation matrix of received data sequence R is  

 
     

2σ= +HR SDS I          (11) 
 

where 1 2[ , ,... ]Ldiag P P P=D  is the signal power matrix, I is 
the identity matrix, and 2σ  is the variance of the Gaussian 
white noise,  

The eigenvalues λi and eigenvectors qi of the matrix R 
satisfy the following equation. 

 
     i i iλ=Rq q            (12) 

where 
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2
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1, ,
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i
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σ
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= 	

= +


�

�
    (13) 

 

and Pi, i = 1, 2, … , L are the eigenvalues of matrix SDSH. 
Eigenvectors qi, i = 1, …, L span over the signal and noise 

subspace and eigenvectors qi, i = L+1, … , M span over the 
noise only subspace. Noise only subspace eigenvectors 
satisfy the following equation. 

 

    2 , 1, ,i i i L Mσ= = =Rq q �     (14) 

 
The signal vectors si i = 1, 2, … , L belong to the subspace 

span by qi, i = 1, ... , L, thus they are orthogonal to noise only 

subspace eigenvector qi, i = L+1, . . , M. If the signal to noise 
ratio (SNR) is reasonably high, then there should be an 
obvious gap between the largest L eigenvalues to the rest. 
Thus the number of signals can be easily identified by using 
the L eigenvectors associated with the L largest eigenvalues. 
We can compute the eigenvectors associated with the 
smallest M-L eigenvalues of the matrix R in the following 
form of matrix 

The MUSIC algorithm can be summarized as 
1. Compute the eigenvectors associated with the smallest 

M-L eigenvalues of the matrix R. 
2. Form the matrix  
  
   [ ]1 2N L L M+ +=V q q q�        (15) 

 
3. Compute the MUSIC spectrum SMUSIC(θ) as  
 

   SMUSIC(θ) = 
(�)(�)

1
H
NN

H sVVs
       (16) 

 
 where s(θ) is a scan vector scans over all possible 

elevation angles. 
4. Whenever the MUSIC spectrum reaches peak value, the 

corresponding angle θ must be the signals DOA 
 
To compute the MUSIC spectrum, we must first estimate 

the correlation matrix of the received data. After the 
estimated correlation matrix is obtained by using the 
temporal averaging or the spatial smoothing method, the 
conventional MUSIC algorithm based on Eq.(16) has to 
compute MUSIC spectrum by using the scan vector s(θ) to 
scan over all possible directions. A more efficient method to 
estimate the DOA of the signal is to compute the roots of the 
polynomial J(z) defined by the following Equation. 

 

     ( ) H H
N NJ z = a V V a         (17) 

where  

    2 11
TMz z z −� �= � �a �     (18) 

 
and z for ULA can be given  

 

    
2

sin
d

j
z e

π θ
λ= .           (19)  

 
Then the roots of J(z) contain the directional information 

of the incoming signals.  Ideally, the roots of J(z) would be on 
the unit circle at locations determined by the directions of the 
incoming signals; however, due to the presence of noise, the 
roots may not necessarily be on the unit circle.  In this case, 
the L closest roots to the unit circle are the roots that 
correspond to the L incoming signals [11].  These selected 
roots, by themselves, do not directly represent the incoming 
angle.  For each root, the incoming angle is found by solving 
Eq.(20). 

 

( )1sin arg , 1,2, , .
2k kz k L

d
λθ
π

− � �= =� �� �
�   (20) 
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Obviously, when the root-MUSIC algorithm is 

implemented, there is no prior knowledge of the incoming 
signal directions or signal powers needed to construct the 
correlation matrix using Eq.(11).  Therefore the correlation 
matrix must be estimated using only the information 
available from the sensor array.  There are several methods 
commonly used to perform this estimation such as temporal 
averaging, spatial smoothing, or a hybrid combination of 
both temporal averaging and spatial smoothing [8].  In this 
paper, we use only the temporal averaging method. 

 

IV. COMPUTER SIMULATION RESULTS 

Consider a 16 element ULA with inter-element spacing 
equals half wavelength. In a conventional fixed antenna, the 
mainlobe beamwidth would be around 7 o. This antenna array 
would not be able to resolve multiple signals if their angle 
separation is less than 7 o. Using the root MUSIC algorithm, 
this ambiguity can be easily resolved. 

Let (1), (2), , ( )i i ix x x N� represent the received sample 

data from ith element, where i = 0, 1, . . , M-1. The incoming 
data matrix A can be given 

 

0 0 0

1 1 1

1 1 1

(1) (2) ( )
(1) (2) ( )

(1) (2) ( )

H

M M M

x x x N

x x x N

x x x N− − −

� �
� �
� �=
� �
� �
� �

A

�

�

� � � �

�

    (21) 

 
The estimated correlation matrix ΦΦΦΦ is computed by  
 

    HΦ = A A   .           (22)  
 
We can find the eigenvalues from the estimated correlation 

matrix ΦΦΦΦ,.  The columns of matrix VN are the eigenvectors 
associate with the M-L smallest eigenvalues of matrix ΦΦΦΦ. 
Once this matrix is available, the signals’ DOA can be 
derived from L roots of polynomial J(z) closest to the unit 
circle.  

Fig.2 shows the roots computed from Eq.(16) when two 
signals impinging on a 16 element ULA from angles of 40o 
and 46o. In this simulation, the number of snapshot N is 32 
and the signal to noise ratio (SNR) is 20 dB.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Roots of Polynomial J(z) 

 
Fig.2 shows when the angle separation between two 

signals smaller than the mainlobe beamwidth, two distinct 
pair of roots closest to the unit circle can easily be identified. 
The zoom area shows  one of the pair roots that they are very 
close to the theoretical root of the signal’s DOA. The results 
are very similar to Fig.2 when the angle  separation is further 
reduced to 3o, and 1.5o. Thus, the spatial resolution is 
improved by root MUSIC algorithm. 

Eq.(19) converts the roots of polynomial J(z) to the 
signals’ DOA. Assume there are two signals impinging on a 
16 element ULA with 20 dB SNR and taking 32 snapshots, 
the estimated signals DOA with different angle separations 
are shown in Fig.3. The result shows that two incoming 
signals are clearly identified even as the separation between 
the two signals is well below the conventional main lobe 
beam width. The average estimation error is nearly zero in all 
cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Histogram of the Estimated Signals’ DOA for Angle 

Separation equal 6o, 3o, and 1.5o 
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The estimated means and variances based on 1000 trials are 
summarized in Table I. Fig. 3 and Table-1 show that the 
estimation variance increases as the angle separation 
becomes smaller. 

Table I  The Estimated Mean and Variance of DOAs for  
SNR = 20 dB 

Angle 
Separation 

 
6o 

 
3o 

 
1.5o 

True Angles 40o        46o 40o        43o 40o        41.5o 
Estimated  
Mean 

39.997o   46.004o 39.999o   42.999o 39.999o   41.498o 

Variance 0.0009     0.0012 0.0023    0.0025 0.0047    0.0042 
 
Increasing the estimated correlation matrix from 32 

snapshots to 96 snapshots reduces the estimated variance. Fig. 
4 compares the histogram of the estimated signals’ DOA for 
20 dB SNR, and the signals’ DOA are 40o and 41.5o for 32 
and 96 snapshots. The estimated mean values and variances 
based on 1000 trials are listed in Table II. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 4. Histogram of the Estimated Signals’ DOA with  
SNR = 20 dB and Angel Separations 40 o and 41.5o  

(a) 32 Snapshots, (b) 96 Snapshots 

 

 

 

Table II The Estimated Mean and Variance of DOAs for  
SNR = 20 dB 

Number of 
Snapshots 

32 96 

True Angles 40o        41.5o 40o        41.5o 
Estimated Mean 39.9999o   41.4987o 39.9992o   41.5008o 
Variance 0.0047    0.0042 0.0015      0.0016 
 

The above simulation results assume that the system 
operates in a high SNR environment such as SNR value at 20 
dB. If the SNR is only 5 dB, the simulation result yields a 
larger estimation variance. Fig.5 shows the histogram of the 
estimated signals’ DOA for 5 dB SNR, and the signals’ DOA 
are 40o and 46o. This result is based on 1000 independent 
simulations where the number of snapshots of each 
simulation is 32 and 96.   

The estimated mean values and variances based on 1000 
trials for 5 dB SNR and the two different numbers of 
snapshots are listed in Table III. This simulation result shows 
that as we increase the number of snapshots, the estimation 
variance decreases. 

 

 
 (a) 
 

  
(b) 

 
Figure 5 Histogram of the Estimated Signals’ DOA with  

SNR = 5 dB. (a) 32 Snapshots (b) 96 Snapshots,  
Signals’ DOA are 40o and 46o 
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Table III. The Estimated Mean and Variance of DOAs for  
SNR = 5 dB 

 
Number of 
Snapshots 

32 96 

True Angles 40o        46o 40o        46o 
Estimated Mean 39.9708o   46.0279o 39.9893o   46.0094o 

Variance 0.0358    0.0430 0.0112    0.0140 

 

V. SENSOR SPACING AND PHASE SENSITIVITY 

The root-MUSIC algorithm in the previous section 
assumes that the positions of the elements ULA are exactly 
uniformly spaced and the weights of elements are perfect. 
However, the real system always has some variation in 
element position and phase. Fig. 6 shows the sensor element 
position has a slight deviation from the ideal element 
position. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Non-ideal ULA sensor spacing 

 
The spacing error of each sensor, ei, is a Gaussian random 

variable added to the ideal spacing.  Taking this error into 
account, Eq.(3) is used to create the phase shift between 
sensor elements for the incoming signals and becomes 

 

   

2 ( )
( ) sin( )i

i i

d eπβ θ θ
λ

+=        (23) 

       where dk = (k-1)d, and ek represents the ideal positions and 
the position error of the kth element, and θ is the signal’s 
DOA. Increasing the position error increases the estimation 
variance. Suppose the position error has a Gaussian 
distribution with standard deviation equal to 1% and 5% of 
the theoretical inter-element spacing d.  Using 20 dB SNR 
and two signals impinging on the ULA at θ = 40o and 46o, the 
histograms based on 1000 simulations are shown in Fig. 7. 
The number of snapshots is assumed to be 32. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Figure 7. Histograms of Two Signals with DOA = 40o and 46o,  
SNR = 20 dB with (a) Ideal Element Spacing d, (b) Gaussian 

Random Spacing with Standard Deviation equal .01d, (c) Gaussian 
Random Spacing with Standard Deviation equal .05d 

If the phase error of each received signal increases, the 
estimation variance also increases. Example of a random 
Gaussian phase error with standard deviation equal to 1o and 
5o and histograms based on 1000 simulations are shown in 
Fig.8. The number of snapshots is assumed to be 32, and 
SNR = 20 dB. 

 
 
 
 
 

0 1 2 3 M-1 

Ideal Sensor d= λ/2 

Incoming Signal 

�  

Variation in Distance between Sensor 
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d+e3 d+e4 d+eM 

Engineering Letters, 16:3, EL_16_3_13
______________________________________________________________________________________

(Advance online publication: 20 August 2008)



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 8. Histograms of Two Signals with DOA = 40o and 46o, 
SNR = 20 dB with  

 (a) Gaussian Random Phase Error with Standard Deviation = 1o,  
 (b) Gaussian Random Phase Error with Standard Deviation = 5o 

Combining the effect of random phase error and position 
error further degrades the performance of the ULA. Fig. 9 
shows the histogram of two signals impinging on the ULA 
with DOA equal = 40o and 46o, SNR = 20 dB. The position 
error is a Gaussian random variable with a standard deviation 
equal to 1% of the ideal spacing between elements. The phase 
error is a Gaussian random variable with standard deviation 
equal to 1o. This result is based on 1000 simulations with 32 
snapshots in each simulation. 

 

 
Figure 9. Histogram with Combine Phase Error and 

Position Error 
 
 

 
 
 
 
Fig.10 shows the estimation variance of different Gaussian 

random phase error versus signal’s DOA for 20 dB SNR. The 
estimated variance increases rapidly as the signal’s DOA 
approaches the end fire of the ULA. If the signal’s DOA is 
greater than 75o, the estimation variance become so large that 
reliable DOA estimation is difficult to achieve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Estimation Variance of Different Gaussian Random 
Phase Error versus signal’s DOA for 20 dB SNR 

Fig.11 compares the variance of different Gaussian 
random phase error versus signal’s DOA for 10 dB and 20 dB 
SNR. This simulation result shows that whenever the SNR 
reduce the estimation variance increase. Fig.10 and Fig.11 
are simulation results when the correlation matrices are 
computed based on 32 snapshots. With finite snapshots, the 
estimated correlation matrix is not very reliable, thus if the 
signal impinging the ULA with large angle, the estimated 
signal’s DOA has very large variance. To reduce the 
estimation variance, the estimated correlation matrix should 
be based on averaging large number of snapshots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 11. Estimation Variance of Different Gaussian Random 
Phase Error versus signal’s DOA for 10 and 20 dB SNR 

0 10 20 30 40 50 60 70 80
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Signal Angle (degrees)

E
st

im
at

io
n 

V
ar

ia
nc

e

σPE = 0 Degree

σPE = 1Degrees 

σPE = 3 Degrees

σPE = 5 Degrees

0 10 20 30 40 50 60 70 80
10

-6

10
-4

10
-2

10
0

10
2

10
4

Signal Angle (degrees)

E
st

im
at

io
n 

V
ar

ia
nc

e

σPE = 0 Degree, SNR=10 dB

σPE = 0 Degree SNR=20 dB

σPE = 5 Degrees, SNR=10 dB

σPE = 5 Degrees, SNR=20 dB

Engineering Letters, 16:3, EL_16_3_13
______________________________________________________________________________________

(Advance online publication: 20 August 2008)



 
 

 

 

VI. CONCLUSION 

This paper investigates the possibility of combining the 
array antenna and advanced signal processing techniques to 
enhance the estimation of the direction of signal sources.  

A conventional method to detect the direction of signal 
source is to use a fixed antenna to scan over a certain 
searching region. This primitive estimation technique has 
many limitations. First, its resolution is limited by the 
antenna mainlobe beamwidth. Also, if there are multiple 
signal sources, a conventional fixed antenna has difficulty in 
detecting them simultaneously. 

Using the advanced signal processing techniques, the 
DOA estimation can be improved. The root-MUSIC method 
presented in this paper is based on the eigenvector of the 
sensor array correlation matrix to estimate angle of incoming 
signals.  Extensive computer simulation is used to 
demonstrate the performance of the algorithms, which 
enhance the DOA estimation.  

• The simulation results of the root-MUSIC algorithm 
suggests the following: 

• The capability to resolve multiple targets with 
separation angles smaller the main lobe beam width of 
the array antenna.  

• The estimation variance can be reduced by increasing 
the number of snapshots in correlation matrix 
estimation 

• The estimation variance increases as the angle 
separation  between signals becomes smaller 

• The estimation variance depends on the direction of the 
signal. A signal coming from the bore sight has 
minimum estimation variance. 
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