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An Inverse Stefan Problem
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Abstract—The moving solid/liquid interface of a
melting solid in the one-dimensional case is identified
from temperature and flux measurements performed
solely on the solid part. An algorithm is used, based
on the reduction of problem to an integral equation
and using a Collocation method for solving of it.

Keywords: Inverse Stefan problems, Solidification,

Volterra integral equations

1 Introduction

Problems with free boundaries concern a large number of
physical phenomena of which many can be encountered
in thermal industrial processes, such as casting, welding,
purification by metal beams or laser machining by beams,
gas production from hydrates in porous media. These
phenomena are based on fusion and solidification. These
transformation are accompanied by absorption ( for fu-
sion ) or by release (solidification ) of the latent heat on
the solid/liquid interface, which characterizes the process
of phase change. Optimization of the industrial process
requires control of the moving interface, which makes its
identification essential.

Many studies of inverse problems, in phase change, have
been devoted to control which consist of searching for the
boundary conditions in order to generate a prescribed in-
terface [3,4,5,6,9,12,13,14,15].

In this paper we consider an identification problem of a
particular moving boundary problem at the isothermal
interface between the solid phase and the liquid phase
(the Stefan problem). In [11] Gold'man has considered
only solid part which is as follows.

The Solid part
I (t) = {z|s(t) < = < 1},
is governed by the heat equation
b0 =0 in  Q=LOxOT), ()
satisfying the initial condition
0(x,0) =0 in (s(0), 1), (2)

and the boundary condition

em(la t) - u(t) mn (Oa T)7 (3)
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and the interface condition
0(s(t),t) =Ty in (0,7). (4)

In [11] Gold'man has proved if the interface s is given
and if u € C**7[0, T, then the problem (1)-(4) admits a
unique solution 6 € C**7(257/2(Q). One can calculate
0(1,t) and then define the observation operator

C(s) = 0(L, 1).

In this paper the only modeled part is the liquid one.

2 Statement of the problem

Let
Q={(z, )]0 <z <s(t),0<t< T}

We consider the one-phase Stefan problem, in one-
dimensional space, which is a particular moving bound-
ary problem: the isothermal interface between the solid
phase and the liquid phase is driven by the diffusive heat
in two connected phases. The only modeled part is the
liquid one. The interface solid/liquid is characterized by
a positive function s € C'[0, T.

The liquid part

I(t) = {l0 < = < s(8)},
is governed by the heat equation

Ut = Ugy in I;(t) x (0,T) (5)
satisfying the initial Condition

u(z,0) = p(x)  in  (0,5(0)), (6)

and the interface condition

u(s(t),t) =Ty n 0,7, (7)
and the Stefan condition
ug (s(t),t) = —5(t) in (0,7, (8)

where the function ¢ and the constant T, respectively
the initial data and the melting point, are assumed to be
known. Without loss of generality, we will suppose that
Ty =0.

The inverse problem we are concerned with, is as follows:

Inverse Problem. Given the interface s and ¢ €
C119]0, 00) from problem (5)-(8), can we calculate (0, t)
and then define the observation operator?

C(s) = u(0,t). 9)
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3 Existence

In this section we reduce the problem (5)-(8) to an equiv-
alent problem of solving a linear integral equation of
Volterra type for C(s). For this purpose we first consider
following free boundary problem:

Uge = Ug for 0 <z < s(t), t>0, (10)
u(0,t) = C(s) where C(s) >0, t>0, (11)
u(z,0) = p(x) where p(x) > 0,0 <z <Db,

(12)

and w(b) =0,b>0,
u(s(t),t) =0 for t>0,and s(0) =b, (13)
uz(s(t),t) = _dzgt) for t>0, (14)

x = s(t) is the free boundary which is not given and is to
be found together with u(z,t).

Definition. We say that u(z,t), s(t) form a solution of
(10)-(14) for all t < 0,(0 < 0 < 00) if (i)g% and %7: are
continuous for 0 < z < s(¢),0 < t < o; (ii)u and g—g are
continuous for 0 < z < s(t),0 < t < o; (iii)u(x, t) is con-
tinuous also for t = 0,0 < z < b, and 0 < liminf u(z,t) <
limsupu(z,t) < oo as t — 0,z — 0 (if ¢(0) = f(0)
then w is required to be continuous at x = t = 0); R
(iv)s(t) is continuously differentiable for 0 < ¢t < o, and
(v)the equations (10)-(14) are satisfied.

Theorem. Assume that C(s) (0 <t < o0) and p(z) (0 <
x < b) are continuously differentiable functions. Then
there exist a unique solution u(x,t),s(t) of the system
(2.0.10)-(2.0.14) for all t < co. Furthermore, the function
2 = s(t) is monotone nondecreasing in ¢ and the function
u(zx,t) we find for following integral representation.

u(w,t):/o ue(s(t),t)G(x,t; s(7), 7)dr (15)

t b
+ / C(s)Gel, 50, 7)dr + / PG, 1, 0)deé
0 0

Where G(z,t;&,7) is Green’s function for the half-plan
x > 0 and

G(m7t;£77—) = K(l’,t;g,’l’) - K(—(E,t;f,T),

where

K(z,t; ¢, 1) = 47r(1t—7)exp{_ Efgt_i)) 1.

Proof. See [10].

We shall now reduce the problem of solving (10)-(14) to a
problem of solving an integral equation. By introducing

U<t) = UI(S(t),t), (16)

and suppose that u,s form a solution of (10)-(14) and
©(0) = C(8)|t=0, we can reduce the problem of solving
(10)-(14) to a problem of solving an following integral
equation [10],

b
ot =2 [ FONG@LEENE 7
0
-2 tC”(s)N(s(t),t;O,T)dT
0
+2/0 v(T)G(s(t),t; (), 7)dT,
and by (14),(16), we have
s(t):b—/o v(F)dr. (18)

Where
N(x,t;6,7) = K(2,;6,7) + K(—2,t;€,7).

Thus for every solution u, s of the system (10)-(14) for
all ¢ < o, the function v(t) defined by (17) satisfies
the nonlinear integral equation of Volterra type (17) (for
0 <t < o0), where s(t) is given by (18) continuous for
0<t<o.

Suppose conversely that for some o > 0, v(t) is a contin-
uous solution of the integral equation (17) for 0 <t < o,
with s(t) given by (18). We prove that u(z,t), s(¢) then
form a solution of (10)-(14) for all ¢t < o , where u(x,t)
is defined by (15) with u¢(s(7),7) replaced by v(r), [10].

Now we consider the following Inverse problem . By
above verifying, we note that, if for some o > 0, C(s) is a
continuously differentiable solution of the linear Volterra
integral equation of first kind (17) (forC(s)), where s(t)
is given, u(z,t) then form a solution of Inverse problem.
By (17), we can write

/ot C'(s)N(s(t),t;0,7)dT = h(t), (19)

where

b
h(t) = / ()N (s(t), 1€, 0)de

+/ W(F)Ga(s(1), £ 5(7), 7)dr — 1/20(1),
0

where s(t), therefore v(t) are given.

We want to solve the integral equation (19) where h(t)
is given by (20). For this purpose we write the equation
(19) as following form,

/ tu(T)K(m)dT = h(t) telfo,,  (21)
0

where

K(th) = N(S(t)at;oa’r),
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and h(t) is given by (20).

Proposition. Assume the following :
a) The function K : [0,b] x [0,b] — R is continuous.
b)We define,

L= max |K(t,7)|
t,7€[0,b]

¢) Weset X = C[0,b] and M = {u € X :
fixed r > 0.

Then, the original integral equation (21) has at least one
solution u € M.

lu|| < r} for

Proof. Define the operator

(Tu)(t) = Zgg/o w(r)K(t,7)dr for all te€][0,D].

Then, the integral equation (21) corresponds to the fol-
lowing fixed-point problem :

u = Tu, u € M. (22)
We claim that the equation (22) has a solution. For this
purpose, we need to prove the following :

1) The set M is a bounded, closed, convex, nonempty
subset of Banach space X.

2) The operator T : M — M is compact.

Then, the Schauder fixed-point theorem tells us the equa-

tion (22) has a solution.

Lemma 1. The set M is a bounded, closed, convex and
nonempty subset of Banach space X.

Proof. The bounded and nonempty property subset of
Banach space M of X are clear.
We know that, the set M is convex iff u,v € M and
0<a<1imply au+ (1 —a)v e M.
Let u,v € M and 0 < a < 1, then
o+ (1 = a)ol| < flaul + I(1 - a)el

= allull + (1 = a)jv]|

<ar+(1—-a)r=r.
Hence, au+ (1 — a)v € M.

Now we want to show that the set M is closed. To this
end, let u,, be a sequence in M such that

Up — U as n — o0.

By the definition of M, for each w,, we have
l|lwn|| <, n=12,...

Thus we can write

lu = wn + un |

[[ull =

< lw = wn || + [Jun|

< lw—wun||+r=mr

as n — 00.
Hence, u € M. Thus, the set M is closed.

Lemma 2. Let us consider the integral operator

u(t)

(Tu)(t) = 40 /0 WK, r)dr for all te[0,b]

h(t)

Where
—(r||% ki(2r||£1))o
b < minf L 2= I+ kA,
rLlgl rliglle + kel
Set
Q={(t;mu) e R’ : (t,7) €[0,7] and |u| <7}
for fixed r > 0.
Suppose that the function
F:Q— R
F(t,7,u) =u(r)K(t,7)

is continuous .

Set X = C[0,b] and M = {u € X :
r > 0.

Then, the operator T': M — M is compact .

|lu|l < r} for fixed

Proof. Since () and R are normed spaces and F : Q —
R is a continuous operator on the compact set @, hence,
F' is uniformly continuous on (). This implies that, for
each ¢ > 0, there is a number ¢ > 0 such that

|F(t,7,u) — F(t',7,v)] <e, (23)
for all (¢,7,u), (t',7,v) € Q with |t — /| + Ju — v| < 4.
We first show that the operator u : [0,b] — R is contin-
uous. In fact, if w € M, then the function u : [0,b] — R
is continuous, and |u(7)] < 7 for all 7 € [0,b] and
h : [0,b] — R is continuous and h(r) # 0 for all

€ [0,b]. Hence the function Tw : [0,b] — R is also
continuous.
Let
Ju—oll = goas [u(r) = o()] < 8
implies
17w~ To =

u(t) [ v(t) [
012?%{17'%/0 w(T)K(t, 7)dr — m/o (1)K (t, 7)dT]

1 t
—Orggé(b(|h(t)|/0 (u(t)u(r)

= g (1] [ (uoutr) = ()

Fu()o(r) = v(t)v(r)) K (¢, 7)dr])

1
0<t<b h(t ||/ —v(r)

—o(t)o(7)) K (L, T)d7])
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—o(7)(u(t) —v(1))K (¢, 7)dr])
Where

<y L maX/(\U( )[(u(r) = o(r)K(¢,7)| ky= max |F(t,7,u)|.

0<t<b t,r€[0,0]

Flo(n)l[(u(t) = v(®) K (¢, 7)])dr

4 Numerical Results

< ! (re +re)b = 2rbe— !
”h” I In this section we apply the Collocation method to some
by (23). Hence, T': M — M is continuous. examples in order to compare numerical solution with
We now show that T(M) C M. exact solution.

If w € M, then
Example 1. In Inverse problem, suppose that s(t) = t.

Then we obtain the following integral equation :

| Tuf = 48 / u(r) K (¢, 7)dr]|

h(t)
t / e e = T)}dr vr
< - K =
a5 gmas, [ (1507 Vi 2
2
<Y<, 1/ 1 Tty thT o G
h +4 0 m[exp{ 4 } theXp{ 4(t77')}] g
<
for b LH [ with exact solution C(s) = e’ —1. Suppose that t € (0,1).
Hence, Tu € M. Thus T(M) € M for b < LH Tk The result of applying Collocation method with 12 nodes
We now show that T': M — M is compact. of interval (0,1) and with 12 base functions ¢;(t) =/, j =

Since the set M is bounded, it suffices to show that the 0,1,2,...,11 for above integral equation is in the following
set T'(M) is relatively compact. By the Arzela-Ascolli form:
theorem it remains to show that T'(M) is equicontinuous.

Let [t —¢'| < 6 and £,# € [0,8]. Then by (23) Cootto(s) = 11706015 441640, 77870,
12 11 10
145570 5320 12360 18730
|(Tw)(t) — (T )(t')| 0 — % ¢ ¢ — 6
9 8 7 6
u(t) [* 170 4 130
|—/ u(t)K(t, 7 / w(T)K (¢, 7)dr| 5 3 2
h(t) Jo 0 +850t 4 3 ——t7 + 107,
. which the right hand integral is approximated by Gaus-
u(t) u(t') . sian three points rule.
= [ 8y - d
|/ h(t)F b7 u) h(t’)F(t Ty uldr Comparing of numerical solution and exact solution is

given in figurel.

Y ) u(t)
—F(t — F d
+/t [h(t) (t,7u) h(t") (s, w)ldr] Example 2. For s(t) = t3/2, we obtain the following

integral equation :

t 3
F(t,7,u) — F{t',1,u t exp{——
|/ h(t) )= # ) / C'(S)MdT:Z%/Zl\/E
LR u)(“(t )y 0 T
T — — T
’ h(t)  h(t) Y t3/2 _ 3/2 (13/2 — £3/2)2
3/8 / /e d S
! ult)
Y _F( £3/2 3/2 £3/2 _ £3/2)2
+/t ey FLm) = F (7o) — exp{~{ o _TT) .
t)  u(t) : _
Pt ) (4D Uy
+E(t, T u)(h(t) h(t’))] a With exact solution
O(s) = 0103 o0 _ TIO0T 1 | 380593737
1 1 1 1
< (rll gl + k@G 1+ (7 lle + Ra(2rll 7106 < ¢ 0007 09000 - 1TA0SR0
h h h h M93TTBTL yy | BS2TUST 4y 2221627 4
for ) ) 5734400 5160960 1290240
- (TUEHE‘F]CI(QTUEH))(S. 4251 ¢ T 6 54 3.
75 lle + k2l 5 11) Too0t Tt it T
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Figure 1: (—) exact solution, (*) approximated points
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Figure 2: (—) exact solution, (*) approximated points
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Figure 3: (—) exact solution, (*) approximated points
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Suppose that ¢ € (0,1). The result of applying Collo-
cation method with 12 nodes of interval (0,1) and with
12 base functions ¢;(t) = #/,j = 0,1,2,...,11 for above
integral equation is in the following form:

5373, 345, 2008
Ceotio(8) = =5t + =t 0
1621 5 7696, 5863,  410.9
9 8 7 6
395 . 76, T71. 13
SIS ot o 2 0Tt
5 RS S

which the right hand integral is approximated by Gaus-
sian three points rule.

Comparing of numerical solution and exact solution is
given in figure2.

Example 3. Suppose that s(t) = t2, then we obtain the
following integral equation :

S
/c’(s){ T}y
0

Vi—T
t 2 2
t t+7)t*—77)
t 1/2 t _
VT 41/ /0 m[( + 7) exp{ 1 }
t*+ 77 (t* 4 72)
L T ) 4
with exact solution
4 301 1157
CO(s) — 430 427 424
)= st T 13200’ o720
131 5, 3059 4 323 .. 13, 11,
—t —t —t —t —t
too6" T 151200 Te30’ T2l T
7
+§t6 + 213,

Suppose that ¢ € (0,1). The result of applying Collo-
cation method with 12 nodes of interval (0,1) and with
12 base functions ¢;(t) = #/,j = 0,1,2,...,11 for above
integral equation is in the following form:

20764 1, 26862, 2333

Cco o -
to(5) 12 11 10
5Ll G881 5903, 8362, 1935 g
9 8 7 6 5
72, 02, 19,
L B L N T
- 510t 0.0,

which the right hand integral is approximated by Gaus-
sian three points rule.

Comparing of numerical solution and exact solution is
given in figure 3 (left).

Also for s(t) = t? by asymptotic approximation given in
[2], we can obtain upper and lower bounds for C(s) in
the following form:

exp{2t3} —1 < O(s) < exp{3t*} — 1.

Figure 3 (right) shows that numerical approximation lies
between upper and lower bounds.
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