
  

Abstract—In biological sequence research, the positional 

weight matrix (PWM) is often used to search for putative 

transcription factor binding sites.  A set of experimentally 

verified oligonucleotides known to be functional motifs are 

collected and aligned.  The frequency of each nucleotide A, C, G, 

or T at each column of the alignment is calculated in the matrix.  

Once a PWM is constructed, it can be used to search from a 

nucleotide sequence for subsequences that can possibly perform 

the same function.  The match between a subsequence and a 

PWM is usually described by a score function, which measures 

the closeness of the subsequence to the PWM as compared with 

the given background.  Nevertheless, the score function is 

usually motif-length-dependent and thus there is no universally 

applicable threshold.  In this paper, we propose an alternative 

scoring index (G) varying from zero, where the subsequence is 

not much different from the background, to one, where the 

subsequence fits best to the PWM.  We also propose a measure 

evaluating the statistical expectation at each G index.  We 

investigated the PWMs from the TRANSFAC and found that 

the statistical expectation is significantly (p<0.0001) correlated 

with both the length of the PWMs and the threshold G value.  

We applied this method to two PWMs (GCN4_C and 

ROX1_Q6) of yeast transcription factor binding sites and two 

PWMs (HIC1-02, HIC1_03) of the human tumor suppressor 

(HIC-1) binding sites from the TRANSFAC database.  Finally, 

our method compares favorably with the broadly used Match 

method.  The results indicate that our method is more flexible 

and can provide better confidence. 

 
Index Terms — Positional Weight Matrix, Threshold, 

Statistical expectation, Goodness-of-fit, Sequence motif.  

 

I. INTRODUCTION 

Sequence motifs are short, functional patterns in biological 

sequences and are often used to characterize the interaction 

between a DNA and a protein, such as a binding site of a 

transcription factor (TF).  Many TFs are able to bind to a 

DNA subsequence with alternative nucleotides at one or more 

positions in a motif.  A set of experimentally verified 

oligonucleotide sequences known to be bound by a TF are 

collected and aligned.  The frequency of each nucleotide A, C, 

G, or T at each column of the alignment is calculated in the 

matrix, called positional weight matrix (PWM, see e.g. [1]). 

Once a PWM is constructed, it can be used to search for 

putative sites that are possibly bound by the corresponding 

TF.  The match between a subsequence and a PWM is usually 

described by a score function.  A subsequence is considered 
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as a putative TFBS when its score passes a given threshold.   

The PWM has been a popular means in modeling the 

transcription factor binding sites (TFBSs) in a promoter 

sequence.  Over the past two decades, many computational 

approaches are developed to discover conserved motifs with 

certain degree of success. Computational motif discovery 

process can be considered in two categories, the supervised 

known motif prediction and the unsupervised de novo motif 

discovery [2].  The supervised known motif prediction 

methods include Match [3], P-Match [4], MatInspector [5] 

and GAPWM [6].  In unsupervised de novo motif discovery, 

novel motifs are found through identification of over 

represented oligonucleotides in the input sequence dataset. 

The conserved motifs are iteratively evolved through various 

optimization algorithms as those discussed in [2].  The 

popular methods include expectation maximization methods, 

which were implemented in MEME [7]-[8], a combination of 

expectation maximization with stochastic sampling, which 

was implemented in Gibbs Sampling family, such as 

CONSENSUS [9], AlignACE [10], motifSampler [11], and 

BioProspector [12]. 

As a research result from various laboratories around the 

world over the past few decades, many PWMs became 

available in public databases, such as TRANSFAC [13] and 

JASPAR [14].  These PWMs are extensively used to search 

for putative motif instances and the PWM-based methods are 

reviewed in [2], [15], [16].  The PWM-based methods 

commonly assume that the positions in a motif are mutually 

independent.  A score function is usually used to compare 

with the PWM and to calculate the similarity of each base in a 

motif instance regardless of the content of the neighboring 

bases.   

The main challenge in PWM-based motif prediction 

methods is the objective score function and the determination 

of a threshold score.  The score functions usually depend on 

PWM parameters such as its length and information content.  

Therefore, a threshold scores that legitimately qualify a 

functional motif is very hard to select without subjectivity. 

The score of a motif instance is usually the summation of the 

score on each base.  Thus it is dependent on the length of the 

motif and the PWM models.  Up till today, there is no 

universally applicable threshold that can be used in 

PWM-based methods and this has been a major drawback of 

PWM-based methods.  Several research groups have 

attempted solving the problem.  For example, Match [3] takes 

the minimum and maximum scores and scales them between 

0.00 and 1.00 for the entire PWM space as well as the five 

consecutive nucleotides whose maximum score is the best in 

any region of the PWM space.  Hertzberg et al. [17] 

introduced a probability measure to scan the input sequence 

for a position with maximum score and then calculate the 

Threshold for Positional Weight Matrix 

Youlian Pan and Sieu Phan 

Engineering Letter, 16:4, EL_16_4_06
____________________________________________________________________________________

(Advance online publication: 20 November 2008)



 

 

 

probability of obtaining such maximal score or higher on a 

random sequence.  This probability is then used for qualifying 

a putative binding site.  Nevertheless, there is no significant 

breakthrough in this area.  This paper proposes an alternative 

scoring index for PWM-based methods in the prediction of 

TFBSs.  Each scoring index is associated with a measure of 

statistical expectation to indicate its significance.  In the 

remainder of the paper, we first describe the algorithm, and 

then investigate yeast and vertebrate PWMs from 

TRANSFAC.  Next, we provide application cases of two 

yeast PWMs to search the motif instances in yeast genome 

(Saccharomyces cerevisiae) and compare this method with 

Match [3] using 16 yeast genes.  Finally, we use two human 

PWMs to search motifs in cancer-related genes. 

 

II. ALGORITHMS 

A. Goodness-of-fit between a subsequence and a PWM 

The log-odd score has been extensively used in various 

domains. It is the core of Viterbi algorithm that is used to a 

great extent in sequence alignment, hidden Markov model 

(Krogh et al, 1994) and many motif finding tools. Like many 

other score functions, the log-odd score is dependent on the 

length of the motif and PWM models.  We used the log-odd 

score function as an example to develop our goodness-of-fit 

method.  

The input to the algorithm is a subsequence S and a PWM, 

and the output is a goodness-of-fit index (G). The log-odd 

score, V, of S (s1 s2 …sw) is:  
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where i is the location of the nucleotide si in S, w is the length 

of S,  pm(si) is the probability of the nucleotide si at position i 

based on the PWM and pb(si) is the probability of the 

nucleotide si based on the background.  For simplicity, a 

default background model is defined with pb(A) = pb(C) = 

pb(G) = pb(T) = 0.25.  However, a data specific background 

model can be generated by enumerating the frequency of each 

base in the sequence dataset.  A small value called 

pseudo-count is usually added to each pm(si) to avoid having 

pm(si) = 0, which could result in (1) underflow. 

The best possible log-odd score, Vmax, from (1) is the 

summation of the best log-odd value at each column of the 

PWM: 
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where si,max is the nucleotide of highest frequency in column i.  

A subsequence S with V = Vmax means S is the best fit to the 

PWM, which means S is most likely a TFBS that the PWM 

specifies; while a V = 0 indicate S is identical to the 

background, which means S is very unlikely to be a TFBS that 

the PWM specifies.  Therefore, we define the goodness-of-fit 

(G) between S and the PWM as: 

     
maxV

V , while V ≥ 0 

0,          while V < 0         (3) 

The value of G is between 0.00 and 1.00 since V ≤ Vmax and is 

independent of pattern length.  From the G value, one could 

easily tell the confidence level of the putative TFBS that is 

found by a PWM regardless of the length of the subsequence. 

B. Measurement of statistical expectation 

After evaluating a goodness-of-fit index, it is necessary to 

know the statistical expectation of such index so that we can 

tell how conserved is the motif instance found, namely how 

significant is a log-odd score.  Unlike the goodness-of-fit 

index described in the previous section, the statistical 

expectation is closely related with the length (number of 

columns) as well as the noisiness of the PWM.  For example, a 

matrix M of length w would theoretically have 4w variants.  

Each motif variant has a statistical expectation of 4-w to appear 

in a sequence S of length w.  For a given threshold, assume n 

motif variants of M satisfying the threshold, thus the statistical 

expectation of M appearing on S is 4
-w

 × n and the statistical 

expectation (E) of M appearing on a promoter sequence of 

length L is  

 

E = 4
-w

 × n x (L-w+1)       (4) 

 

III.  APPLICATIONS 

We applied the above method to generate the probability 

function for each of the 585 vertebrate PWMs and 56 yeast 

PWMs from TRANSFAC database [13].  The background 

probabilities are generated from enumeration of the 

nucleotides in all known genes’ promoters of each species.  

We also searched for the putative binding sites of yeast 

transcription factors GCN4 and ROX1 using the TRANSFAC 

yeast PWMs, GCN4_C and ROX1_Q6, respectively.  Finally, 

we searched for putative binding sites of the human tumor 

suppressor HIC-1 using the two vertebrate PWMs, HIC1_02 

and HIC1_03, from TRANSFAC.  In order to keep simplicity 

in calculation, no pseudo-count is applied in these 

applications.  Therefore, all subsequences that contain a 

nucleotide with a probability 0.00 in the PWM are excluded 

from this study.  

A. Yeast data 

Among the available data, the yeast genome 

(Saccharomyces cerevisiae) is best studied.  From the 

TRANSFAC database (Version 10.4), we retrieve two PWMs 

(GCN4_C and ROX1_Q6), which model the binding sites for 

transcription factors GCN4 and ROX1, respectively.  The 

promoter sequences of all 5769 genes from SGDgene table 

were retrieved from the UCSC Genome Browser (http:// 

genome.ucsc.edu/).  The promoter sequences contain 600 bp 

upstream of the transcription start site (TSS).  In order to 

validate the result, we retrieved the known (documented) 

associations between the transcription factors and their 

respective target genes from YEASTRACT database [18].   

We searched the promoter sequences by using the two 

PWMs and setting different thresholds of G values ranging 

G = 
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from 0.40 to 1.00.  At each threshold, we considered a 

putative association between a TF and a target gene if a 

putative binding site of the TF is found in the promoter 

sequence of this gene.  The result of such putative association 

is validated by known associations obtained from the 

YEASTRACT database.   

For the purpose of comparison, we apply the terminology 

of Sensitivity (Sn) and Positive Predictive Value (PPV) as 

defined in [19]-[20].  Sensitivity is the proportion of all known 

associations (TP+FN) that are accurately predicted (TP); and 

the Positive Predictive Value is the proportion of predicted 

associations (TP+FP) that are true (TP).  Traditionally, 

Specificity (proportion of negatives that are predicted 

negative) is used in evaluation of a method.  In genomic 

sequences, true negative (TN) is predominately higher than 

any of FP, TP or FN.  Specificity as defined in [19]-[20] 

would not be able to reveal signals effectively as its value 

would be very close to 1.00 in almost all instances [21].  

Therefore, we adopted the Positive Predictive Value instead 

of Specificity in this study so that the signals can be 

comparable. 

B. Human cancer genes data 

We retrieved 406 cancer gene entries from the 

CancerGenes Resequencing Resource [22].  These 406 

entries represent 385 distinct genes.  We retrieved promoter 

sequences of these cancer genes from the UCSC Genome 

Browser (http://genome.ucsc.edu/).  The promoter sequences 

cover the range of 1000 bp upstream and 200 bp downstream 

of TSS with a total length of 1200 bp.  We retrieved two 

PWMs (HIC1-02, HIC1_03) for a tumor suppressor gene 

HIC-1 from the TRANSFAC database and searched the 

promoter sequences for putative TFBSs that fit the two 

PWMs over the threshold between 0.40 and 0.90.  There is no 

similar database to YEASTRACT for known associations 

between the transcription suppressor and its target genes in 

the human genome. 

 

IV.  RESULTS 

A. Vertebrate and yeast PWMs 

We retrieved 585 vertebrate PWMs and 56 yeast PWMs 

from TRANSFAC and calculated the log-odd score based on 

(1) and G value based on (3) for all motif variants in each 

PWM space.  For a given threshold gt, we are interested to 

know the probability of finding a motif variant having a G 

value higher than gt. This probability is called p_value 

associated with the given gt.  Theoretically, we calculate the 

probability density function, f(g), for the entire PWM space. 

The probability distribution function, F(g), is then determined 

by 

              ∫=
g

dfgF
0

)()( ττ         (5). 

And the p_value is determined by  

       p_value(g) = 1 - F(g)       (6).  

Fig. 1 shows the p-value function of the human PWM 

PAX2_01.  With knowledge of p_value, we can now select a 

proper threshold with a desired level of confidence.  This in 

turn suggests that for every PWM, we establish an 

accompanying p_value table.  The G threshold is selected 

from the table according to the desired confidence level.   

The establishment of the p-value function for a lengthy 

PWM is computationally expensive.  For example, a PWM of 

24 columns would need more than 100 days to complete the 

calculation by a PC in current state of technology.  To 

alleviate this problem, we devised a random sampling scheme 

0.00

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

Similarity

p
_
v
a
lu

e

Exact

P12

P10

P8

P6

Goodness of fit (G)

S
ta

ti
s

ti
c

a
l 

e
x

p
e
c

ta
ti

o
n

 (
p

_
v

a
lu

e
)

0.00

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

Similarity

p
_
v
a
lu

e

Exact

P12

P10

P8

P6

Goodness of fit (G)

S
ta

ti
s

ti
c

a
l 

e
x

p
e
c

ta
ti

o
n

 (
p

_
v

a
lu

e
)

 
 

Fig. 1. p_value function of the human PWM, PAX2_01. 

Exact: all instances in the PWM space are evaluated, Px: 4x 

instances from the PWM space are sampled.  
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Fig. 2.  p_value of 585 vertebrate PWMs over various G values. 

The length factor (L-w+1) has not been incorporated into these 

p_values.  For a sequence of length L, these p_values have to 

multiply the values by a factor of L-w+1. 
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to perform the calculation.  Intuitively, 

)()( lim gfgf n

Nn→

=            (7) 

where n is the number of sampling variants from the entire 

PWN space of N = 4w  (w is the length of PWM) and fn(g) is 

the density function obtained by evaluating the G value of (3) 

over the selected n variants.  The essence of the proposed 

sampling scheme is based on the notion that a motif pattern 

can be encoded as a quaternary (base-4 numeral) number.  

The four nucleotides {A, C, G, T} can be represented by the 

four digits {0, 1, 2, 3} of the quaternary system.  For example, 

the GATCAAG pattern is to be encoded as 2031002. The 

quaternary encoded numbers are converted, back and forth, to 

decimal numbers for algorithmic processing (2031002 in 

quaternary =  9026 in decimal).  We verified that our random 

sampler and ensured distinct motif variants with no single 

repeat within the PWM space (4
w
 space) before it was used for 

random sampling.  The p_value functions based on random 

sampling were verified to be technically identical as if the 

entire PWM space is sampled as long as sampling size was 

over 410 (Fig. 1).  It is feasible to perform exact calculation for 

PWM of w <= 18.  For a PWM of w > 18, we applied the 

random sampling scheme to perform the computation and the 

sample size is 414.  The result indicates that the statistical 

expectation is highly correlated (p < 0.0001) with both PWM 

length (w) (Fig. 2) and threshold G values (Fig. 3).   

B. Yeast data 

By decreasing the threshold, more known associations 

between TFs and their targets are found by the corresponding 

PWM as reflected by the Sensitivity values (Fig. 4).  However, 

the number of false positives increases as reflected by the 

Positive Predictive Values.  Based on the p_value, users will 

be able to find a corresponding threshold.  For example, the G 

threshold (p ≤ 0.05) should be 0.87 for GCN4_C and 0.85 for 

ROX1_Q6. 

We identified 16 yeast genes (Table 1) that are known to be 

associated with both transcription factors GCN4 and ROX1 

(YEASTRACT database [18]) and used them to validate our 

method and compare it with Match [3].  While using the 

default similarity threshold, Match could only find one of the 

32 known associations.  All associations are found by Match 

while decreasing the threshold because it considers 

pseudo-count, which would guarantee to find all instances at a 

low threshold and to have a high number of false positive 

predictions.  Without knowing their statistical expectation, we 

did not include those misleading predictions in Table 1.  Our 

method found 16 of the 32 associations, of which 3 have p < 

0.05. 

C. Human cancer genes 

We searched promoters of human cancer genes and 

predicted about 20% of these cancer gene have potential 
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Fig. 3. Relationship between the statistical expectation and 

threshold gt value of five vertebrate PWMs (OCT_Q6, 

OCT1_Q5_01, YY1_Q6_02, MAF_Q6_01, PAX4_02). w = 11. 
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Fig. 4. Performance evaluation on yeast data application case. 

The plot legends in panel A (GCN4_C) also apply to panel B 

(ROX1_Q6). Sn: sensitivity, PPV: positive predictive value, p: 

p_value (Equation 6). 

 

Table 1.  Validation and comparison with Match [3].  The 

values in the current method columns indicate that the 

associations were found at threshold of G / p_value. 

 

ROX1_Q6 GCN4_C ROX1_Q6 GCN_C

ADH1 0.71 / 0.16

ADH5 0.69 / 0.18

BOP2 + 0.71 / 0.16 1.00 / 0.005

CWP1 0.81 / 0.07

CWP2

GAT2 0.64 / 0.24

GID8 0.72 / 0.15

HSP12 0.47 / 0.50

HSP26 0.88 / 0.04

HXT5 0.63 / 0.15

IDH1 0.77 / 0.09

LYS1 0.55 / 0.39

LYS9 0.47 / 0.50

MUC1 0.47 / 0.50

RAD16 0.53 / 0.41

RPI1 0.91 / 0.03

Gene
Match Current method
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Fig. 5. Prediction of association between the transcription factor 

HIC1 and its target human cancer genes. Red: predicted by 

HIC1_02, Green: predicted by HIC1_03, Black: union prediction 

of HIC1_02 and HIC1_03. Solid curves: predicted percentage, 

Broken curves: variation of statistical expectation. 
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association with the transcription suppressor HIC-1 (Fig. 5, p 

≤ 0.05).  Since our promoter sequences are from a normal 

human individual (not a cancer patient), it is not unreasonable 

that 20% of the cancer genes are associated with the 

transcription suppressor.   

 

V.  DISCUSSION 

Positional weight matrix has been extensively used in 

discovery of sequence motifs, such as transcription factor 

binding sites.  The main challenge in using PWM is to find a 

threshold for various objective functions.  There is no 

substantial breakthrough so far in solving this problem.  

Match [3] appears more appealing than the others and widely 

used.  Match takes the minimum and maximum score and 

scales them between 0.00 and 1.00 and it also takes into 

consideration five consecutive nucleotides whose maximum 

score is the best in any region of the PWM space.  This 

method is generally applicable if the minimum score value of 

a PWM is around 0.00, which would basically be the same as 

the method proposed in this paper.  The reality is that many 

PWMs have minimum score value far below (in the case of 

log-odd score) or higher than 0.00 (in the case of relative 

information content that Match uses).  For example, the PWM 

for the binding sites of the heat shock factor in yeast (HSF, 

Fig. 6) [23] has a Vmin = -10.22 and a Vmax = 7.47.  A 

subsequence with a log-odd score of 0.00 based on this matrix 

would have a misleading similarity score of 0.58 based on the 

method proposed in [3].  In fact, the log-odd score of 0.00 

indicates the subsequence is basically identical to the 

background model.  Our goodness-of-fit index (G) indicates 

how close a subsequence is to the PWM as compared to the 

background model rather than Vmin.  With additional 

information on statistical expectation at a threshold, users 

certainly understand the levels of confidence of the predicted 

motif instances.  

P-Match [4] combines pattern matching and weight matrix 

approaches and claimed to be more accurate.  We tried to 

search for the GCN4_C and ROX1_Q1 motifs using P-Match, 

but unable to find any by the default setting.  It is expected to 

find all associations at a lower threshold, same as those 

predicted by Match.  However, those potential associations 

would be buried in a large number of false positive 

predictions.  Without prior knowledge of these associations or 

statistical expectation, it would be nearly impossible to 

distinguish them from false positives. 

Nucleotide frequency varies across genomes, for example, 

the frequencies of A, C, G, T in human promoter sequences 

are 0.23, 0.27, 0.27 and 0.23, respectively, which are not too 

much different from the default frequency (0.25 for each 

nucleotide).  But in yeast promoter sequences, they are 0.31, 

0.19, 0.19 and 0.31, respectively.  For this reason, we use 

genome specific nucleotide frequency.  Additionally, the 

nucleotide frequencies change over various regions of 

genomics sequences [24]-[25].  Fore more precise prediction, 

regional nucleotide frequencies should be applied. 

Occasionally, the log-odd score of a motif instance could 

be dominated by one or a few positions because of their 

extremely high or low frequency values for certain 

nucleotide(s).  Probably, one could argue that a log-odd value 

of 0.00 for a subsequence might not represent its identity with 

the background model because the influence of one or more 

high value(s) of the high frequency nucleotide(s) at certain 

position(s) is neutralized by the influence of one extremely 

low value derived from a low frequency nucleotide at another 

position.  Nevertheless, because the overall log-odd score is 

close to 0.00, no matter if it is caused by the neutralization of 

frequencies across various positions or by overall values close 

to 0.00, this subsequence is not likely a true TFBS.  

Therefore, a 0.00 log-odd score indicate the subsequence is 

most unlikely a TFBS.  

A transcription factor usually binds on a DNA sequence 

through several positions.  Numerous previous studies 

indicated that the positions inside a motif are somewhat 

interdependent.  For this reason, PWMs are converted to high 

order hidden Markov models [26].  The log-odd score of a 

motif instance can be calculated based on the state transition 

probability (e.g. Viterbi score) of the high order hidden 

Markov model.  The same calculation proposed in (3) can be 

applied to scale the log-odd scores derived from hidden 

Markov models and statistical expectations can be calculated 

accordingly. 

In evaluation of a method, we used Sensitivity and Positive 

Predictive Value.  These terminologies are extensively used 

in medical field [19]-[20].  To avoid potential confusion of 

the terminology, readers should be cautioned that some 

articles, such as [21], redefined Specificity by taking the 

Positive Predictive Value.  To keep with traditional usage of 

terminology, we take the definition as described in [19]-[20].   

Many biological problems can not be easily revealed by 

simply measuring statistical significance.  For example, in our 

application of yeast genome, too stringent goodness-of-fit 

threshold would exclude many potential candidates, such as 

the threshold set in Match for the two yeast PWMs (Table 1) 

and our work in ROX1_Q6 (Fig. 4B).  With varying threshold 

incorporating both the G values and the distribution function 

of statistical expectation, we are able to find more motifs 

using the method proposed in this paper.  Generally, a less 

stringent threshold would incur higher false positive 

prediction (Fig. 4).  This can be complemented by 

incorporating other information such as microarray gene 

expression data [27] or through comparative genomic 

approaches [28].  Incorporating gene expression data is 

certainly a boost in motif finding.  However, such data are not 

always available.  With comparative genomics approach, it is 

P1 P2 P3 P4 P5

A 28 0 46 46 12

C 6 0 0 0 19

G 12 48 2 2 8

T 4 2 2 2 11

 
Fig. 6. One example PWM (HSF_01), which has a 

low Vmin (-10.22) and a moderate Vmax (7.47). 
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arguable even though some successes were shown.  Our 

recent study indicates that promoters of most human genes are 

significantly different from their orthologues in mice or rats. 

Similarly, mapping of transcription factor binding sites in 

closely related yeast Saccharomyces cerevisiae, S. mikatae, 

and S. bayanus reveals extensive divergence [29]. In that 

case, substantial number of functional motifs in one organism 

may not appear in the promoter of orthologous genes in 

another organism, even if both are closely related. 

Based on the two application cases, we suggest taking 

consideration of both goodness-of-fit index and statistical 

expectation in selecting a threshold.  In choosing a threshold, 

length (number of columns) of a PWM should be considered; 

a higher G value and higher p_value should be considered for 

shorter PWM.  For example, using a PWM of length 5 (e.g. 

Fig. 6) to search for motifs on a sequence of 1030 bp, it is 

statistically expected to find at least one instance of the PWM 

from the sequence no matter how high the G value is.   With 

increasing length of the PWM, the weight of G value can be 

reduced while that of the statistical expectation can be 

increased.   

It is important to consider the statistical expectation of a 

predicted motif instance. With the density function that we 

generated for each PWM, it is convenient to find the statistical 

expectation of each predicted motif instance base on its G 

value. This G value can easily be reverted back to log-odd 

score or relative information as we demonstrated in [30]. 

Because of the fact that log-odd value is closely related with 

statistical expectation, people may question the necessity of 

going through the step of G value. The necessity of G value 

step is demonstrated through the generation of p_value 

distribution and through its value in measuring the distance 

between the generated log-odd value and the PWM as 

compared to the background. 

In the application of cancer genes, we predicted 20% of the 

385 cancer genes are subjected to transcription suppression of 

HIC-1. Since the promoter sequences are from normal human 

genome, one would expect all cancer genes are suppressed 

one way or another.  We need to realize that many other 

cancer gene suppressors are not included in this study.  For 

example, the popular cancer suppressor gene P53 is one 

among many others. 

 

VI. CONCLUSIONS 

In prediction of a sequence motif using positional weight 

matrix, it is important to find a statistically meaningful 

threshold for the score function.  In this chapter, we proposed 

an alternative scoring index for a positional weight matrix in 

finding transcription factor binding sites.  This method 

normalizes the score function to a range between 0.00 and 

1.00, which are representations of the background model and 

the position weight matrix, respectively.  The statistical 

expectation is not considered by many previous methods such 

as Match, P-Match and others. Without p_value, it is hard to 

assess the significance of a threshold and the found motif 

instance.  For this reason, we associate each G threshold value 

with a statistical expectation value.  We evaluated the 

proposed method in two application cases and compared the 

method favorably with the broadly used Match method using 

16 yeast genes of known association with two transcription 

factors.  We highly recommend a consideration of both G 

index and statistical expectation in choosing a threshold.  We 

used log-odd score function as an example in this paper; but 

our goodness-of-fit approach is universally applicable to all 

score functions. 
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