
 
 

 

 

  
Abstract— It is still difficult for traditional methods to 

simulate fluid-structure interaction (FSI) problems which are 
increasingly used to model cardiovascular system, and human 
organism. This contribution develops a new numerical method 
to analyze FSI, based on smoothed particle hydrodynamics 
(SPH). The Lagrangian and meshless characteristics of SPH 
presents distinct features to devise the method by which both 
fluid and elastic structure continua are coupled using a 
monolithic but explicit numerical algorithm. The method 
consists of a predictor-corrector scheme in which the first step 
plays the role of prediction, whereas in the second step velocity 
field is corrected according to the incompressibility constraint. 
The no-slip boundary condition is imposed on deformable walls 
by projecting the fluid velocities on ghost particles which carry 
with solid particles at the interface boundary. The method is 
employed to simulate pulsatory flow of an isothermal and 
incompressible fluid moving through flexible walls. 
 

Index Terms— Smoothed particle hydrodynamics (SPH), 
Fluid-structure interaction (FSI), Lagrangian method, no-slip 
boundary condition  

I. INTRODUCTION 
Fluid-structure interaction (FSI) problems are of 

multiphysics phenomena in which two or more different, yet 
interrelated fluid and solid domain interact with each other as 
a unit. Considering the advancement of powerful computers 
thereby large amount of computation can be performed, 
numerical modelling of such challenging problems in which 
the interface boundaries are deformable, have became 
increasingly important in recent years. For instance, such 
numerical methods provide a valuable tool in biomechanical 
applications so that computational modelling has facilitated 
the progress of hemodynamics and cardiovascular 
researches.  

Although there are several successful methods to solve FSI 
problems, there is no general strategy by which all FSI 
problems can be addressed. A basic problem associated with 
these numerical methods is selection of the reference frame in 
which each of solid and fluid domains are solved. 
Conventionally, fluid domain is solved based on Eulerian 
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description, whereas Lagrangian approach is the preferred 
method for simulation of the solid domain. The foregoing 
descriptions are mathematically dissimilar considering the 
nonlinear convective term which appears in the momentum 
equation in Eulerian framework.  

From the other view point, numerical methods, which are 
conventionally utilized to model FSI, are generally based on 
tessellation of the solution domain by grids, or mesh. Grids 
quality plays a crucial role in simulations of grid-based 
methods so that the accuracy of simulations is highly affected 
by grid configuration. Furthermore, regarding FSI problems 
where interaction of fluid and elastic structure is desirable, 
the evaluation of field variables on deformable boundaries 
considerably affects the accuracy of the result. Generally, 
there are two classes of grid-based methods namely 
fixed-grid methods and deforming-grid methods [1]. 
Deforming-grid methods usually need remeshing, 
particularly when large deformation is of great interest; 
however, remeshing strategy can be a difficult and time 
consuming task [1,2]. On the other hand, fixed-grid methods 
often require an interpolation to the immersed boundary, 
which results in inaccurate computations in vicinity of these 
boundaries [2]. 

Smoothed particle hydrodynamics (SPH) is a Lagrangian 
particle method in which a set of bulk (moving or stationary) 
fluids and/or solids are employed as an alternative for grids. 
During two past decades, SPH has employed to simulate 
incompressible fluids as well as elastic-plastic deformations. 
Recently, some researches have been devoted to utilize SPH 
to simulate FSI problems [3,4,5]. Antoci et al. [3] used 
standard SPH along with an incremental hypoelastic relation 
to simulate FSI problems. On the other hand, Hosseini et al. 
[4] developed a three-step SPH algorithm, which had already 
been proposed by Hosseini et al. [6], to simulate FSI 
problems. In addition, viscosity was taken into account in 
their simulations; whereas, neither artificial viscosity nor 
artificial stress was used.  Comparing these two methods 
illustrates that the results reported by Hosseini et al. [4], in 
deformation of an elastic gate subjected to water pressure, 
were more accurate than the results which were reported by 
Antoci et al. [3]. Farahani et al. [5] also employed the 
three-step method aforementioned to simulate FSI with 
complex free surface flows.   

Indeed, neither Hosseini et al. [4] nor Antoci et al. [3] 
considered the no-slip boundary conditions in their 
simulations. In the current work, the problem of imposing the 
no-slip boundary condition on moving walls is studied. In 
this way, the three-step algorithm of Hosseini et al. [4,6] is 
modified according to the viscosity term proposed by Morris 
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et al. [7]. In order to investigate the accuracy of the modified 
algorithm, a poiseuille flow is simulated and velocity profile 
is compared with analytical solution. Moreover, the method 
is used to simulate an internal pulsatory flow moving through 
flexible walls. 
 

II. GOVERNING EQUATIONS  

A. Fluid domain 
The fluid is assumed to be isothermal and incompressible, 

and the governing equations within the fluid domain in 
absence of body forces, are given by 
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where ρ , t , p,  ju , and ijτ  denotes the density, time, 
pressure, velocity vector, and shear stress tensor respectively. 
Moreover, jx is the j th component of position vector.  

B. Solid domain 
The momentum equation for an elastic body in absence of 

body forces is  
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where ijσ  is the stress tensor, 
ijijij SP +−= δσ , (4) 

where ijS  is the deviatoric stress tensor. The deviatoric 
stress can be presented by assuming linear elastic theory and 
considering Hook’s law as [8] 
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where G  is the shear modulus. The strain rate tensor ijε& , 

and rotation tensor ijω  are defined as 
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Substituting (4) into (3) yields 
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III. METHODOLOGY  
The foundation of SPH is based on interpolation theory 

which indicates that any field variable A  can be defined 
over a domain of interest in terms of its values at a set of 
discrete disordered points (so-called SPH particles) by 
suitable definition of an interpolation kernel. These particles 

carry the material properties such as density, velocity, 
pressure, stress etc. The exact integral representation of A  is 

( ) ( ) ( ) rrrrr ′′−
Ω

′= ∫ dδAA ,  (9) 

where ( )rr ′−δ  is the Dirac delta function and Ω  is the 
computational domain. Equation (9) can be represented by 
integral interpolation of the quantity A  as 

( ) ( ) ( ) rrrrr ′′−
Ω

′≈ ∫ dhW ,AA ,  (10) 

where h  is smoothing length proper to kernel function W 
which represents the effective width of the kernel. The 
kernel has the following properties [9] 
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There are many possible choices for the kernel function. A 
quintic kernel normalized for two-dimensions is used in the 
following simulation [7] 

( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
<≤−
<≤−−−
<≤−+−−−

=

,3,0
;32,)3(
;21,)2(6)3(
;10,)1(15)2(6)3(

478
7,

5

55

555

2

s
ss
sss
ssss

h
hrW

π

 (12) 

where 
h

s
r

= .  

If ( )r′A  is known only at a discrete set of N  point 

Nrrr ,...,, 21  then the interpolation of quantity A  can be 
approximated by a summation interpolant as follows [9] 
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where the summation index b denotes a particle label and 
particle b carries a mass bm at the position br . The value of 

A  at th−b particle is shown by bA .  

Derivative of A  with respect to x  is given by [10] 
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where Φ  is any differentiable function.  
 

IV. SOLUTION ALGORITHM 
Solution algorithm consists of a prediction-correction 

scheme which is similar to three-step algorithm of Hosseini et 
al. [4]. However, the algorithm is reduced to two following 
consecutive steps. 

A. First step (Prediction) 
Solid: In this step for solids, divergence of deviatoric stress 

tensor i
sT , is calculated according to constitutive equation 

Engineering Letter, 16:3, EL_17_1_05
____________________________________________________________________________________

(Advance online publication: 17 February 2009)



 
 

 

 

(5).  

( )hWSSm
x
ST aba

b

ij
b

a

ij
a

b
b

a
j

ij
i
s ,1

22 r∇⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ∑ ρρρ
 (15) 

 where baab rrr −= and 

( ) ( )j
b

i
a

abab
aba xx

d
dWhW −=∇

rr
r 1, . (16) 

Fluid: In this step for fluids, divergence of shear stress 
tensor should be calculated. Hosseini et al. [4,6] calculated 
the shear stress tensor using the second principal invariant of 
the shear strain rate tensor: 
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Nevertheless, results presented for the Poiseuille flow 
problem in the section six, indicate that the velocity profile 
computed using the above form of divergence of shear stress 
tensor is inaccurate near the boundaries. To address this 
problem, in this work another form of the viscous term 
proposed by Morris et al. [7] is substituted: 
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where η  is a small number to avoid singularities. Although 
equation (20) does not satisfy angular momentum [11], 
no-slip boundary condition can be imposed accurately.  

Finally, the vector iT  which is equal to i
fT  for fluid 

particles, and i
sT for solid particles is used to calculate a 

provisional velocity filed. This new velocity filed is 
employed to move fluid or structure particles to a new 
temporary position. 
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B. Second step (Correction) 
There was no constraint to impose incompressibility in the 

previous step; thus, movement of particles changes the local 
density. New densities can be calculated using the continuity 
equation. Choosing 1=Φ , iu=A , and using the 
provisional velocity field of the previous step, (14) gives [10]  
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This equation states that when two particles approach each 
other, their relative velocity and the gradient of kernel 
function have the same signs, consequently DtD aρ~  will 

be positive and aρ~  will increase and vice versa. Through 
combination of the pressure gradient term of the momentum 
equation and continuity equation, a Poisson equation is 
formulated by which a trade off between deviation of density 
and pressure is produced [12]. 
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Pressure of each particle is calculated according to the 
following form of equation (26): 
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The SPH form of (25) provides the velocity field by which 
incompressibility is satisfied 
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Finally, velocity of each particle at the end of time step will 
be obtained as 

iii
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and final positions of particles are calculated using a central 
difference scheme in time 
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This step is common for both fluid and structure particles; 
hence, if fluid particles approach structure particles, their 
pressure will increase thereby structure particles move into a 
new position where the coupling is satisfied, and vice versa.  

V. BOUNDARY CONDITION 
The desired problem involves interaction of fluid flow and 

elastic walls. These elastic walls must prevent penetration of 
fluid particles into solid boundaries. In addition, in such 
internal flow problems the no-slip condition needs to be 
satisfied.  In order to ensure the no-slip condition, fluid 
velocity at boundary should be equal to the solid velocity at 
this point.  

As mentioned, second step satisfies the desired anti 
penetration condition by increasing the pressure when two 
particles approaching each other. However, the no-slip 
boundary condition demands more attention, since unlike 
other past-proposed methods, which were consisted of fixed 
or moving rigid boundaries, in FSI problems deformable 
boundaries are of interest. A simple technique to implement 
no-slip boundary condition is usage of image particles [13]. 
Nevertheless, this method is usually limited to straight 
boundaries and simple geometries. In this paper, the velocity 
extrapolation method proposed by Morris et al. [7] is used. 
According to this method, velocity of each fluid particle is 
extrapolated to neighbor wall particles (as an artificial 
velocity) across the tangent plane (or tangent line in 2D) of 
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the boundary (Fig. 1). The unit vector of the tangent plane is 
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In order to implement the aforementioned method for FSI 
problems, it can be assumed that there are ghost particles 
which have similar positions as wall particles. The artificial 
extrapolated velocity of each wall particle is attributed to the 
relevant ghost particle. Other properties of these ghost 
particles are similar to those of fluid particles. 
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The no-slip boundary condition satisfies when velocity of 
ghost particles as well as boundary particles are contributed 
to calculate viscous forces. 

 
 
Fig. 1 Boundary condition treatment to simulate no-slip boundary condition 
 

VI. TEST CASES 
Poiseuille flow: The Poiseuille problem consists of a fluid 

between two fixed plates. The fluid, which is initially at rest, 
is driven by a body force acting parallel to the x direction. 
The original configuration of the problem and its analytical 
solution are reported in Moriss et al. [7]. It is evident that the 
result of simulation based on equation (19) is highly 
inaccurate near the boundaries. However, when equation (20) 
is employed in the solution algorithm instead of equation 
(19), accurate velocity profile are computed.  

Internal flow with FSI: The numerical test case is a two 
dimensional FSI simulation of a pulsatory flow moving 
through flexible walls. It is consisted of two flexible walls 
which are fixed at both ends with a length 0.09 m , a constant 
thickness =0h 0.003 m , a radius =0R 0.015 m , and shear 

module of =G 1.5 Mpa . An incompressible viscous fluid, 

with density =ρ 1000 3mkg and dynamic viscosity 

=μ 0.004 smkg ; moving inside the constructed duct 

with a pulsatile flow volume rate of period T . The time 
dependent velocity, which is imposed at upstream, is taken to 
be 

T
tBAtU π2sin)( += ,  (33) 

where A  and B  are constant parameters selected to be 
0.006 and 0.007 respectively. No-slip boundary condition is 
imposed on deformable walls. Square particles are selected 
with initial particle spacing of =Δ fx 0.001 m , and 

2fw xx Δ=Δ  for fluids and solids respectively. 

Simulation needs several complete flow pulses to become 
stable. The staggered plot as well as its vector plot of velocity 
field is shown in Fig. 3 and Fig. 4 respectively at different 
stages of the pulse. 
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Fig. 2 Comparisons between the analytical solutions, and SPH results with two different methods for calculation of divergence of shear stress tensor 
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Fig. 3 Staggered plot of velocity field at different stages of the flow pulse 
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Fig. 4 Vector plot of velocity field at different stages of the flow pulse 
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VII. CONCLUSION 
In this paper, a monolithic method for FSI problems 

involving no-slip boundary condition and internal fluid flows 
is developed using SPH. In order to improve the overall 
efficiency of the method, divergence of shear stress tensor for 
fluids is substituted with the expression proposed by Morris 
et al. [7]. Moreover, the problem of imposing no-slip 
boundary condition on moving boundaries is investigated 
using ghost particles which carry the extrapolated velocity.  
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