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Abstract—The paper presents a computational
model for acoustic scattering of a near-the-ground
sound source around a body moving in a uniform
flow. Using the method of images and the concept
of reflection coefficient, the half space Green’s func-
tion in a uniform flow is derived in the framework of
the boundary element method (BEM). The method
is validated against analytical solutions and is further
applied in the case of acoustic scattering around an
airfoil moving in the vicinity of the ground both for
rigid and soft ground conditions. The results show the
importance of ground impedance in the attenuation
of sound.
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1 Introduction

Studies of sound scattering and radiation over infinite
planes [1] have been carried out in the past in relation
to surfaces of variable [2] and constant [3] impedance.
The acoustic source can be either stationary or move
above the ground radiating sound waves, which can be
reflected, refracted or absorbed depending on the ground
topography [4]. Therefore, the impedance factor needs to
be taken into account when modeling acoustic fields near
and far from the acoustic source.

Another important parameter is the acoustic frequency.
In application problems such as traffic noise and aircraft
take off, high frequencies are more likely to dominate.
When the distance between the infinite plane and the
source is quite small then the sound frequency is generally
high [5]. Because of this, large computational resources
are required to obtain satisfactory acoustic predictions.

Boundary element methods (BEM) have been extensively
used in the investigation of half-space scattering prob-
lems [6], [7]. Half-space problems in acoustics concern
an acoustic source located above an infinite plane which
normally represents the ground. The most important
feature of BEM in acoustics is that the computational
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cost is significantly reduced as only the surface of the ob-
stacle causing scattering needs to be modeled. The far
field is treated by the Sommerfeld radiation condition [8]
that is automatically satisfied. The majority of BEM for-
mulations are based on the classical Helmholtz integral
equation and follow a direct [9] or an indirect [10] solu-
tion using the Green’s function. Seznec [11] employed
the method of images to derive the half-space Green’s
function, which provided satisfactory results when com-
paring with geometrical approaches. Seybert et al. [12]
extended the method of images by introducing the reflec-
tion coefficient, RH . The reflection coefficient is valid for
a boundary that has homogeneous impedance; it varies
from −1 to 1 depending on the rigidity of the plane, where
the values −1 and 1 correspond to soft and rigid planes,
respectively. For a frequency range of 100Hz to 4kHz,
the wall reflection coefficients are greater than 0.7 [13].
This result is based on geometrical acoustic theory [14],
where frequency and reflection angle variations are not
taken into account.

If the ground plane does not encompass homogeneous
impedance, the method of images is no longer sufficient
to capture the effects of an absorbing ground because the
original Green’s function does not include all the neces-
sary terms. This can be rectified by adding a correc-
tion term to the Green’s function, which consists of an
infinite integral with an oscillatory integrand [15]. Re-
search efforts are subsequently focusing on the success-
ful derivation of the half-space Green’s function when
the infinite plane is not perfectly rigid but it has a vari-
able impedance. The half-space Green’s function includes
an integral form of the inverse Fourier transform but
since the integral cannot be analytically integrated, it
can be transformed to a suitable form for effective evalu-
ation [16].

The aforementioned efforts were limited to stationary
acoustic sources located above a flat plane or trapped
within walls. In this paper a BEM formulation based on
the Helmholtz equation for a uniformly moving acoustic
source that is also applicable to relatively high frequencies
through an improved first-order element discretisation, is
presented. The boundary integral equation for predic-
tion of sound in uniform flows based on the Green’s func-
tion theorem, has been applied to radiation problems of
moving sources [17]. The Green’s function for the uni-
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formly moving source is obtained solving the linear wave
equation. An extension of this integral method is em-
ployed to solve half space problems for moving acoustic
sources combining the classical ground acoustics with the
boundary element methods. To do so, the concept of the
method of images is adopted where the Green’s function
is not the stationary medium any more but the one that
includes the mean flow effects. The method is valid for
rigid and soft boundaries as well as for boundaries with
homogeneous impedance. The Green’s function is derived
by the method of images with a constant reflection coef-
ficient. Both modest and high frequencies are considered
and validation is presented against analytical solutions.
The method is also applied to acoustic scattering of a
sound source pertinent to a simplified1 road traffic and
airport runway noise during landing and take off.

2 Numerical Formulation

A body, B, with boundary surface, S in an infinite acous-
tic medium B′ of mean density ρ0 and speed of sound c, is
considered (Figure 1. The body can be either a vibrating
structure, e.g. a radiation problem, or a passive obstacle,
e.g. a scattering problem.

B
′

B

x1

x

Figure 1: Schematic of a body in an infinite acoustic
medium.

Let us now consider the sound radiated into the un-
bounded fluid from a time-harmonic volume source
q(x1, t) = φ(x1, ω) exp(−iωt) of radian frequency ω. As-
suming that the problem is linear, the wave equation for
φ(x1, ω) can be written:

∇
2φ −

1

c2

∂φ

∂t2
= 0 , (1)

which can be converted to an integral equation in order
to introduce a formulation both for compressible and in-
compressible potential flows [18]. The boundary integral
equation (BIE) is the same equation with the one used
for acoustic scattering in a uniform flow [19]:

1Without including modeling of atmospheric conditions and

ground topography.
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∫

S

[

∂φ

∂n̂
G − φ

∂G

∂n̂
+ G

∂φ

∂t

(

∂θ

∂n̂
+ 2

u.n

c2

)]θ

dS ,

(2)

where

∂

∂n̂
=

∂

∂n
−

1

c2
u · n.u.∇, (3)

and [. . .]θ denotes evaluation at time τ = t−θ, where θ is
the time elapsed for the sound to travel from the source to
the observer; x stands for the position and φ(x, t) is the
value of the velocity potential at x. The above equation
is the boundary integral equation for compressible flows
based on the potential formulation.

The Green’s function G represents the potential field as-
sociated with a uniformly moving acoustic source. For
compressible potential flow the Green’s function in the
positive x direction is given by [8]:

G = −
i

4

eikM(x−x1)/β2

β
H

(2)
0 (

kS

β2
) , (4)

where M is the flow Mach number; H
(2)
0 is the Han-

kel function of second kind; the subscript 1 denotes the
source position; and

S =
[

(x − x1)
2 + β2(y − y1)

2 + z2
1

]1/2
,
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,
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,
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β2
,
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u

c
.

In order to simulate the half-space problem without mod-
eling the infinite plane itself, the half-space Green’s func-
tion is constructed using the method of images (Figure 2).

The distance between P ′ and any point Q on the surface
B is denoted by R′. The half-space Green’s function GH

is constructed by adding the image point source solution
with a reflection coefficient, RH , to the original free-space
solution:

GH = −
i

4

eikM(x−x1)/β2

β
H

(2)
0 (

kS

β2
) −

RH
i

4
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(2)
0 (

kS′

β2
) , (5)
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Figure 2: Schematic of the method of images for the half-
space Green’s function.

where the reflection coefficient, RH is 1 and −1 for rigid
and soft reflection planes, respectively. The reflection co-
efficient depends on the impedance of the two media, air
and ground, and represents the absorbency of the ground
in a homogeneous way, i.e. the entire infinite plane is as-
signed with the same reflection coefficient.

3 Computational studies

Validation of the method was initially obtained against
the standard BIE method when modelling the actual half-
plane. The problem of a moving acoustic source above a
horizontal line is equivalent to that of an acoustic source
radiation using the half-space Green’s function. There-
fore, the pressure field obtained by using the half-space
Green’s function should be identical with the total, inci-
dent plus scattered field, obtained by applying the BIE
method. In the standard formulation the horizontal line
is discretized and a typical sound radiation problem is
solved. The comparisons were performed for frequencies
(ka = 8,ka = 16) and Mach numbers, M = 0.1 and
M = 0.3. Figure 3 shows comparison of the two tech-
niques in terms of contour plots of the acoustic pressure.
Very good agreement is obtained including the frequency
ka = 8 and Mach numbers M = 0.1 and M = 0.3.

Furthermore, validation was performed against analytical
solution for a semi-cylindrical barrier situated in an infi-
nite rigid plane (Figure 4)that is subject to an incident
plane wave, φI = eikx.

The analytic solution for the sound field, φ, due to the
wave φI = eikx over a cylinder of a finite constant admit-

Figure 4: Schematic of the problem of a plane wave over
a semi-cylinder barrier situated in an infinite plane.

tance β1 is given by [5]

φ =

∞
∑

m=0

Am cos(mθ)H1
0(kr) + φI , (6)

where

A0 = −
−J1(ka) + iβ1J0(ka)

−H1
1(ka) + iβ1H1

0(ka)
, (7)

and

Am = −2m
i

−Jm−1(ka) − Jm+1(ka) + 2iβ1Jm(ka)

−H1
m−1(ka) − H1

m+1(ka) + 2iβ1H1
m(ka)

,

(8)
where x = r cos θ and y = r sin θ in polar co-ordinates,
H1

m(ka) is the Hankel function of the first kind of order m,
the real part term of which is the Bessel function Jm(ka).
Comparisons of the computed and analytical solutions
are presented in Figure 6: the maximum error in the
numerical solution is ǫ = 8% defined by the expression

ǫ =
φ − φcom

φ
100% (9)

where φ is given by Equation 6 and φcom is the sound
pressure computed using the boundary integral method.
The numerical error depends on the number of line el-
ements used in the boundary. Figure 5 shows the be-
haviour of the maximum error with the number of dis-
cretization elements when ka = 10.

As it can be seen from Figure 5 the maximum error drops
significantly as the boundary discretization gets finer. It
is important to note though that the results presented
below were produced using a grid of 900 elements to elim-
inate any numerical errors.

Furthermore, the above method has been implemented to
investigate acoustic scattering of a sound source around
a supercritical airfoil2 placed in uniform flow and in the
vicinity of the ground (Figure 7). The airfoil was dis-
cretized using 1, 200 elements.

2The airfoil geometry was available through the European Fifth

Framework Programme, ROSAS.
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Figure 3: Comparison between analytical and computed acoustic pressure results over a rigid horizontal plane. Solid
and dashed line indicate analytical and computed values respectively.

ka = 1 ka = 10

Figure 6: Comparison of analytical (stars) and computational (solid line) solutions for the acoustic pressure over a
semi-cylindrical barrier subjected to an acoustic plane wave.
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Figure 5: Maximum error in acoustic pressure from a
plane wave on a semi-cylinder for different numbers of
boundary elements, ka = 10.

Figure 7: Airfoil and sound source in uniform flow over
an infinite plane.

This is an (over) simplified model of an aircraft on the
runway shortly before take off, where the engines op-
erating at high frequencies result in high noise levels.
The investigation has been carried out for Mach num-
ber M = 0.25, frequencies f = 8.8kHz and f = 4kHz
thereby mimicking realistic take off conditions [20], and
reflection coefficients RH = 1 and RH = 0.3

Figure 9 and Figure 8 show polar plots of the acous-
tic pressure in the near and far fields. As the observer
moves away from the source, the sound pressure is signifi-
cantly attenuated between near and far fields; The higher
the frequency, the wider and greater, in magnitude, the
acoustic field (see ka = 30 vis-à-vis ka = 65).

The qualitative similarities between RH = 1 and RH =
0.3 (Figures 9,8 and 10) are due to the linearised wave
equation solved. The sound level is, however, significantly
lower for RH = 0.3. The lobe (the rounded area which
spreads out) formed in the acoustic field for small angles
(< 40◦) is due to the positioning of the acoustic source
underneath the airfoil at 50◦. There is a shielding effect
due to the presence of the airfoil, which causes the acous-
tic field to be trapped between the airfoil boundary and
the ground. The airfoil acts as a protective layer forc-
ing the sound to radiate in directions where there is no
obstacle.

M = 0.25, R/a = 6

ka = 30

ka = 65

Figure 8: Polar plots of the acoustic pressure over a rigid
horizontal plane with an airfoil and an acoustic source in
a uniform motion.
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M = 0.25, R/a = 15

ka = 30 ka = 65

Figure 9: Polar plots of the acoustic pressure over a rigid horizontal plane with an airfoil and an acoustic source in
a uniform motion.

M = 0.25, R/a = 6, RH = 0.3

ka = 30 ka = 65
M = 0.25, R/a = 15, RH = 0.3

ka = 30 ka = 65

Figure 10: Polar plots of the acoustic pressure over a non-rigid horizontal plane with an airfoil and an acoustic source
in a uniform motion.
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To further investigate the effects of ground, mean flow
and reflections from the boundaries of the airfoil, we have
set two rows of ‘microphones’ at a distance of a chord
length below (y = 0.1m) and above (y = 0.9m) the air-
foil chord line. Figure 11 shows in detail the coordinate
system, the source position and the microphone series
with respect to the airfoil location. Four computational
cases were performed using the above ‘microphone’ set-
up: with and without uniform flow as well as with and
without the ground effect.
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Figure 11: Airfoil ‘microphone’ locations over an infinite
plane.

The acoustic pressure is higher when mean flow is in-
cluded (Figures 12 and 13). The uniform flow intensifies
the acoustic field, especially downstream of the airfoil, by
stretching the sound waves and distributing the scattered
sound backwards compared to the case without uniform
flow (Figure 12). The reflections from the boundaries
of the airfoil also contribute to higher acoustic pressures
downstream.

The results show (Figures 12 and 13, y = 0.9m) that
higher pressures occur when the ground (infinite plane)
is present. The ground effect contributes to up to 20%
(upper row of ‘microphones’) increase of the maximum
pressure level.

4 Conclusions

A uniform-flow boundary integral method has been de-
veloped for predicting acoustic field scattering of a sound
source around an airfoil placed over an infinite plane. The
model accounts both for rigid and for soft ground condi-
tions. The importance of the ground impedance on the
attenuation of sound was shown by considering a soft
ground condition. This prompts to the use of absorbent
materials on runways and roads in order to reduce noise
levels. The uniform flow in conjunction with the ground
effect intensify the acoustic field downstream of the sound
source. The ground effect increases the sound level with-
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Figure 12: Scattered pressure over an infinite plane with
an acoustic source of frequency, ka = 8 and an airfoil;
solid and dashed lines correspond to M = 0.25 and M =
0.0 flow conditions, respectively.
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Figure 13: Scattered pressure around an aerofoil with an
acoustic source of frequency, ka = 8; solid and dashed
lines denote M = 0.25 and M = 0.0 flow conditions,
respectively.
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out altering the sound patterns, while the more rigid the
ground the higher the acoustic pressure.

At present, the model does not take into account topog-
raphy characteristics. However, it has the potential to
be extended by including the inhomogeneous impedance
effects into the Green’s function.
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