
 
 

 

  
Abstract—This paper presents some of the outcomes of a 

research project concerned with the development of a method for 
synthesizing, under controlled conditions in the laboratory, the 
random vibrations generated by road transport vehicles.  Firstly, 
the paper deals with the development of a technique for 
decomposing non-stationary random vibration signals into 
constituent Gaussian elements.  The hypothesis that random 
non-stationary vehicle vibrations are essentially composed of a 
sequence of zero-mean random Gaussian processes of varying 
standard deviations is tested and the paper reveals that the 
variations in the magnitude of the vibrations are the cause of the 
leptokurtic, non-Gaussian nature of the process.  It is shown how 
non-stationary vibration signals can be systematically 
decomposed into these independent random Gaussian elements by 
means of a numerical curve-fitting procedure.  The paper 
describes the development of the algorithm which is designed to 
automatically extract the parameters of each constituent 
Gaussian process namely the RMS level and the Vibration Dose.  
The validity of the Random Gaussian Sequence Decomposition 
(RGSD) method was tested using a set of road vehicle vibration 
records and was found to be capable of successfully extract the 
Gaussian estimates as well as the corresponding Vibration Doses.  
Validation was achieved by comparing the sum of these Gaussian 
estimates against the PDF of the original vibration record.  All 
validation cases studied show that the RGSD algorithm is very 
successful in breaking-down non-stationary random vibration 
records into their constituent Gaussian processes.  Secondly, the 
paper describes the development of a statistical model for 
characterising the nonstationarity of road vehicle vibrations.  It 
shows that the Rayleigh and two-parameter Weibull distributions 
cannot be used to model the magnitude distribution.  An 
alternative model, which is a modified form based on the Rayleigh 
and Weibull  distributions,  is introduced and is shown to offer 
good agreement with the statistical distribution of a broad range 
of experimental data. 
 

Index Terms—Gaussian vibrations, non-stationary vibrations, 
random vibrations, vehicle vibrations. Rayleigh, Weibull. 
 

I. INTRODUCTION 
  It is self-evident that the primary source of vertical 

vibrations generated by road vehicles can be attributed to the 
unevenness of pavement surfaces.  When wheeled vehicles 
traverse irregular surfaces, the interaction between the vehicle 
and the terrain give rise to a dynamic process that produces 
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complex forces and motions within the vehicle.  Because 
pavement surface irregularities are generally random in nature, 
the resulting vehicle vibrations are also random.  Furthermore, 
the levels of vibrations are not solely dependent on the 
pavement roughness but are also a function of vehicle type, 
payload and vehicle speed.   The effect of these parameters tend 
make the complex mechanical interactions between the vehicle 
and pavement surface difficult to characterise and predict.  It is 
therefore widely acknowledged that the analysis and synthesis 
of road-related vehicle vibrations demand some level of 
sophistication.  As the importance and significance of 
optimising protective packaging designs intensifies, the need 
for closer and more accurate monitoring and understanding of 
hazards in the distribution environment increases. 

Although vibrations generated by road vehicles have been 
thoroughly studied on numerous occasions, because of their 
inherent complexity, variability and unpredictability, there 
does not exist a definitive method to predict, analyse or 
synthesize them.  There have been, however, a number of 
attempts in characterising some aspects of the process.  By far 
the most common approach is to compute the average Power 
Spectral Density (PSD) of the vibrations.  The technique is 
useful in many ways, such as identifying prevalent frequencies 
and the overall (RMS) vibration level, and is still widely used 
today to characterise ride quality.  One major drawback of the 
average PSD is that it effectively describes the average energy 
level (in this case acceleration) for each frequency band within 
the spectrum.  It does not contain information on time-variant 
parameters such as possible variations in amplitude or 
frequency or the time at which these variations occur.  
Furthermore, the temporal averaging process inherent to the 
PSD cannot separate the effects of transients within the signal.  
This is of no consequence if the process is both Gaussian and 
stationary.   In such cases the nature of the signal is well defined 
by the normal distribution and its higher-order moments.  
However, as it has repeatedly been shown, road vehicle 
vibrations can often be significantly non-stationary and non 
Gaussian mainly due to variations in pavement roughness and 
vehicle speed [1][2].  One such example is illustrated in Fig. 1.   

The main consequence of ignoring the non-Gaussian nature 
of vehicle vibrations becomes critical when the average PSD of 
the vibration sample is used to synthesize these vibrations using 
laboratory vibration generators.  In such cases, the resulting 
synthesized vibrations are unavoidably Gaussian and,  
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Figure 1.  Example of the non-stationary, leptokurtic nature of road vehicle vibrations. 

 
consequently, fail to reproduce the fluctuations in 
amplitudes that are inherent to the process. 

One approach that is sometimes used to (partially) 
compensate for the amplitude non-stationary of vehicle 
vibrations is the peak-hold spectrum.  In effect, instead of 
averaging the signal amplitude for each narrow frequency 
band, the peak-hold spectrum uses the largest amplitude 
within each frequency band.  Typically, given a suitably 
large sample, the peak-hold spectrum is an amplified version 
of the average PSD and is often used to reveal the 
relationship between the mean and peak spectral values 
which are related by the crest factor.  In reality, the 
interpretation of the peak-hold spectrum is difficult 
especially when the vibrations are time dependent 
(non-stationary) and contain transients.  Further uncertainty 
arises due to the fact that statistical uncertainties between the 
average and peak-hold spectral density estimates are not 
consistent.  In general, the use of peak-hold spectra for 
establishing the severity of vibration tests can lead to 
conservative results [1].  This is especially so if the process 
is highly non-stationary and the peak-hold spectral values 
are the results of severe but short-lived excursions in 
vibration levels.  While such statistically unlikely events can 
dramatically distort the peak-hold spectrum, they have little 
or no effect on the average PSD. 

A variant on the peak-hold spectrum is the method 

developed by the US Army at its Aberdeen Proving Ground 
for inclusion in its Mil Std 810D [3].  The analysis was based 
on vibration data collected from a range of road surface 
types and vehicle speeds.  The data is analysed in 1 Hz 
frequency bands where both the mean RMS vibration value 
and one standard deviation are calculated.  This method is 
advantageous over the peak-hold spectrum in that the 
statistical confidence of the mean and standard deviation is 
consistent [1].  The Aberdeen Proving Ground method, like 
the peak-hold method, is significantly affected when the 
vibrations are non-stationary [1].  

An alternative approach, described by Murphy [4], 
involves the use of the rainflow count algorithm to determine 
the frequency of occurrence (amplitude density in cycles per 
mile) for a predetermined set of acceleration ranges 
(rainflow amplitude).  Data, collected from a typical 
tractor-trailer travelling over a wide range of pavements 
including freeways, secondary roads and urban routes, were 
used to propose an exponential relationship between the 
amplitude density and acceleration range: 

 
    bxN a e=            (1) 

 
where N is the amplitude density in cycles per unit length, x 
is the acceleration range while a and b are empirical 
constants.  This method does provide some information on 
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the amplitude non-stationary of the vibrations and may be 
useful when used in conjunction with the PSD.  

The non-stationary nature of road vehicle vibrations was 
discussed by Richards [1] who attributed it to variations in 
vehicle speed.  He produced data showing the variations in 
RMS acceleration levels as a function of vehicle speed for a 
typical 40-minute journey.  Richards also identified that the 
dynamic response of road vehicles contain both continuous 
(steady-state) and transient components.  Richards [1] 
recognised the difficulties in identifying transients given that 
they occur at random intervals with large variations in 
amplitudes.  It was also acknowledged that, although 
desirable for establishing test requirements, the separation of 
transients from the underlying vibrations is, in reality, 
arbitrary and almost always difficult to achieve. 

Charles [5] was one among many to recognize that there 
existed problems relating to the interpretation of vertical 
vibration data from road vehicles for use to generate 
laboratory test specifications.  He also acknowledged that 
wheeled vehicle vibrations are “unlikely to be stationary” 
due to variations in road surface quality and vehicle speed.  
He also showed that the statistical distribution of vehicle 
vibrations is more likely to contain larger extrema than that a 
true Gaussian process as illustrated in Fig. 2. 

 

 
Figure 2.  Illustration of the non-Gaussian nature of 

vehicle vibrations (after Charles [5]). 
 
Charles [5], who studied a variety of road types, stated:  

“even for a good classified road, a whole range of surface 
irregularities may be encountered”.  He acknowledged that 
there exist difficulties associated with distinguishing shocks 
from vehicle vibrations.  Charles [5] suggested that the 
analysis method for characterising non-stationary vehicle 
vibrations should include the identification of stationary 
sections using the “RMS time histogram (sic)” (presumably 
meaning time history), the examination of vibration severity 
in terms of RMS and peak amplitude as a function of vehicle 
speed and verification of the normality of the data by 
computing the amplitude probability analysis. 

Despite the manifest non-stationarity and non Gaussian 

nature of road vehicle shocks and vibrations, they are not 
taken into account by most analysis methods in use today.  
However, more recently, attempts have been made to 
account for the non Gaussian characteristics of vehicle 
vibrations by applying a non-linear transformation to a 
Gaussian function by means of a Hermite polynomial thus 
enabling control of the skewness and kurtosis parameters 
[6,7,8].  The main limitation of this technique is that it fails 
to recognise that the primary cause of the leptokurtic nature 
of road vehicles vibrations is the result of the 
non-stationarity of the process rather than an inherent 
non-Gaussian character.  Consequently, it does not succeed 
in reproducing the variations in the processes’ amplitude that 
are considered essential if realistic simulations are to be 
achieved. 

This paper builds on Charles’ proposition that 
non-stationary random vehicle vibrations consist of 
Gaussian segments and introduces a method by which 
measured and numerically-simulated road vehicle vibration 
data can be decomposed into its constituent Gaussian 
components. 

 

II. RANDOM GAUSSIAN SEQUENCE DECOMPOSITION 
The Probability Distribution Function of a signal 

composed of a sequence of random Gaussian processes can 
be expressed as the sum of the individual distribution 
functions each weighted by, what will here be termed, the 
Vibration Dose.  The Vibration Dose effectively describes 
the time fraction for which a Gaussian process of a particular 
standard deviation exists.  The decomposition method 
described here relies on the fact that the distribution function 
of a sequence of zero-mean Gaussian processes can be 
described intrinsically as a function of two parameters, 
namely the vibration dose, Di, and the standard deviation, σi, 
as follows: 
 

( ){ }
n

i
2

i ii 1

D 1ln p x ln x x
2 2πσ σ=

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑      (2) 

 
In this form the function produces a linear relationship 
between x|x| and ln{p(x)} represented by the slope 21/ 2σ−  
and the ordinate intercept ln{D/√2π σ}.  This shows that the 
distribution parameters of a Gaussian process can be 
determined by fitting a straight line through one half (or 
side) the distribution estimates to obtain the Vibration Dose 
and standard deviation as follows: 

 

 
i i i

i i

1 1and D 2 exp(C )
2m 2m

σ π
⎛ ⎞

= = ⋅ − ⋅⎜ ⎟
⎝ ⎠

    (3) 

 
Where mi and Ci are, respectively, the ith slope and 

ordinate intercept of the linear regression fit.    
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Determine the index, ip , of 
the first element where 
ln{p(x)} ≥ 0 ( p(x) ≥1 )

Set the first boundary bln=ip

Initialise the loop counter 
n=1

Is ln{p(x)}|min in the
range {bln – brn } < 0?

Dn=0
Y

N

Compute the Gaussian 
estimate standard deviation 

and vibration dose.

Compute the slope (m) and 
ordinate intercept (C) of the 

linearised PDF in the    
range { bln – brn }

*

Determine the PDF 
remainder by subtracting the 
Gaussian estimate from the 
PDF of the original record.

Increment the loop counter 
n=n+1

GOTO *

Compute and plot sum of 
Gaussian estimates

Tabulate σn and Dn for all 
values of n

Y

N

Algorithm commentary

The PDF of the record is computed 
between limits determined from the 
absolute minimum and maximum of the 
entire vibration record.  This section of 
the algorithm deals with determining the 
optimum region at the ‘tail’ of the 
distribution function to determine the 
first Gaussian estimate which, by 
design, will represent the Gaussian 
element with the largest standard 
deviation.

First the element containing the 
maximum, p(x)max is identified.  Then, 
elements within the distribution function 
which contain ‘-inf’ values are detected.  
These represent elements where p(x) →
0.   The very adjacent element toward 
the centre of the distribution (the mean) 
is identified and represents the ultimate 
boundary of the distribution function, 
bln .  The other boundary of the region, 
brn , is defined as half way between bln
and the distribution peak element, ip.  
This coefficient of ½ was arrived at by 
experimentation and was found to yield 
the most consistent and accurate results. 
The coordinates ln{p(x)} and x|x| within 
the domain { bln - brn } are used as the 
first set of values to determine the 
parameters of the first Gaussian 
estimate.  This is best illustrated in Fig. 
4.

Linear regression by the method of least 
squares is used to determine the line of 
best fit through the data and estimates 
of the slope and ordinate intercept.  The 
Gaussian estimate’s standard deviation 
(σn) (or RMS for a zero-mean process)  
and vibration dose (Dn) are computed 
from estimates of the slope and ordinate 
intercept.   A numerical vector for the 
Gaussian estimate is generated for the 
entire range (shown in Fig. 5).

The difference between the original 
PDF and the Gaussian estimate is 
computed and used to fit the next 
Gaussian estimate.  The PDF remainder 
is linearised and any negative value is 
truncated to zero as a necessity for 
computing the natural log. 

The next range for regression is 
established by moving the starting point 
(left boundary, bln) by one and 
computing the end point (the right 
boundary, brn) as half way between bln
and the PDF peak ip.  If the number of 
elements in the range {bln - brn} is less 
than 5, it is deemed that there is no 
longer a sufficient number of points to 
accurately extract a line of best fit by 
regression.  The programme is 
terminated and the results displayed as 
shown in Fig. 6. 

Set the other boundary brn to
brn=ceiling[ bln+(ip – bln)/2 ]

Set the other boundary brn to
brn=ceiling[ bln+(ip – bln)/2 ]

Generate Gaussian estimate

Compute the linearised 
remainder PDF by 

evaluating x|x| and ln{p(x)}.

Increment the regression 
domain starting point:         

bln = brn-1 + 1

Is (bln – brn ) < 5

 Figure 3.  Random Gaussian Sequence Decomposition 
algorithm flow chart. 

 

The challenge in developing an automated algorithm to 
extract a number of Gaussian parameters from a 
non-Gaussian distribution are related to the data range (or 
boundary) for each Gaussian element, determining a suitable 
number of Gaussian elements in the sequence and the effect 
of fluctuation in the distribution estimates, especially in the 
high standard deviation, low count region.  A description of 
the algorithm developed in this study is given in Fig. 3 along 
with illustrations of its operation and the results it generates. 
 

Region for determining the initial 
Gaussian estimate parameters by 

linear regression. 

index = bln index = brn

Figure 4.  Identification of the region to determine the initial 
Gaussian estimate parameters by linear regression 

 

PDF of original record
Gaussian estimate (n =1)

Gaussian 
estimate No. 1

σ1 = 2.71
D1 =1.1% 

 
Figure 5.  First Gaussian estimate along with PDF of 

original record.  Note the relatively small dose that makes 
the estimate difficult to distinguish in linear scales. 

 
The validity of the Random Gaussian Sequence 

Decomposition (RGSD) method was tested using a broad set 
of typical of vibration records collected from a variety of 
vehicle types, routes and payload conditions (Table I).  In 
addition, the vertical acceleration responses of various linear 
quarter-car numerical models, made available in the 
literature, were computed for a range of pavement profiles a 
(Table II) to supplement and complement the collection of 
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measured vibration records.  Although it is acknowledged 
that the rudimentary nature of the simulation models (only 
linear elements were used) produces vibration estimates that 
are not necessarily accurate, the simulation is sufficiently 
realistic to reproduce the random non-stationarities that 
occur in reality and are, therefore, deemed adequate to the 
purpose of this study.  The simulation was carried out with a 
purposed-design program coded in Matlab® and 
Simulink®.  The boundary conditions were accounted for by 
introducing a vehicle velocity ramp at a constant forward 
acceleration until the target cruise speed was reached.  The 
vertical vibrations of the quarter-car model were then 
computed at constant vehicle velocity for the entire 
pavement profile. 

The Random Gaussian Sequence Decomposition method 
was found to be capable of successfully extracting the 
Gaussian estimates as well as the corresponding vibration 
doses for every single test record.  Validation was achieved 
by comparing the sum of these Gaussian estimates against 
the PDF of the original vibration record.  A number of 
typical results are presented the appendix. 

 
Table I.  Summary of measured vibration record 

parameters. 
ID Vehicle type & load Route 

Type 
MA Utility vehicle (1 Tonne capacity).  Load: 

< 5% cap. 
S'urban 
streets 

MB Prime mover + Semi trailer (Air ride 
susp.).  Load: 90% cap. 

Country 
roads 

MC Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
streets 

MD Transport van (700 kg capacity).  Load: 
60% cap. 

Suburban 
hwy. 

ME Transport van (700 kg capacity).  Load: 
60% cap. 

Motorway 

MF Prime mover + Semi trailer (leaf spring 
susp.).  Load: < 5% cap. 

Country 
roads 

MG Tipper truck (16 Tonnes capacity, Air ride 
susp.).  Load: 25% capacity. 

Country 
roads 

MH Small flat bet truck (1 Tonne capacity, leaf 
spring susp.).  Load <5% cap. 

Suburban 
streets 

MJ Flat bed truck (5 Tonnes capacity, leaf 
spring susp.).  Load >95% cap. 

Country 
roads 

MK Sedan car.  Load: 1 passenger Suburban  
 

Table II.  Summary of routes used for 
numerically-generated vibration records. 

ID Route (Victoria, Australia) 
SA Murray Valley Highway (Major county road)  
SB Bendigo – Maryborough road (Major county road) 
SC Princess Highway (Freeway) 
SD Timboon Road, Victoria, Australia (Major county road) 
SE Road sequence: Timboon Road – Princess Hwy and 

Murray Valley Hwy, Victoria, Aust. 

PDF of original record
Sum of Gaussian estimates

 
Figure 6.  Typical plot of the decomposed Gaussian 

estimates (blue lines) along with the sum of the Gaussian 
estimates (red line) and the PDF of the original record. 

 

III. STATISTICAL DISTRIBUTION OF MAGNITUDE 
One useful approach for revealing the overall level-type 

nonstationary character of random vibrations is to compute 
the probability density function (PDF) of the instantaneous 
magnitude of the random vibrations obtained by means of 
the Hilbert Transform.  Analysis of vehicle vibration 
samples, representing a wide range of pavement conditions 
and vehicle types, have revealed a similarity between the 
statistical distribution of the vibration magnitude and the 
Rayleigh distribution.  However, there exists a consistent, 
and not altogether unexpected, deviation from the Rayleigh 
distribution as illustrated by the examples in Fig. 7 which 
shows the distribution of the vibration magnitude for a 
number of typical vehicles and pavement conditions.  The 
non-conformance with the Rayleigh distribution is clearly 
evident and has been found to be representative of the 
process in general. 

 

Engineering Letters, 17:4, EL_17_4_03
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

(a)

P(
m

) [
-]
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P(
m

) [
-]

Normalised Inst. Magnitude [RMS]  
Figure 7.  Typical normalised vibration magnitude 

probability density estimates along with the best-fitting 
Rayleigh distribution Data source: a) MA, b) MB.  

 
These deviations from the Rayleigh distribution can be 

explained since, fundamentally, the characterisation of peaks 
or magnitude with the Rayleigh Distribution (Eqn. 4) relies 
on the signal being Gaussian as well as narrow-banded 
which is defined as peaks occurring above zero and troughs 
below zero (spectral width parameter, ε = 0) [6].  While it is 
reasonable to assume that, in the main, the vertical vibrations 
of road vehicle are very nearly narrow banded, it is often the 
case that the statistical distributions of road vehicle 
vibrations are non-Gaussian and are characterised by high 
kurtosis values.   

 
2

2
m 1 mP(m) = exp - 0 m

2 σσ

⎧ ⎫⎪ ⎪⎛ ⎞⋅ ⋅ ≤ ≤ ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

    (4) 

 
Where m is the instantaneous vibration magnitude and σ is 
the standard deviation. 
 

Due to the strong prevalence of the Gaussian (hence 
stationary) assumption with respect to vehicle vibrations, 
little information is available regarding better-suited 
probability density functions for vibration magnitudes on 

non-stationary processes.  It has been suggested by Nigam 
[7] and Newland [6] that the two-parameter Weibull 
distribution, given in Eqn. 5, (of which the Rayleigh 
distribution is a special case) may be suited to characterizing 
non-stationary random processes.  Two examples given by 
Newland [6] are for the circulation of wave-induced bending 
moments in ships, proposed by Mansour [8] and for the wind 
loading of buildings proposed by Melbourne [9, 10].   
 

( )1- mP(m) = m exp - 0 m
α

ααα β
β

−
⎧ ⎫⎛ ⎞⎪ ⎪⋅ ≤ ≤ ∞⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

   (5) 

Where m is the instantaneous vibration magnitude, α is 
referred to as the shape factor and β scale parameter. 
 

Numerous validation tests against the entire set of 
vibration record samples collected in this study have shown 
that, although the Weibull distribution offers a significant 
improvement on the Rayleigh distribution, there are too may 
instances in which adequate correlation is not achieved 
across the entire vibration magnitude range.  Further analysis 
has led toward the development of three alternative forms of 
the Rayleigh distribution (Eqns. 6 (a), (b) and (c)) which 
afford some control on the shape of the distribution.  The 
validity of all three models was thoroughly tested against the 
available data and was found to offer various level of 
improvement on the Weibull distribution.   

 

2
m 1 mP(m) = exp - 0 m

2( )

α

σβσ

⎧ ⎫⎪ ⎪⎛ ⎞⋅ ⋅ ≤ ≤ ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   (6(a)) 

 

2
m 1 mP(m) = exp - 0 m

2( )

α

βσβσ

⎧ ⎫⎛ ⎞⎪ ⎪⋅ ⋅ ≤ ≤ ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   (6(b)) 

 

2
m 1 mP(m) = exp - 0 m

2( )

α

γσβσ

⎧ ⎫⎛ ⎞⎪ ⎪⋅ ⋅ ≤ ≤ ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   (6(c)) 

 
Where α is the exponent parameter and β  and γ are the scale 
parameters.  Note that the two-parameter Modified Rayleigh 
distribution (Eqn. 6(b)) is a special case of the 
three-parameter function (Eqn.6(c)) when the scale 
parameters are equal (β = γ ).  Fig. 8 shows how the 
parameters α, β  and γ influence the shape of the two and 
three-parameter Modified Rayleigh distribution functions 
(Eqn. 8(b) and (c)).  The exponent α alters the slope of the 
right-hand (tail) of the curve while having little effect on the 
left-hand portion of the curve.  The scale parameter β alters 
the overall width of the function by effectively scaling the 
standard deviation.  Consequently, the value of β also 
determines the location of the peak of the distribution 
function.  The second scale parameter γ does not alter the 
shape of the distribution function but merely changes the 
overall scale of the curve. 
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Figure 8.  Effect of the exponent parameter α (top) and the 
scale parameters β (centre) and γ (bottom) on the overall 
shape of the two and three-parameter Modified Rayleigh 

distribution functions. (Thick dark line represents the 
Rayleigh distribution). 

 
 These various statistical models were compared with the 
probability density of the instantaneous magnitude of 
recorded vibration data by means by means of nonlinear 
least-squares regression using the Gauss-Newton method.  
Fig. 9 shows a typical example of the suitability of the 
various statistical models when compared to the probability 
density distribution of measured vibration records.  Further 
cases are included in the appendix.  These results present 
strong evidence that, in all cases presented here, the Weibull 
distribution fails to adequately compensate for the 
discrepancies between the probability density of actual 
non-stationary vibration realizations and the Rayleigh 

distribution.  The same applied for the single-parameter 
Modified Rayleigh distribution (Eqn. 6(a)).  In most cases - 
all but four of those analysed - (see table III) the 
two-parameter Modified Rayleigh distribution offers a very 
acceptable alternative. 
 

P(
m

) [
-]

Ln
{P

(m
)}

 [-
]

 
Figure 9.  Typical normalised vibration magnitude 
distribution along with various statistical models. 

 
It can be seen from Fig. 9 that the three-parameter modified 
Rayleigh distribution generally and consistently offers the 
best agreement with the instantaneous magnitude PDF of a 
wide range of vibration realizations.  The main discrepancies 
generally occur at high levels of vibration magnitude as 
illustrated in the logarithmic plot.  Ultimately, the 
three-parameter model (Eqn. 6(c)) was found to offer the 
best agreement over the widest range of vibration 
realizations.  This was mainly attributed to the fact that three 
independent parameters are used.  It must be noted that, at 
this stage, the exponent and scale parameters used in both the 
two-parameter and three-parameter Modified Rayleigh 
models (Eqn. 6(b) and (c)) have no direct physical 
significance to the process itself.  Despite this, these 
modified Rayleigh distributions allow the formation of 
models that better represent the statistical nature of the 
non-Gaussian random vehicle vibrations for a wide range of 
cases.  The main relevance of these models is that it enables 
the characterisation of the overall variation in the 
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instantaneous vibration magnitude of a large variety of 
vibration records with a small number (no more than three) 
of statistical parameters.   
 

Table III.  Results of regression analysis for two and 
three-parameter Modified Rayleigh model. 

2-P vs 3-P

Vibration 
record β2 α2 β3 γ3 α3 β3:γ3

Mean 
(β3+γ3)/2

Visual 
correlation

Data MA 0.362 1.167 0.386 0.403 1.246 4.4 0.39 Good
Data MB 0.295 1.113 0.198 0.144 0.816 27.3 0.17 Poor
Data MC 0.631 1.570 0.521 0.400 1.125 23.2 0.46 Poor
Data MD 0.593 1.573 0.447 0.305 1.026 31.8 0.38 Poor
Data ME 0.502 1.358 0.418 0.362 1.108 13.4 0.39 Good
Data MF 0.321 1.097 0.311 0.303 1.064 2.6 0.31 Good
Data MG 0.411 1.201 0.404 0.398 1.178 1.5 0.40 Good
Data MH 0.454 1.330 0.307 0.206 0.877 32.9 0.26 Poor
Data MK 0.268 1.034 0.237 0.212 0.943 10.5 0.22 Good
Data SA 1 100 0.227 0.982 0.205 0.188 0.905 8.3 0.20 Good
Data SA 2 100 0.406 1.203 0.508 0.612 1.663 20.5 0.56 Poor
Data SA 3 100 0.217 0.965 0.240 0.261 1.054 8.8 0.25 Good
Data SA 4 100 0.283 1.049 0.310 0.333 1.144 7.4 0.32 Good
Data SB 1 120 0.252 1.008 0.283 0.309 1.118 9.2 0.30 Good
Data SB 2 120 0.791 1.728 0.807 0.874 1.975 8.3 0.84 Good
Data SB 3 120 0.295 1.062 0.367 0.429 1.326 16.9 0.40 Good
Data SB 4 120 0.354 1.133 0.422 0.485 1.390 14.9 0.45 Good
Data SC 1 80 0.345 1.127 0.402 0.457 1.352 13.7 0.43 Good
Data SC 2 80 0.295 1.068 0.325 0.354 1.187 8.9 0.34 Good
Data SC 3 80 0.226 0.981 0.289 0.348 1.236 20.4 0.32 Good
Data SC 4 80 0.240 0.996 0.291 0.338 1.193 16.2 0.31 Good
Rayleigh 1 2 1 1 2

2-parameter model Three-parameter model

 
 

 Table III lists the extracted exponent and scale 
parameters from the two and three-parameter regression 
analysis for all the analysed vibration records.  An 
interesting outcome of these results is the relationship 
between the exponent parameter, α2 and the scale parameter 
β2 for the two-parameter Modified Rayleigh model as shown 
in Fig. 10.   

 

α2 = 1.42 β2 + 0.65
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Figure 10.  Relationship between exponent and scale 
parameter for the two-parameter Modified Rayleigh 

probability density distribution model. 

The strong linear relationship revealed here is somewhat 
astonishing given that the vibration data collected consists of 
both measured and numerically simulated vibrations using a 
wide variety of vehicle and pavement surface types not to 

mention the uncontrolled (set by ambient traffic conditions) 
vehicle speed for measured records.  This outcome indicates 
that, in many cases, there exists a generic single-parameter 
statistical model that accurately describes the probability 
density distribution of a broad range of vehicle vibration 
realizations.  The obvious benefit of this outcome is that, for 
a significant portion of vibration events (16 out of the 21 
used here) the non-stationarity of the random vibrations can 
be characterised by a single statistical parameter.   

 
 Further analysis of these two-parameter models that 

produce good agreement with the PDF of actual data shows 
that there does not appear to be any relation between the type 
of data (measured or simulated) and vehicle type.  In other 
words, although α2 and β2 remain well correlated 
throughout, the values of α2 and β2 do not appear to represent 
a special kind or magnitude of non-stationarity as shown in 
Fig. 11.  Establishing such a relationship may very possibly 
require many more independent and varied vibration records 
to be collected and analysed.   
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Figure 11.  Two-parameter Modified Rayleigh PDF models 

for 16 vibration records where good agreement was 
achieved. 

 
 As for the two-parameter Modified Rayleigh model, 

some interesting relationships exist between the exponent 
parameter α3 and the scale parameters β3 and γ3 for the 
three-parameter Modified Rayleigh model.  Firstly, although 
the relationship between the scale parameters β3 , γ3

  and the 
exponent parameter α3 is approximately linear, a significant 
amount of scatter is present as shown in Fig. 12.  However, it 
is interesting to note that the arithmetic average of the scale 
parameters ( 3 3:β γ ) yields a stronger linear relationship 

with α3 in a similar, albeit less well-defined, fashion as is the 
case with the two-parameter model.  Nevertheless, this 
correlation remains remarkable given the variety of the data 
used.  
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Figure 12.  Relationship between exponent and scale 

parameters for the three-parameter Modified Rayleigh 
probability density distribution model. 

Also of interest is the relationship between the scale 
parameters β3 and γ3 as shown in Figure 6.21.  These results 
graphically reveal cases where the three-parameter model is 
well approximated by the two-parameter model represented 
by data points lying close to the unity ratio line (dashed blue 
line).  Also shown here is the effect of computing the 
arithmetic mean of the scale parameters thus enabling the 
reduction of the three-parameter model to a two-parameter 
model by replacing β3 and γ3 with (

3 3:β γ ).  These 
relationships for the three-parameter model are clearly less 
robust than that of the two-parameter model.  This is not 
entirely unexpected especially in those cases where there is a 
departure in agreement between the models. 
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Figure 13.  Relationship between scale parameters for the 

three-parameter Modified Rayleigh probability density 
distribution model.  Circled squares indicate cases where the 

inequality is large. 

These five cases where the PDF of actual vibrations 
records cannot be adequately represented by the 
two-parameter Modified Rayleigh model are shown in Fig. 
14 which, when compared with Fig. 11, exhibits obvious 

differences.  Again, there appears to be no specific reason for 
the fact that the PDF of these particular five vibration 
records can only be adequately represented by the 
three-parameter Modified Rayleigh model.  As previously 
suggested, this may be the subject of further research aimed 
at correlating the statistical parameters with any particular 
feature in the type of non-stationarity within the vibration 
signal. 
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Figure 14.  Three-parameter Modified Rayleigh PDF models 
for 5 vibration records where poor agreement was achieved 

with the two-parameter model. 

IV. CONCLUSIONS 
The paper has introduced a novel approach for the 

characterisation of nonstationary, non-Gaussian random 
vibrations generated by road vehicles.  A Random Gaussian 
Sequence Decomposition algorithm which automatically 
extracts the parameters of each constituent Gaussian process, 
namely the RMS level and the Vibration Dose, was 
successfully developed and was found to be very effective in 
characterising non-stationary random vehicle vibrations in 
such a way as to facilitate laboratory synthesis.  The 
development of a method for characterising the 
non-stationarity of random vibrations by means of the 
statistical distribution of the instantaneous magnitude 
produced positive and useful results.  A two-parameter 
distribution function based on a combination of Rayleigh 
and Weibull models was shown to offer acceptable 
agreement with a wide range of experimental data and can be 
used quite effectively to provide some characterisation of the 
nature of non-stationary wheeled vehicle vibrations. 
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APPENDIX 
 

 

 

 
Figure A1.  Validation results for the Random Gaussian Sequence Decomposition method for a range of typical vibration records. 

(Red line: sum of Gaussian segments, Grey: PDF of actual record) 
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Figure A2.  Validation results for the PDF models for a range of typical vibration records.   
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