
 
 

 

 

  
Abstract—Effective and efficient scheduling of yard crane 
operations is essential to guarantee a smooth and fast container 
flow in a container terminal, thus leading to a high terminal 
throughput. This paper studies the problem of scheduling yard 
cranes to perform a given set of loading and unloading jobs with 
different ready times in a yard zone.  In particular, the 
inter-crane interference between adjacent yard cranes which 
results in the movement of a yard crane being blocked by 
adjacent yard cranes is studied. The objective is to minimize the 
sum of yard crane completing times. Since the scheduling 
problem is NP-complete, a new hybrid optimization algorithm 
combining the techniques of genetic algorithm and tabu search 
method (GA-TS) is proposed to solve the challenging problem. 
Two new operators, namely the Tabu Search Crossover (TSC) 
and the Tabu Search Mutation (TSM), are introduced into the 
proposed algorithm to ensure efficient computation. A set of test 
problems generated randomly based on real life data is used to 
evaluate the performance of the proposed algorithm. 
Computational results clearly indicate that GA-TS can 
successfully locate cost-effective solutions which are on average 
20% better than that located by GA. Indeed, the proposed 
hybrid algorithm is an effective and efficient means for 
scheduling yard cranes in computer terminals.  

 
 

Index Terms—Yard Crane, inter-crane Interference, Hybrid 
algorithm, Genetic Algorithm, Tabu Search  

I. INTRODUCTION 
 

With the rapid trade globalization, the marine 
transportation is getting more and more popular. Large 
numbers of cargos are moved in containers through ports. 
Therefore, effective and efficient management of port 
container terminals is quite important in marine 
transportation development. In addition, container ports 
compete with each other for better customer service. Of all 
the service performance measures, vessel turnaround time, 
which is the average time that a vessel stays in a terminal, is 
the key one. The most effective method to reduce the 
terminal turnaround time is to improve the productivity of 
handling activities.  

It is essential to study the operational processes of a port 
container terminal. Fig. 1.1. shows the typical container 
flow between major handling equipment in a port container 
terminal. When a vessel arrives at the terminal, containers 
are normally discharged from the vessel onto trucks by quay 
cranes. Unloaded import containers are transported to the 
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yard and off-loaded by yard cranes for storage. For export 
containers, containers are mounted onto trucks by yard cranes 
and transported to the quayside for loading onto the vessel by 
quay cranes. Steenken et al. [8] described and classified the 
main logistics processes and operations in container terminals 
and presented a survey of methods for their optimization. 
Stahlbock and Voβ [7] extended the study of [8]. 

 

 
 
Fig. 1.1. Typical container flow in terminal operations 

In a container terminal, yard cranes are important 
equipment for loading containers onto and unloading 
containers from mobile trucks, and for stacking containers 
in storage locations in the container yard according to the 
sequence predetermined by terminal planners. However, the 
low physical operation rate of such equipment and their 
frequent movements when performing handling tasks in the 
yard very often cause bottlenecks in the container flow in the 
terminal. Therefore, yard crane scheduling plays a 
significant role in port management. An effective yard crane 
scheduling can reduce truck waiting time, speed up the 
container flow to and from vessels. A number of researchers 
studied scheduling of yard cranes in a container yard.  

Kim and Kim [2] considered the problem of routing a 
single straddle carrier, which is transportation equipment 
with container handling capability, to transport export 
containers to a loading vessel. To minimize the total 
container handling time of a straddle carrier, a mixed integer 
program was formulated. Zhang et al. [9] investigated the 
Rubber Tyred Gantry Cranes (RTGCs) deployment 
problem. The objective was to find the times and routes of 
cranes movement among blocks. So that the total delayed 
workload in the yard was minimized. A mixed integer 
program (MIP) model was formulated and solved by 
Lagrangean relaxation. Linn and Zhang [10] also studied the 
RTGCs deployment problem. The objective was to 
minimize the total workload overflow through determining 
the crane deployment frequency and routes over a planning 
horizon. A heuristic algorithm was also developed to 
provide a near optimal solution for crane deployment.  

Rail Mounted Gantry Cranes (RMGs) are also used 
frequently in practice. These cranes are particularly 
effective for rail/road transshipments of large quantities of 
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containers. For yard cranes (RMGs) running on rails, 
movement is restricted to a predetermined zone. Within the 
zone, yard cranes can move freely as long as they do not 
cross over each other in the zone.  

Fig.1.2 shows a typical partial container yard layout with 
RMGs yard cranes. The yard is composed of multiple blocks 
called yard blocks. Each yard block consists of a contiguous 
stretch of slots (40-60 slots). Each ground slot, denoted as a 
rectangle in the diagram, can store 5-7 containers. In most 
container terminals, operators simplify the control of yard 
crane movements and reduce the amount of time in which the 
yard cranes occupy trucks travelling lanes by grouping 
adjacent yard blocks together to form zones. In the layout 
depicted in Fig.1.2, there are two zones in the yard, yard zone 
1 and yard zone 2 which are formed by grouping blocks 1, 2 
and 3, and blocks 4, 5 and 6 together, respectively.  

Due to sharing of the traveling lane among two or more 
yard cranes in a yard zone, inter-crane interference, a planned 
move of a yard crane blocked by the other yard cranes, may 
happen. For example, in Fig. 1.2, if yard crane 2 is handling 
its job, yard crane 1 cannot move across yard crane 2 to 
handle jobs on its right hand side. Therefore, if yard crane 1 is 
going to handle jobs in block 3, it has to wait until yard crane 
2 has completed its job.     

 
      

Fig.1.2. Layout of container yard 
 

Due to the complexity of considering inter-crane 
interference constraints in scheduling yard cranes, Ng and 
Mak [11] neglected the crossing movement restriction by 
assuming only a yard crane in a yard zone, where the yard 
crane can move freely to perform all handling jobs 
generated by different vessels. They studied the problem of 
scheduling only a yard crane to perform a given set of 
loading/unloading jobs with different ready times. The 
objective is to minimize the sum of job waiting times. The 
authors proposed a branch and bound algorithm to locate the 
optimal solution of the scheduling problem. Efficient and 
effective algorithms are proposed to find lower bounds and 
upper bounds. However, since their paper only handled a 
yard crane scheduling, it is not directly applicable in 
practice.  

Only a few papers addressed the routing problem 
regarding yard cranes with inter-crane interference 
constraints. Lim et al. [3] studied a model that took into 
account of interference between yard cranes as 

“non-crossing” constraint and used a tabu search heuristic 
for solutions. However, the paper did not consider the 
handling time of yard cranes, the travel time between two 
jobs and the waiting time due to yard crane interference. Ng. 
[4] addressed the scheduling problem for yard cranes 
considering interference among adjacent yard cranes. The 
paper divided the yard to several zones and used a dynamic 
programming model to determine the sequence of jobs for 
each yard crane. In [4], the time was discretized beforehand. 
However, in real world, the time is continuous. Jung and 
Kim [1] scheduled loading operations when multiple yard 
cranes are operating in the same block. They considered 
interferences between adjacent yard cranes. The objective 
was the minimization of the make-span of the yard crane 
operation. The paper used a genetic algorithm and a 
simulated annealing method to solve the model.    

This paper studies the problem of scheduling multiple 
yard cranes in a yard zone to minimize the sum of the 
completion times of yard cranes. When calculating the 
completion time of each yard crane, we consider the 
container ready time, the handling time, the yard crane 
travelling time and the waiting time of yard cranes due to 
inter-crane interference. The remainder of the paper is 
organized as follows. Section 2 proposes a mixed integer 
program model for the scheduling problem. A new hybrid 
genetic algorithm and tabu search method for solving the 
scheduling problem is given in section 3. Section 4 presents 
the results of computational experiments. Conclusions are in 
section 5. 

II. MODEL DEVELOPMENT 
 
A mixed integer program mathematical model 

describing the characteristics of the yard crane scheduling 
problem is developed. Some important assumptions for the 
formulation are listed below: 

 
a) A yard truck can transport an export/import container 

from the yard storage place/quayside to quayside/yard 
storage place. 

b) A job is defined as a yard crane loading/unloading an 
export/import container onto/from a yard truck from/to 
its storage yard place. 

c) The handling time of a job is fixed. 

d) Multiple yard cranes serve simultaneously in a yard zone 
which can move freely as long as they do not cross over 
each other. Inter-crane interference between yard cranes 
is taken into consideration. 

There are n  jobs to be handled by m  identical yard 
cranes in a yard zone of θ  slots. The yard cranes are 
ordered in an increasing order of their relative locations in 
the yard zone. The meanings of variables in the model are 
listed below: 

 
ir   = the ready time of job i  

il   = the location of job i  

ijd  = the time required for yard cranes to travel from il to jl  
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h   = the time required by a yard crane to handle one job 
 

Decision variables: 
iW  = ( , )i iS D  the handling time window for job i  

iD  = the completion time of job i  

iS  = the time at which the yard crane assigned starts to 
handle job i   

it   = the arrival time of the yard crane assigned to job i  

kC  = the completion time of yard crane k     

k
ijX  =

1  if yard crane  performs job  before job 
0  otherwise                                                  

k i j



 

iY  = the yard crane assigned to handle job i  
 
The mathematical model describing the characteristics 

of the scheduling problem is shown below: 

Minimize 
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,    

, 1, ,i j n=  ，      and i j≠                                     (8) 

(1 )k
j jT k jTD d C M X+ − ≤ − , 1, ,j n=  , 1, ,k m=          (9) 

{0,1}k
ijX ∈ ,       , 1, , ,i j n=    1, ,k m=                             (10) 

,iD  ,iS  ,it  0kC ≥ ,     1, , ,i n=   1, ,k m=                 (11) 

{1, 2, }iY ∈            1, ,i n=  .                                           (12) 

In equation (7), M  is a big positive number. 

The objective of the scheduling problem is to minimize 
the sum of the completion times of the yard cranes. 
Constraints (1) and (2), select the first and last tasks for each 
yard crane, respectively. Constraint (3) indicates that every 
job must be completed by one yard crane. Constraint (4) is a 
flow balance constraint for yard crane travels. Constraint (5) 
computes a job’s completion time. Constraint (6) shows that 
the yard crane assigned for a job would start to handle the job 
after the job ready time and its arrival time to the job. 
Constraint (7) implies the relationship between the 
completion time of a job and that of its successors. By 
constraint (8), interference among yard cranes can be 
avoided. The completion time of each yard crane is defined by 

constraint (9). k
ijX  can be 0 or 1 by constraint (10). Variables 

in Constraint (11) have nonnegative value, while iY  is a 
nonnegative integer variable by constraint (12). 

III. HYBRID GENETIC ALGORITHM AND TABU SEARCH 
 

The multiple yard cranes scheduling problem could be 
simplified by decomposing the whole problem into several 
sub-problems where the yard zone is partitioned into several 
ranges and all the jobs within a range are handled by a yard 
crane. Each subproblem is a problem of non-preemptive 
scheduling with different job ready times on a single machine 
which has been proved NP-complete by Lenstra et a. [12]. 
Thus, the multiple yard cranes scheduling problem must be an 
NP-complete problem.  

NP-complete problems could not be solved optimally in 
polynomial-bound time. Thus, in order to find an efficient and 
effective solution, this paper develops a new hybrid genetic 
algorithm and tabu search method. Two new TS-based 
operators of genetic algorithm are designed. The first one is 
adding tabu search to the mutation operation of genetic 
algorithm called (TSM). Genetic algorithm and tabu search 
depend on disparate search principles. In general, TS is good 
at performing deeper exploitation since it is based on local 
search heuristics. GA is short of the power of deeper 
exploitation within the promising regions but performs well at 
exploring different regions due to the implicit parallelism 
feature. It would be desirable to hybridize them to achieve a 
better balance between exploration and exploitation. The 
TSM fulfills the objective.   

The other one is the new tabu search crossover operator 
called (TSC). In canonical GA, all chromosomes are 
replaced by their offspring after the crossover procedures as 
the population evolves. Due to the extremely short life span 
of the individuals, the search algorithms therefore do not 
have sufficient time to sample out the useful schemata from 
individuals. To avoid the shortage, the parents would stay in 
the population to join the selection process with their 
offspring. However, this method would cause new problem. 
Some good individuals would stay permanent and give birth 
to new generations which would lead to premature and 
stalling of the search process. In order to ameliorate this 
situation, this paper designs the TSC. It is a memory-based 
strategy like tabu search. A TSC list is designed to store the 
individuals who have been selected as parents. The TSC list 
records the number of times ( np ) of each chromosome 
selected as parent. The probability to become parent would 
be inversely proportional to the np  of each individual in the 
TSC list. Using this method, this paper effectively avoids 
premature caused by crossover operation.   

The general outline of each step of the proposed 
algorithm is presented below: 

Step 1:  

Set 0k = , and randomly generate the initial population 

0P . The size of 0P  is 
0n . 

Step 2:  
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a) Select 
0n  individuals from population 

kP  to form 
population kS  by using the selection operator of 
conventional GA. 

b) Select parent individuals to give birth to new individuals 
according to the individuals’ crossover probabilities 
calculated by using the value of np  of each individual in 
the TSC list. Population kS  and the new individuals 
together form population kC . The size of kC  is 1n  
( 1 0n n> ). 

c) Apply the TSM mutation operator to population kC  to 
obtain population kM . 

d) Set 1k k= + , k kP M=  

Step 3:  If Total Generationk < , go to Step 2.  

A. Representation 

This paper uses the same two-part chromosome structure 
as in [5]. (2 4 8 9 5 3 9 6 1 | 4 3 2) illustrates an example 
chromosome for representing a crane schedule for assigning 
three yard cranes ( 3m = ) to process nine jobs ( 9n = ) using 
the two-part chromosome structure. There are two distinct 
parts in the chromosome with a total length of m n+ . In the 
first part, the n  jobs are represented by a permutation of the 
integers from 1 to n . The second part of the chromosome, 
which is of length m , represents the number of jobs 
assigned to each of the m  yard cranes. The values assigned 
to the second part of the chromosome are constrained to be 
m  non-negative integers whose sum must equal the number 
n  of jobs. In the example shown above, the first yard crane 
would sequentially process jobs 2, 4, 8 and 9, the second 
yard crane should process jobs 5, 3 and 7, and the last yard 
crane would process jobs 6 and 1. 

B. Fitness evaluation and selection operation 

Inter crane interference occurs when the next job for 
yard crane A is not located between yard crane A and yard 
crane B, and yard crane B is working on another job. In this 
case, yard crane A has to wait until the yard crane B has 
completed its current job. Consequently, the procedure to 
evaluate the objective function value of an individual is as 
follows: 

Step 1:  

Calculate the objective function value of the individual 
without considering constraint (8). During this process, 
we can obtain the value of iW = ( , )i iS D  of job i  
( 1, 2, ,i n=  ).  

Step 2: (Check possible inter crane interference) - 

a) Sort the n  jobs in ascending order of the value of its iS  
to determine the sequence ( 1 , 2 , ,n′ ′ ′

 ).  

b) Find the first pair of jobs ( , )i j  such that i j
i j

W W φ
≠

≠



 

and constraint (8) is not satisfied. 

 Let 1i ′= to 1n′ − . For each i, check j iS D<  for 
1j i= +  to n′ until the condition is satisfied and jobs 

( , )i j  does not satisfy constraint (8). If such a pair of 
( , )i j  exits, inter crane interference occurs. Otherwise, 
inter crane interference does not exit and the current 
result obtained is the final objective function value of the 
individual. 

Step 3: (Conflict resolution).  

Yard crane jY  must wait until yard crane iY  has 
completed job i . Then, jY  moves from il  to jl  and 
begins to handle job j . Update all the kW  affected by 
this operation.  

Step 4:  

Repeat steps 2 and 3 until no inter crane interference 
could be found. 

C. Tabu Search Crossover ( TSC ) operation 

In crossover procedure, there are two questions should 
be answer. The first one is how to choose individuals to be 
parents. The other one is how to use information of two 
parents to generate good offspring. This section answers 
these two questions, respectively. The individuals are 
chosen as parents depending on their crossover probabilities 
which is computed as following:  

2

2

( ( ) )
( ( )) exp( )i

i
np b a

Pb np b
b

−
= −  

where ( )inp b  is the value of solution ib  in TSC list. TSC list 
records the number of times that an individual has been 
selected as parent. a and b  are given parameters which 
control the shape of probability function ( ( ))iPb np b . If 

( )inp b a= , then  ( ( )) 1iPb np b = . ( ( ))iPb np b  gradually 
converges to 0 with ( )inp b  growing up.  
                
        
 
 
 
 
 
 
 
 

   (a=3, b=1)                                  (a=3, b=1.5)                 
 
 
 
 
 
 
 
 
              

                             
(a=3, b=2) 

 
Fig. 3.1 graphics of ( ( ))iPb np b  with different parameters 
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The procedure to choose the individuals as parents is as 

following: 

Step 1:  

Calculate crossover probability for each individual, 
( ( ))iPb np b . 

Step 2:  

Generate a random number RN  between 0 and 1. 

Step 3:  

If ( ( ))iRN Pb np b< , the individual ib  is chosen as 
parents. ( ) ( ) 1i inp b np b= + . 

After getting parents, this paper uses the method 
suggested by [5] to generate offspring. Consider the 
crossover operation of two parents 1P  and 2P  to reproduce 
two offspring 1O  and 2O . In the two-part chromosome 
representation adopted in this paper, the first part of 
chromosome Q  can be partitioned into m  mutually 
exclusive sets 1 2( ), ( ), , ( )mQ Q QΩ Ω Ω , where ( )k QΩ  
denotes the sequence of jobs to be processed by yard crane 
k  ( 1, 2, , )k m=   as specified by chromosome Q . The 
procedure to generate 1O  is given below: 

Step 1:  

Rank the n  jobs in non-decreasing order of their ready 
times and let J  be the   ranked set. 

Step 2:  

For 1, 2, ,k m=  , find the jobs that are elements of both 

1( )k PΩ  and 2( )k PΩ , insert these jobs in 1( )k OΩ  
according to their order in set J , and delete the inserted 
jobs from set J . 

Step 3:  

Let job i  be the first job in set J . For 1, 2, ,k m=  , 
tentatively place the job as the last element of 1( )k OΩ  
and compute the completion time ( )kD i  of job i . Find 
q  where 1,2, ,( ) min { ( )}q k m kD i D i==



, place job i  as the 
last element of 1( )q OΩ , and delete job i  from set J . 

Step 4:  

Repeat step 3 until set J  is a null set. 

Step 5:  

Determine the number of jobs for each crane and place 
the numbers in the second part of 1O . 

The procedure for generate 2O  is the same as that for 
generating 1O  except that, in step 3, job i  is placed as 
the first element of 2( )k OΩ . 

D. Tabu Search Mutation ( TSM ) operation  

Mutation forces GA searching new areas. Adding Tabu 
Search in mutation operation would improve the deeper 

exploitation for GA. By using Tabu List, it could avoid 
premature and finally get global optimal solution. The 
procedure of tabu search mutation is following: 

 
0x  the initial solution. The tabu list is TL . Neighbourhood 

of 0x  is 0( )N x . 
Input 0x  
While ( t T< ) 
       TL φ= ; Set the best solution 0x x= ; 0t = ; 
       Get set 0 0( ) ( )CN x N x⊆  and 0( )CN x TL φ=            
       get 0( )x CN x′∈  and x′ has the best fitness value in  
       0( )CN x ; 
       Move x  to x′ ; 1t t= + ; 
       Update ( x ; 0x ; TL ) 
Output x  

IV. COMPUTATION RESULTS 
 

The effectiveness of the hybrid Genetic Algorithm and 
Tabu Search method described in Section 3 is tested by 
compring its performance with that of the Branch and Bound 
algorithm and of the Genetic Algorithm. 

A. Test Problem Set and Parameters 

The test problems are randomly generated using the 
method proposed in Ng. [4]. In typical yard operations, 2 to 
4 yard cranes are deployed to a yard zone that contains three 
40-slot yard blocks, 4h =  minutes, 3*ij i jd l l= −  seconds 
and the number of jobs in a yard zone to be handled in a 
planning horizon of one hour ranges from 10 to 60 jobs. The 
mean time between successive job arrivals is approximately 
4 / m  minutes. For different combinations of n , m  and θ , 
a number of test problems were constructed with il  
randomly selected from a uniform distribution [1, ]θ  and ir  
constructed from the inter-arrival times which are randomly 
generated from an exponential distribution with mean 4 / m  
minutes.  

The parameters of GA-TS need to be determined. This 
paper assumes that 3,  2a b= =  in the TSC operator. In the 
mutation operation, the length of the tabu list is 4, the 
number of neighbors searched is 5 and the termination 
condition is 6T = .  In both GA-TS and GA, the crossover 
and mutation probabilities are fixed to 0.6 and 0.4, 
respectively. The initial population size is set to 50 and the 
stop condition is 100 iterations. The computer used is 
equipped with Inter Pentium 2.4GHz CPU and 512MB 
RAM. The calculation time is shown in seconds. 

B. Comparison with Branch and Bound Algorithm 

  This paper uses the technique of Least Cost Branch and 
Bound to get the optimal solution. In such an approach, the 
solution space is often organized as a tree. Details of the 
method can be found in [6].  A small-size test problem is 
used in the experiment for performance evaluation. Let 

GTTC  and IPTC  be the best objective function values found 
by using the hybrid GA-TS method and the Branch and 
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Bound algorithm, respectively. GTTime  and IPTime  are the 
computational times of the algorithms. A set of 20 test 
problems is randomly generated for each combination of 
parameters. The results are shown in Table 1. 

Table 1 Performance of proposed algorithm on 
small-scale test problem 

 
Instances 

n  5 5 10 10 

m  1 2 2 2 

θ  10 10 20 30 

( )
*100%

GT IP

IP

TC TC
TC

−

 

Max 0.0 0.0 2.2 3.3 

Min 0.0 0.0 0.0 0.0 

Mean 0.0 0.0 1.3 2.1 

 

GTTime  
Max 5.03 5.79 6.12 6.83 

Min 3.09 3.84 4.43 4.74 

Mean 3.61 4.56 5.61 6.18 

 

IPTime  
Max 151 172 924 1057 

Min 45 50 472 561 

Mean 74 88 650 732 

 

Comparing the results between branch and bound 
algorithm and GA-TS for small-scale problems, for 5n = , 
GA-TS can always get the global optimum. Although in 
some cases GA-TS may not always reach the optimum, its 
solutions are quite near optimum with only average 2% 
above optimal solutions. Thus, the quality of solutions 
found by GA-TS is acceptable. In addition, by using GA-TS, 
it would averagely cost less than 5 seconds to solve 
problems when 5n =  and 7 seconds when 10n = . In 
contrast, the runtime used by Branch-and-Bound is much 
longer. Since the Branch and Bound algorithm requires a 
n-element permutation, the solution space tree is a 
permutation tree with !n  leaves. Searching through all 
nodes of the tree would cost ( !)nΩ  time. Thus, the runtime 
of Branch-and-Bound algorithm increases by geometric rate 
as the number of jobs growing. In this experiment, using 
Branch-and-Bound algorithm, the average CPU time 
required is 74 seconds to solve the problems when 5n = . As 
to the problems when 10n = , it increases to 650 seconds. 
Therefore, when the number of jobs is large, 
Branch-and-Bound algorithm is not suitable as a solution 
approach. 

C. Comparison with Genetic Algorithm 

Results given by hybrid Genetic Algorithm and Tabu 
Search method and canonical Genetic Algorithm are 
presented in table 2. For each combination of parameters, 20 
random test problems are generated. GATC  is the objective 
function value found by Genetic Algorithm. The results 
show the performance of GA-TS clearly outperforms GA. 
Almost all solutions obtained by GA-TS are better than the 
corresponding solutions obtained by GA except one. The 
GA-TS solutions are on average 20% better than solutions 
found by GA. 

Table 2 Comparison between GA-TS and GA 
 

 Instances ( ) / *100%GA GT GTTC TC TC−  
n  m  θ  Max Min Mean 

10 2 40 11.8 0.0 5.7 
20 2 40 33.3 6.7 22.6 
30 3 40 39.6 5.5 21.9 
40 3 40 41.4 11.7 23.8 
50 4 40 24.2 6.0 10.6 
60 4 40 23.4 2.0 11.6 
10 2 80 17.0 0.0 8.9 
20 2 80 41.9 4.7 28.0 
30 3 80 44.9 4.1 23.1 
40 3 80 26.1 -0.1 14.6 
50 4 80 36.5 4.3 27.1 
60 4 80 14.1 1.9 7.0 
10 2 120 33.9 4.0 20.6 
20 2 120 42.6 18.0 22.9 
30 3 120 53.8 3.1 35.7 
40 3 120 44.6 10.7 35.3 
50 4 120 58.6 9.0 40.2 
60 4 120 25.6 7.8 10.2 

V. CONCLUSION 
 

This paper studys the yard crane scheduling problem 
with inter-crane interference. The objective is to minimize 
the sum of the completion time of the yard cranes. When 
caculating the completion time of each yard crane, we 
consider the container ready time, handling time, the yard 
crane travelling time and the waiting time of yard cranes due 
to inter-crane interference. Since the problem is 
NP-complete, a new hybrid Genetic Algorithm and Tabu 
Search method has been developed to resolve the 
challenging problem. The computation results show the new 
algorithm is superior to GA with its solutions on average 
20% better than solutions found by GA. Tabu Search 
Crossover (TSC) and Tabu Search Mutation (TSM) are 
effective to avoid premature and speed up convergence. 
Comparing with branch and bound algorithm, GA-TS can 
always give a reasonable solution within limited time. 
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