
 
 

Abstract — Mineral processes are multi-variable and 
power-intensive, strongly coupled with large delay and 
nonlinearities. The properties of controllability, 
observability and theory of minimal realization for linear 
systems are well understood and have been very useful in 
analyzing such systems. This paper deals with analogous 
questions for nonlinear systems with application to 
mineral processing. In many practical situations, standard 
asymptotic theory provides poor approximations, such as 
when the number of parameters is large or when the 
parameters are weakly identified. In this paper, a method 
that can control and provide accurate prediction of 
optimum milling condition and power consumption, water 
and chemical additive requirement is developed for 
mineral plants operation. A fuzzy mining algorithm is 
proposed for extracting implicit generalized knowledge on 
grading process performance as qualitative values. It 
integrates fuzzy-set concepts and generalized data mining 
technologies to achieve this purpose. Using a generalized 
similarity transformation for the error dynamics, 
simulation results show that under boundedness conditions 
the proposed approach guarantees the global exponential 
convergence of the error estimation. Although the nominal 
performance of the process is improved, the robust 
stability still is not guaranteed to fully avoid the mill 
plugging.  

Index Terms— Association Rules Mining, Ball Mill, 
Fuzzy Logic, Nonlinear systems, Process control. 

I. INTRODUCTION 

Fuzzy control is a practical alternative for a variety of 
challenging control applications since it provides 
convenient methods for constructing nonlinear 
controllers via the use of heuristic information. A 
control-engineering method for fuzzy control is 
provides in [1].  
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We were concerned with both the construction of 
nonlinear controllers for challenging real-world 
applications and with gaining a fundamental 
understanding of the dynamics of fuzzy control systems 
so that we can mathematically verify their properties 
(e.g., stability) before implementation. 

As a result, comprehensive solutions may be derived 
based on standard control theory and lyapunov 
equations coupled with transcendental equations which 
characterize the variance of the signal at the saturation 
input. In mineral processing, understanding how to 
modify the rheological characteristics of fine particle 
systems is a key for the process performance. These 
characteristics include particle settling, pH, bulk/carrier 
fluid viscosity, particulate flocculation or dispersion, 
attrition, pipe/fitting/impeller wear, degradation of 
flocculated or friable solids and the pumpability of the 
slurry. Moreover, fine particle systems exhibit a range 
of rheological properties that influence processing and 
handling. The rheology of these systems is determined 
by both the physical properties and surface chemistry of 
the particles. 

A wet grinding plant shown in fig.1 has been 
analyzed with the objective of evaluating the effects of 
many variables on particle size reduction in continuous 
grinding processes. Detailed phenomenological model 
that describes the charge behaviour has been developed 
and validated against real data [2]. Indeed, mineral 
processes present non-linear/chaotic dynamic 
behaviour. Considerable efforts have been developed in 
controlling such systems, [9], [10]. In [2], a 
comprehensive model integrating physical mechanisms 
and fundamental understanding of the charge behaviour 
was developed.  

The grinding circuit consists of three variable velocity 
feeders, a main fixed velocity feeder, a ball mill, a 
sump, a variable velocity pump and a battery of hydro-
cyclones. The fresh ore is transported towards the main 
feeder by the variable velocity feeders. Then it 
continues to the mill where water and the recirculated 
pulp are added. The output of the mill is stored in the 
sump and mixed with water, then, it is pumped to the 
battery of hydro-cyclones for classification. The fine 
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mineral pulp goes on to the flotation stage and the 
coarse mineral pulp is returned to the mill. 

The literature review reveals that, the important factor 
of the poor quality of fine grinding (final product) is due 
to lacks of an appropriate control of the power draw of 
the mill. This causes increase of energy consumption, 
and production cost [4]. 

A classical PID controller is worthless to efficiently 
monitor the mineral plant. Through the past few decays, 
advanced control methods are being developed to 
address the system as a whole, dealing with all the 
problems that arise out of the complexity of the 
breakage process, its distributed nature, the networked 
interactions of the components, [5], [11]-[13]. 
Nevertheless, several approaches mainly depend on the 
model of the controlled plant. Although the 
mathematical model of the ball mill is advanced, it still 
remains so complex to fit very well for any Ball Mill 
design configurations. 

In many applications of pattern classification which 
does not rely on the model of controlled plant, 
collecting enough labeled samples can be costly and 
time-consuming, whereas unlabeled ones are far easier 
to obtain. Training algorithm of neural network method 
makes it difficult to design a cost effective controller. 
However, Fuzzy control does not need the model of the 
controlled plant. Despite fuzzy control is an effective 
tool in complex processes monitoring, deriving Fuzzy 
logic rules is difficult.  

In general, the fuzzy logic rules are obtained from the 
knowledge of experts and operators. As a result, the 
rules are limited, subjective and inaccurate. Although, in 
recent years, several fuzzy rules generation algorithms 
are discussed in [8], [9], [14], the algorithms have two 
mainly drawbacks: firstly, the algorithms need the 
training data which are not easily accessible; secondly 
some parameters and thresholds must be set beforehand, 
namely, different setting would generate different 
results. 

Since its introduction in 1993, [3], the task association 
rule mining has received a great deal of attention. 
Association rules mining, which is one of core data 
mining tasks, finds interesting relationships among a 
large set of data items [10]. The association rules 
mining algorithm can be used on the service data 
directly and the uncovered relationships can be 
represented in the form of association rules. As a result, 
the mining results are not restricted to dependency 
analysis and could be directly adopted for the fuzzy 
logic controller as a control law. 

II. GRINDING PROCESS MODELLING 

Besides in batch mode operation, grinding circuit can 
operate in continuous or fed-batch mode. As shown in 

fig.1, the motor load is strongly influenced by the filling 
percentage, the speed, the mill geometry and other 
relevant material properties such as stiffness and the 
coefficient of friction, etc…  

Motor 

Ball Mill 

( )i t

( )t( )r t

 
Fig.1. Motor servo-system of the Ball mill 

The theoretical position of the charge at different 
rotation speeds was first derived by Davis, [4] based on 
the total force balance. In [4], a first order model is used 
to describe the breakage system. However, its use for 
practical solutions has a lack of its dependence on the 
physical parameters and grinding conditions. We are 
interested in the constitutive characteristics of the 
charge motion defined by a function  ,f x u that better 

describes continuous grinding phenomena. From a 
macroscopic standpoint, the internal breakage model 
can be formulated taking in account the specifics 
phenomena of particle transport and size reductions: 

     . . .i
n n i

m
x m

t z z

 
  

 
      

 
                (1) 

where,  im  [kg], is particle mass of size i  

The left side term of equation (1) expresses the rate of 
mineral production, while the term at the right side 
indicates fine particle transport phenomena. In this 
process with distributed parameters, function n(.) that 
characterizes the particle size reduction, depends on 
many variables which are absolutely linked to system 
performance reliability. Therefore, without lacking for 
the physical sense for the process, we can write: 

   . ,n n x u                     (2) 

Thus, we note the variation of the volume V of the 
load of the Ball mill is important to the breakage 
mechanism efficiency as much as it is to the transport 
phenomena (i.e., breakage and the pulp transportation), 
but from a volumetric point of view both phenomena 
could be treated in a different way. Therefore, the 
fraction of the total mass broken within a tiny volume of 
the charge is assumed to be ( )t that is determined as 

follows: 

( ) c
V

t a dV                    (3) 
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where c is the charge bulk density, a  is defined as a 

mass volume of material of classes i 
Therefore, the flow rate of particle through the mill is:  

( ) ( )c
c

V V

ad d dV
dV a

dt t dt

  


                   (4) 

In addition, due to the absolute motion of the particle, 
the flux of the pulp could be used to define the flux 
associate to the fluid flow.  However, as the mass could 
not be transferred by conduction phenomena, the mass 
flux therefore, vanishes, so that we could write:  

i p
F V

d
J dF dV

dt

     
 

                 (5) 

where, iJ


 :longitudinal diffusion flux of the mass in 

class i  :piecewise parameter; p  : local fine particle. 

The standard instrumentation in a grinding section 
includes the following sensors: volumetric flow sensor 
of the pulp flow towards the hydro-cyclones, pulp level 
sensor in the sump, power sensor in the mill, weight 
sensor in the feeder, sensor of water flow to the mill, 
sensor of water flow to the sump, pump velocity sensor, 
density sensor of pulp flow towards the hydro-cyclones, 
pump power sensor, etc. A systematic methodology, 
well-founded algorithms and related tools for design of 
controllers will have great impact in making advanced 
control of strategic importance to mineral processing. 

III. THE CONTROLLER DESIGN 

Wet communition (grinding) and particle size 
classification can be effected by viscosity, particle size 
distribution, fines concentration etc. For example, 
hydrocyclone classification is effected by the presence 
of a yield stress (the minimum force required for slurry 
to flow). Often, cut point increases and efficiency 
decreases with increasing yield stress. The effects of 
these challenges can be further altered by process or 
environmental variables such as temperature or solids 
loading. The implementation of the mineral processing 
controller can be designed so that the process quality 
requirements are taken into account. This interlaced 
approach, called platform-based control design, can be 
developed using fuzzy logic controller based on 
association rules mining, [3].  

The association rules mining algorithm uses the 
antecedent ergodicity and the single consequent link 
methods. The main problem of the grinding process lay 
in developing a sufficiently simple and reliable method 
for measuring the load in the Ball mill during operation. 
Although the fineness distribution capability of the 
particle can not be measured directly, it obviously is 
related to ball mill load, the stability of the grinding and 
the floatation processes. The ball mill load is referred to 
the ratio between the volume of raw material in the mill 
and the interstitial volume of the static ball charge. In 

order to evaluate the behavior of the grinding process, 
the characteristics of its elements should be recognized 
firstly.  

maxP

maxM

( )
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p l

kW
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[ / ]

m l
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( )m l
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Fig.2. Static characteristics of Ball mill 

Fig.2 depicts the characteristics of ball mill in 
function of the ball mill load, l . Functions ( )m l  and 

( )p l  represent the grinding capability and the driving 

motor power, respectively. With the increase of the 
grinding capability, the outlet temperature and the inlet 
negative pressure must be controlled in certain ranges. 
Deviations from the established load lead to a sharp 
decrease of mill output and deterioration of the quality 
of grinding.  

Our motivation is to design a fuzzy system to produce 
alarms and reconfigure the control variables if critical 
conditions occur in the process (pH, rheology, impeller 
wear, degradation of flocculated solids, slurry 
pumpability, etc.). Assume the fuzzy system uses 

1( ),x t and 2 ( )x t as inputs, and its output is an 

indication of what type of warning condition occurred 
along with the certainty that this warning condition has 
occurred. The alarm signals represent certain warnings 
characterized by the decision regions shown in Figure 3. 
For instance the density of the slurry is greater than the 
upper threshold limit; this occurs if: 

1 1 1 2 3( ) and ( ) ( )x t x t x t     

1
2

3

2 ( )x t

1( )x t

2

 
Fig.3 Decision regions for the rheology state 

Small changes in chemical properties (in terms of 
lapping) may have large effects on the mineral quality 
and the grinding system dynamics. Especially, changes 
in the mill power draw parameters, which usually 
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provide the motion of the load of the mill, may result in 
the steady state error because of the dead-zone 
characteristics of the charge motion. In the next section, 
we consider the system as multi-state system. 

Another important advance of fuzzy controller is a 
short rise time and a small overshoot with better 
performance than that of a standard PID controller. The 
grinding process is complex ill-defined process 
consisting of n elements, any element j, 1 j n  can 

have jk different states with corresponding performance 

rates (levels), which can be represented by the ordering 
set as follows, [9]: 

 1,..... ,.... ,
j jj j ji jkg g g g                      (6) 

where
jjig  is the performance rate (level) of the 

element j in the state ji ;  1, 2, ....,j ji k . 

The performance rate Gj(t) of element j at any 
instant 0t  is a random variable that takes its values 

from : ( )j j jg G t g . Thus, the probabilities 

associated with different states for the element j can be 

represented by a set:  1... ... ,
j jj j ji jkp p p p  

The mapping 
j jji jig p is usually called the 

probability mass function as defined for multi-state 
system, [9]. There are two fundamental assumptions in 
the conventional multi-state system reliability theory: i.) 
each state probability of an element, which composed a 
multi-state system, can be fully characterized by 
probability measures; and ii.) the state performance rate 
(level) of an element, which composed a multi-state 
system, can be precisely determined. However for some 
multi-state systems, evaluating precisely the state 
probability and performance rate of an element is 
difficult. Some reasons come from inaccuracy and 
insufficiency of data.  

As above pointed out for the cause of the 
deterioration of the grinding quality, let define the 

error re and change of error ce at sampled times k as 

follows: 

( ) ( 1)
( )

( ) ( 1)

( ) ( ) ( 1)

r
m m

c r r

p k p k
e k

V k V k

e k e k e k

    
   

                (7) 

The variable p can be measured by means of 

measuring the electric current of the ball mill. At each 
moment, the system elements have certain performance 
levels corresponding to their states. Due to the 
complexity of the grinding system, its state is 
determined by the states of its elements. The 

performance rates of the system are determined by the 
performance levels of its elements. As a result, the 
independence of the evidence to be combined would 
obviously be satisfied if all models were completely 
different, that is, had no overlapping equations. A 
conventional controller design procedure does not 
guarantee this and it may not even be possible to design 
such a set of models.  

Note that the overlapping equations exist in a 
different environment in each model. This is sufficient 
for the independence of evidence, in the sense that noise 
and modeling errors will cause different distortions to 
the probability assignments in the different models. 

Assume the probability distribution d of 

performance rates for all of the system elements at any 
instant 0t  and system structure function as follows: 

1

, 1

( ( ) ... )

j j

n

g p j n

G t G

  



                                       (8) 

Accordingly, the total number of possible states or 
performance rates of the system is: 

1

n

p j
j

k


                   (9) 

Let  
111 1, .... ,n

kL g g ×···× 1, .... ,
jj jkg g ×···× 

× 1, .... ,
nn nkg g be the space of possible 

combinations of performance rates for all system 

elements and  1, ...,
p

M g g be the space of 

possible values of entire system performance levels. 

The transform 1( ( ) ... ( )) : n
nG t G t L M  which 

maps the space of performance rates of system elements 
into the space of system’s performance rates, is the 
system structure function, [14]. 

The probability of the system state is given as: 

1
i j

n

ji
j

 


 ; the performance rate for state i is: 

 
1
, .... ,

ni ni nig g g               (10) 

For the system under consideration, the estimation of 
a single number for the probabilities and performance 
levels is very difficult. Other reasons come from the 
model simplification. Each system element may have 
many different states and sometimes it may even have 
continuous performance. To avoid the “dimension 
damnation”, the model is reduced to decrease the 
computational burden. 

Fuzzy logic controllers (FLC) have the advantage to 
be robust and relatively simple to design since they do 
not require the knowledge of the exact model. However, 
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we need complete knowledge of the system operation. 
The fuzzy system that serves the implementation of 
general decision-making in tuning the driving motor 
power of the mill is presented in Fig.4.  





 
Fig.4 Hardware setup 

We proposed in this study fuzzy logic controller with 
discrete inverses based on association rules mining. It 
has three inputs and outputs. The tuned control surface 
is nonlinearity corresponding to the property of 

controlled plant. l, r and pn are the measured value of 

the ball mill load, the rotation speed and the inlet 
negative pressure, respectively. In addition, p is the 
measured value of the ball mill driving motor power. 

le , e and npe which are input variables of the fuzzy 

logic controller, represent the error of l, r and 

pn respectively. lu , u and npu  are the output 

variables of the fuzzy logic controller, which are usually 
used to control the raw ore feeder, the driving motor 
speed and the recycle air damper, respectively. 

Therefore, the probability distribution d of the 

system is:  
1 31 3, .... ,i ig g ,

3

1
jd ji

j

 


           (11) 

Furthermore, the max-min algorithm is used in fuzzy 
logic inference, and the defuzzification is accomplished 
by the largest of maximum method. 

A. Fuzzy Logic Controller 

In the fuzzy control design methodology, we made 
use of heuristic information as from an operator who 
has acted as a “human-in-the-loop” controller for the 
process. To develop a set of rules applicable to mineral 
processing control, the practical expertise is drawn on 
our knowledge performed through extensive 
mathematical modeling, analysis, and development of 
control algorithms for diverse processes. Then we 
incorporate these into a fuzzy controller that emulates 
the decision-making process of the human, Fig.5.  

The function (.) , (11) is strictly defined by the type 

of connection between elements in the reliability logic-
diagram sense, i.e. on the structure of the logic-diagram 
representing the system/subsystem. 

( )u t( )cr t ( )y t

 
Fig.5 Fuzzy controller architecture 

Despite the fact that the universal generating function 
resembles a polynomial, it is not a polynomial because: 
i.) its exponents are not necessary scalar variables, but 
can be arbitrary mathematical objects (e.g. vectors); ii.) 
operators defined over the universal generating function 
can differ from the operator of the polynomial product 
(unlike the ordinary generating function technique, only 
the product of polynomials is defined) [6]. 

Fig.6 idealizes a general flow transmission through 
out the system (e.g., ore, particle size, fluid flow, 
energy). For instance, consider a flow transmission 
system shown in fig.6 which consists of three elements. 
As a result, the system performance rate which is 
defined by its transmission capacity can have several 
discrete values depending on the state of control 
equipments. 

 
Fig.6. A flow transmission structure 

Assume the element 1, (the slurry rheology) has three 
states with the performance rates: g11 = 1.5, g12 = 1, and 
g13 = 0; the corresponding probabilities are respectively: 

11p = 0.8, 12p = 0.1 and 13p = 0.1. The element 2, 

(the pH) has three states with the performance rates g21 

= 2, g22 = 1.5, g23 = 0 and the corresponding 

probabilities 21p = 0.7, 22p = 0.22 and 23p = 0.08. 

The element 3, (the density) has two states with the 
performance rates g31 = 4, g32 = 0 and the corresponding 

probabilities 31p = 0.98 and 32p = 0.02. According to 

(9) the total number of possible combinations of the 

states of elements is p = 3 × 3 × 2 = 18. 

In order to obtain the output p for entire system 

with the arbitrary structure function (.) , [8] used a 

general composition operator  over individual 
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universal z-transform representations of n system 
elements: 

 

1 2

1 2

1

1

( ,.., )

1

( ) ( ), ..., ( )

( ) .

( ) ... .

j
ji j

j

n
ji nij n

n

n

k
g

d ji
i

kk k n
g g

d j
i i i j

U z u z u z

u z z

U z z













  






 
  

 



  

      (12) 

where ( )U z is z-transform representation of output 

performance distribution for the entire system. 
Figure 5 illustrates the basic control structure. The 

scheme includes a classical PID control structure 
together with fuzzy corrector. The fuzzy corrector uses 
the command input rc(t) and the plant output y to 
generate a command signal uc(t), described by the 
following equations: 

 

( ) ( ) ( )

( ) ( ) ( 1)

( ) ( ), ( )

ce t r t y t

e k e k e k

k F e k e k

  

   
  

              (13) 

In the above, e(k) is the position error between the 
command input rc(t)  and the process output y(k); Δe(k) 
is the change in position error. The term F[e(k), Δe(k)] 
is a nonlinear mapping of e(k) and Δe(k) based on fuzzy 
logic. The term μ(k) represents a correction term. The 
control u(k) is applied to the input of the grinding 
circuit. The purpose of the fuzzy corrector is to modify 
the command signal to compensate for the overshoots 
and undershoots present in the output response when the 
load dynamics has unknown nonlinearities. 

Consider 1 2 3 1 2, , , ,x x x y y and 3y represent l, r , 

pn , lu , u and npu respectively. The expertise and 

knowledge method used to build a rule base and 
membership functions provide the description of e(k) 
and Δe(k) as inputs, and μ(k) as the output.  

e

e

output

 
Fig.7 The Fuzzy sets 

The unified fuzzy inverse is given as[ 0.1, 0.1] , 

fig.8. The fuzzy states of the inputs and the output, all 
are chosen to be equal in number and use the same 
linguistic descriptors: Big Negative (BN), Negative (N), 
Small Negative (SN), Zero (Z), Small Positive (SP), 
Positive (P) and Big Positive (BP). Fig.8 illustrates the 
membership functions. 

 
Fig. 8 Membership functions 

 Despite the operator expertise and knowledge at the 
level of the inference rules and the membership 
functions, some defects may appear. The degree of 

membership of each value of attribute ki in any of its 

fuzzy sets is directly based on the evaluation of the 
membership function of the particular fuzzy set with the 

value of ki as input. To improve the conventional FLC, 

association rules mining algorithms are used to find the 
optimal membership functions. This is achieved 
according to the following stages. 

B. Association rules Miming Algorithm 

Specified fuzzy linguistic terms in fuzzy association 
rules can be given only when the properties of the 
attributes are estimated. In real life, contents of columns 
(i.e., values of attributes) may be unknown and 
meaningful intervals are usually not concise and crisp 
enough. In this paper, the target is to find out some 
interesting and potentially useful regularities, i.e., fuzzy 
association rules with enough support and high 
confidence. We use the following form for fuzzy 
association rules. 

Let be  1, ..., k
i ix x  and  1, ..., k

i iy y  the antecedent 

set and the consequence set respectively, in a database. 
A fuzzy association rule mining is expressed as: 

If  1, ....., k
i iX x x is  1, ....., k

i iA   Then 

     1, ....., k
i iY y y is  1, ....., k

i iB    

Here, X and Y are disjoint sets of attributes called 
item-sets, i.e., X I ; Y I and X Y  . A and 
B contain the fuzzy sets associated with corresponding 
attributes in X and Y, respectively. 
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Let (.) represent the membership value of each 

element of the antecedent and the consequence set. 
Under fuzzy taxonomies, using the measurements could 
result in some mistakes. Consider for instance the 
following conditions: 

1- ( ) ( )k k
i ix y  and ( ) ( )k m

i ix y   

2- ( ) ( )k k
i ix y  and ( ) ( )k m

i ix y   

In the first condition, the confidence under fuzzy 
taxonomies of the two rules is equal, while in the 
second, the coverage of the two rules is equal. This 
situation rise the following question: which rule can be 
judged as best evidence rule? 

For a rule to be interesting, it should have enough 
support and high confidence value, larger than user 
specified thresholds. To generate fuzzy association 
rules, all sets of items that have a support above a user 
specified threshold should be determined first. Item-sets 
with at least a minimum support are called frequent or 
large item-sets. 

In the proposed method the algorithm iterations 
alternate between the generation of the candidate and 
frequent item-sets until large item-sets are identified. 
The fuzzy support value of item-set Z is calculated as: 

( , ( ))
( , ) i j

j i jt T z Z

T

F t z
S Z F

n

 
 



 

  (14) 

where Tn is the number of transactions in the 

database. 
Also, to ensure the accuracy of rules base, the 

consequent strength measure, is used to estimate the 

mined rules as: 
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      (15) 

Based on the literature review, the fuzzy-PID control 
is implemented in such way that the fuzzy system has 
 (derivative of the PID output) as input and returns an 

output g that has a nonlinear dependence upon the 

input. The dependence upon ensures that changes in 

the steady value of  do not change the closed-loop 

response characteristics of the fuzzy-PID controller. 
Hence the simplest form of fuzzy-PID controller is: 

1dg d
f

d d


  

   
 

               (16) 

where is an input scaling factor and is an output 

scaling factor. The input magnitude is scaled to unity 
by: 
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                (17) 

The evaluation of max
d

d




 
 
 

is normally 

estimated from one or more PID runs. The final system 
implemented is presented as: 
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The graph of the function ( )f  is presented in 

figigure 9. It depicts sigmoidal dependence on  . As a 

result, it may corrupt all slowly varying signals of the 
process.  
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Fig.9 ( )f  with varying   

In order to suppress the noise and get the nonlinear 
control surface, the parameters of input membership 
functions and output membership functions of the fuzzy 
rule base is tuned by a nonlinear optimization. In this 
study a sequential quadratic programming (SQP) 
algorithm as presented in Matlab is used. This approach 
represents state-of-the-art in non-linear programming 
methods, because a non-linearly constrained problem 
can often be solved in fewer iterations using SQP than 
an unconstrained problem. One of the reasons is that 
due to the limits on the feasible area, the optimizer can 
make well informed decisions regarding directions of 
search and step length. 

Note that widely overlapping membership functions 
give good numerical results. However, fuzzy 
membership functions lacking any physical 
interpretation and loosing locality are possible. To avoid 
this, different kinds of constraints may be put on the 
optimization: kinds of constraints, inequality constraints 
and parameter bounds. SQP efficiently solve this 
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constrained nonlinear optimization problem in which 
the objective function and constraints may be nonlinear 
functions of variables. 

IV. SIMULATION RESULTS 

Through available actuators it is possible to adjust the 
speed of the grinding circuit feeders, the fluid added to 
the mill and sump, the pump and the driving motor 
speed. The level of the sump is controlled by adjusting 
the set-point of pump velocity. 

The water flow to the flotation circuit is kept 
proportional to the load reference. As mentioned, the 
above process is subject to many disturbances, being the 
hardness of the raw feeding ore the most significant one. 
This exerts a strong influence on the quality of the 
grinding product. Modeling of the process is further 
complicated by the fact that different operation points 
are defined by changes in mineral hardness.  
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Fig.10 Coupling degree of breakage process 

Based on a reasonably simple transfer function, the 
adjustable input ports of the driving motor and entrance 
negative pressure of the breakage circuit are initialized 
with step signal. Fig.10 illustrates coupling phenomena 
that exists between the controller variables (e.g., the 
entrance of negative pressure and the motor rotation 
speed).  

 
Fig. 11 Fuzzy Logic Controller step response 

Using the aforementioned fuzzy logic rules the 
simulated step response of the grinding circuit is shown 
in fig.11.   

PID for physical model

Tuned PID

 
Fig. 12 Tuned PID 

Best Fuzzy-logic control for physical model

 
Fig.13 Tuned fuzzy logic Controller using physical model 

As shown in fig.13, in the presence of disturbances 
the fuzzy logic controller model presents a response 
better than the conventional PID model. 

V. CONCLUSION 

In mineral processing, understanding how to modify 
the rheological characteristics of fine particle systems is 
a key for the process performance. Constrained 
optimization methods with integrated association rules 
mining based on a nonlinear, fuzzy dynamic control 
scheme were designed to improve the grinding process. 
The proposed structure of fuzzy logic controller 
combines the advantages of the fuzzy networks 
approach and the association mining rules. Indeed, due 
to its ability to approximate nonlinear function and its 
fast convergence, the proposed method is an 
approximation tool to generate a control signal. With 
the proposed algorithms the process can be controlled in 
a better way than the conventional PID approach, as it 
was demonstrated during the design of the control 
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algorithm. Simulation results show that the association 
rules mining algorithm is a feasible control rules 
generation algorithm to the fuzzy logic controller. 
Obviously, it can be deduced that the fuzzy controller is 
faster than the conventional controller in the transitional 
state, and also presents a much smoother signal with 
less fluctuations in steady state. The proposed method 
can overcome nonlinear and strong coupling features of 
mineral processing in a wide range. The proposed 
method has a strong adaptability. 

REFERENCES 

[1] Abou S. C., and Thien M. D. “Fuzzy Logic Controller Based on 
Association Rules Mining: Application to Mineral Processing”. 
International Conference on Modeling, Simulation and Control 
(ICMSC'09) San Francisco, USA, 20-22 October, 2009 

[2] Abou S.C., “Contribution to ball mill modeling”. Doctorate 
thesis, Laval University, Ca. 1998. 

[3] Agrawal R., Imielinski T., and Swami A. “Mining association 
rules between sets of items in large databases. Int. Conf. on 
Management of Data (ACM SIGMOD ’93, Washington, 1993 

[4] Davis, E.W., Fine crushing in ball mills. AIME Transaction, vol. 
61, pp250-296. 1919 

[5] Desbiens A., K. Najim, A. Pomerleau and D. Hodouin, 
“Adaptive control-practical aspects and application to a 
grinding circuit,” Optim. Control Appl. Methods, vol. 18, pp. 
29-47, 1997 

[6] Guan J., Wu Y., “Repairable consecutive-k-out-of-n: F system 
with fuzzy states”. Fuzzy Sets and Systems, vol.157 pp.121-142, 
2006 

[7] Huang J., Zuo M.J., Wu Y., “Generalized multi-state k-out-of-n: 
G systems”, IEEE Trans. Reliability vol.49, no.1, pp.105-111, 
2000 

[8] Kuo W., Wan R., “Recent advances in optimal reliability 
allocation”, IEEE Trans. Systems, Man Cybernet. Part A: 
Systems Humans, vol.37, pp.143-156, 2007 

[9] Levitin G., “Universal Generating Function and its 
Applications”, Springer, Berlin, 2005 

[10] Morell S., The prediction of powder draws in wet tumbling 
mills. Doctorate thesis, University of Queensland1993 

[11] Rajamani R.K. and J.A. Herbst, “Optimal control of a ball mill 
grinding circuit: II. Feedback and optimal control” Chem. Eng. 
Sci. vol.46, no.3, pp. 871-879, 1991  

[12] Weller K. R, “Automation in mining, mineral and metal 
processing”, Proc. 3rd IFAC symposium Pergamon Press. pp. 
295-302, 1980. 

[13] Zhai Lianfei, and Chai Tianyou. “Nonlinear decoupling PID 
control using neural networks and multiple models,” J. of 
Control Theory and Applications, vol.4, no.1, pp. 62-69, 2006 

[14] Zimmermann H.J., “Fuzzy Set Theory and its Application,” 2nd 
ed., Kluwer Academic Publishers, Dordrecht, 1991 

Engineering Letters, 18:2, EL_18_2_06

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 




