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Abstract—In this paper, we propose a new algorithm 

M-SMFTF for adaptive filtering with fast convergence and low 
complexity. It is the result of a simplified FTF type algorithm, 
where the adaptation gain is obtained only from the forward 
prediction variables and using a new recursive method to 
compute the likelihood variable. The computational complexity 
was reduced from 7L to 6L, where L is the finite impulse 
response filter length. Furthermore, this computational 
complexity can be significantly reduced to (2L+4P) when used 
with a reduced P-size forward predictor. This algorithm 
presents a certain interest, for the adaptation of very long 
filters, like those used in the problems of echo acoustic 
cancellation, due to its reduced complexity, its numerical 
stability and its convergence in the presence of the speech 
signal. The proposed algorithm outperforms the classical 
adaptive algorithms because of its convergence speed which 
approaches that of the RLS algorithm and its computational 
complexity which is slightly greater than the one of the 
normalized LMS algorithm. 

Index Terms— Fast RLS, NLMS, FNTF, Adaptive Filtering, 
Convergence Speed, Tracking capability.  

I. INTRODUCTION 
There are two major classes of adaptive algorithms [1]-[3]. 
One is the least mean square (LMS) algorithm, which is 
based on a stochastic gradient method.  The LMS algorithm 
has a computational complexity of O(L), L is the finite 
impulse (FIR) filter length. The other class of adaptive 
algorithm is the recursive least-squares (RLS) algorithm 
which minimizes a deterministic sum of squared errors [4]. 
The RLS algorithm solves this problem, but at the expense of 
increased computational complexity of O(L2). A large 
number of fast RLS (FRLS) algorithms have been developed 
over the years, but, unfortunately, it seems that the better a 

FRLS algorithm is in terms of computational efficiency, the 
more severe is its problems related to numerical stability [4]. 
Fast versions of these algorithms, namely, the fast Kalman 
[5], the fast a posteriori error sequential technique (FAEST) 
[6], and fast transversal filter (FTF) [7] algorithms, are 
derived from the RLS by the introduction of forward and 
backward predictors. The FRLS algorithm shows a 
complexity of O(L). Several numerical solutions of 
stabilization, with stationary signals, are proposed in the 
literature [8]-[12]. Another way of reducing the complexity 
of the fast RLS (FRLS) algorithm has been proposed in [13], 
[14]: When the input signal can be accurately modelled by a 
predictor of order P, the fast Newton transversal filter 
(FNTF) avoids running forward and backward predictors of 
order L, which would be required by a FRLS algorithm. The 
required quantities are extrapolated from the predictors of 
order P (P<<L). Thus, the complexity of the FNTF falls 
down to (2L+12P) multiplications instead of 8L. Recently, 
the simplified FTF-type algorithm [15] developed for use in 
acoustic echo cancellers. This algorithm derived from the 
FTF algorithm where the adaptation gain is obtained only 
from the forward prediction variables. The computational 
complexity of this algorithm is 7L when used with a full size 
predictor which is less complex than the original numerically 
stable 8L FTF algorithm.  
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In this paper, we propose more complexity reduction of the 
simplified FTF-type algorithm by using a new recursive 
method to compute the likelihood variable. The 
computational complexity of the proposed algorithm is 6L 
and this computational complexity can be significantly 
reduced to (2L+4P) when used with a reduced P-size forward 
predictor. The M-SMFTF of the proposed algorithm 
outperforms the classical adaptive algorithms because of its 
convergence speed which approaches that of the RLS 
algorithm and its computational complexity which is slightly 
greater than the one of the NLMS algorithm. We describe the 
NLMS and numerically stable FRLS (NS-FRLS) algorithms. 
More complexity reduction for simplified FTF-type 
(M-SMFTF) algorithm is proposed. At the end, we present 
some simulation results of the M-SMFTF algorithm. 

II. ADAPTIVE ALGORITHMS 
The main identification block diagram of a linear 

system with finite impulse response (FIR) is represented in 
Fig.1. The output a priori error nL,ε  of this system at time n 
is: 

  nnnL yd ˆ, −=ε                                  (1) 
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where  is the model filter output, 

 is a vector containing the last L 

samples of the input signal ,  
is the coefficient vector of the adaptive filter and L is the 
filter length. The desired signal from the model is: 

nLnLny ,
T

1,ˆ xw −=

[ T
1, ...,, +−= LnnnL xxx ]

]

]

nx [ T
1,1,11, ...,, −−− = nLnnL www

                             (2) nLLnn vd ,
T

,opt xw+=

 where  represents the unknown 

system impulse response vector and  is a stationary, 
zero-mean, and independent noise sequence that is 
uncorrelated with any other signal. The superscript 

[ T
,opt1,opt,opt ...,, LL ww=w

nv

T 
describes transposition. The filter is updated at each 
instant by feedback of the estimation error proportional to 
the adaptation gain, denoted as , and according to:  nL,g

nLnLnLnL ,,1,, εgww += −                         (3) 

The different algorithms are distinguished by the gain 
calculation.  

A. The NLMS Algorithm 
Algorithms derived from the gradient [3], for which the 

optimization criterion corresponds to a minimization of the 
mean-square error. For the normalized LMS (NLMS) 
algorithm, the adaptation gain is given by: 

nL
nx

nL cL ,
0,

, xg
+

=
π

µ                            (4)              

where µ  is referred to as the adaptation step and  is a 
small positive constant used to avoid division by zero in 
absence of the input signal. The stability condition of this 
algorithm is 0<

0c

µ <2 and the fastest convergence is obtained 
for µ = 1 [16]. The power nx,π of input signal can 
alternatively be estimated using the following recursive 
equation [17]: 

2
1,, )1( nnxnx xγπγπ +−= −                        (5) 

where γ  is a forgetting factor ( L/1≈γ ). The computational 
complexity of the NLMS algorithm is 2L multiplications per 
sample. 
 

 
 

Fig.1: Main block diagram of an adaptive filter 

B. The NS-FRLS Algorithm 

The filter  is calculated by minimizing the weighted 
least squares criterion according to

nL,w
 [1]: 

(∑
=

− −=
n

i
iL

T
nLi

in
n dJ

1

2
,,)( xww λ )                   (6) 

where λ denotes the exponential forgetting factor (0<λ≤1).  
The adaptation gain is given by: 

4342143421
FRLS

,,

RLS

,
1
,,

~
nLnLnLnLnL kxRg γ== −                       (7) 

T
,,1,

1
,,, nLnLnL

n

i

T
iLiL

in
nL xxRxxR +== −

=

−∑ λλ          (8) 

where  is an estimate of the correlation matrix of the 

input signal vector. The variables 
nL,R

nL,γ  and nL,
~k  

respectively indicate the likelihood variable and 
normalized Kalman gain vector. This latter is calculated, 
independently of the filtering part , by a fast RLS 
(FRLS) algorithm using forward/backward linear 
prediction analysis over the signal  [1]. The calculation 
complexity of a FRLS algorithm is of order L. This 
reduction of complexity, compared to that of RLS 
algorithms, which have a complexity of order L

nL,w

nx

2, have 
made all FRLS algorithms numerically unstable. 

The numerical stability is achieved by using a control 
variable, also called a divergence indicator nξ  [11], 
theoretically equals to zero. Its introduction in an 
unspecified point of the algorithm modifies its numerical 
properties. It is obtained by using some redundant 
formulae of the FRLS algorithms. This variable is given 
by 

⎩
⎨
⎧

≠
=

−=
practical0
theory0f

,, nLnLn rrξ                  (9) 

with ])1[( 10 f
,

f
,

f
, nLsnLsnL rrr µµ +−=  and 10 ≤≤ sµ , where 

( nLr , , 0f
,nLr  and 1f

,nLr ) are the backward a priori prediction 
errors calculated in tree differently ways. We define three 
backward a priori prediction errors, theoretically 
equivalents, which will be used to calculate the likelihood 
variable nL,γ , the backward prediction error 

variance nL,β and the backward prediction . We 
introduce these variables into the algorithm, and we use 
suitably the scalar parameters  and

nL,b

),,( bµµµ βγ
sµ , in 

order to obtain the numerical stability. It can be shown that 
the variance of the numerical errors in the backward 
predictor, with the assumption of a white Gaussian input 
signal, is stable under the following condition [11]: 

L2/11−>λ                                (10) 

The resulting stabilized FRLS (NS-FRLS) algorithms 
have a complexity of 8L as shown in Table I. Note that 
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numerical stabilization of the algorithm limits the range of 
the forgetting factor λ  (10) and consequently their 
convergence speed and tracking ability. 

III. PROPOSED ALGORITHMS 

A. The M-SMFTF Algorithm 
We propose more complexity reduction of the simplified 

FTF-type (M-SMFTF) algorithm by using a new recursive 
method to compute the likelihood variable. The Simplified 
FTF-type algorithm [15] derived from the FTF algorithm 
where the adaptation gain is obtained only from the forward 
prediction variables. The backward prediction variables, 
which are the main source of the numerical instability in the 
FRLS algorithms, are completely discarded. By using only 
forward prediction variables and adding a small 
regularization constant  and a leakage factor ac η , we obtain 
a robust numerically stable adaptive algorithm that shows the 
same performances as FRLS algorithms. 

If we discard all backward prediction variables and use 
only the forward variables from the equation below:  

 

⎥
⎦

⎤
⎢
⎣

⎡−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

−−−

1

1
~

0

0

~

1,

1,

,

1,1,

,

1,

,

nL

nL

nL

nLnL

nL

nL

nL

r

e

b

ak
k

λβ

λα
    (11) 

the normalized Kalman gain can be rewritten as follows:  

⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,

, 1
~

0

*

~

nLnL

nL

nL

nL e
ak

k
λα

           (12) 

This algorithm is not very robust with nonstationarity 
input signal like speech signals. The first difficulty comes 
from 1,, −= nLnL λαα → 0. This convergence to zero puts 
FTF algorithms and their numerically stable versions in 
very difficult situations. Instability may occur since we are 
trying to perform numerical divisions by very small values. 
To guard against this possibility, like it is often done with 
the NLMS algorithm, we append a small positive constant 

 to the denominator ac

1,

,

−nL

nLe
λα

→
anL

nL

c
e

+−1,

,

λα
                  (13) 

The second difficulty is that the forward predictor is 
locked over its last values. It is known that the FRLS 
algorithms were developed in the prewindowing case and 
all vectors are initialised by zero so that the algorithm 
starts adapting. In these conditions, when the input signal 
vanishes and reappears after a long period of time, the 
algorithm may diverge because of these nonzero values of 
the predictor. In other words, the algorithm is not well 
initialised when the signal reappears. In such conditions, it 
might be preferable to have the forward predictor  

r

nL,a

T

I

V

N
-
M

-

 

w
f
d

~k

W
(

I
e
w

B
f
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able I: NS-FRLS algorithm (8L) 

nitialization:  ; ; 100/2
0 LE xσ≥ 00,00,0, ;;1 EE L

L
LL === βλαγ

LLLLL 0
~

0,0,0,0, ==== kbaw . 
ariables available at the discrete-time index n: 

1,1,1,1,1,1,1, ;;;;
~

;; −−−−−−− nLnLnLnLnLnLnL wkba βαγ  
ew information: , . nx nd

 Prediction Part: 
odeling of ,  nx Lnx −

1,
T

1,, −−−= nLnLnnL xe xa ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

−−−
+
+

+
+

+
1,1,

,

1,,1

,
,1

1
~

0
~

~
~

nLnL

nL

nLnL

nL
nL

e

k ak
k

k
λα

; 

1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γ ; 2
,1,1,, nLnLnLnL e−− += γλαα  

nLnLLnnL xr ,
T

1,, xb −− −= ; 
+
+−= nLnLnL kr ,11,

0f
,

~
λβ ; +

+−−
+−= nLnLnL

L
nL kr ,11,1,

11f
,

~
αγλ  

])1[( 1f
,

0f
,, nLsnLsnLn rrr µµξ +−−= ; 

nnLnL rr ξµγγ += ,, ;  nnLnL rr ξµ ββ += ,, ; n
b

nL
b

nL rr ξµ+= ,, ; 

1,,1,,
~~~

−
+
+

+ += nLnLnLnL k bkk ; 1,2
,,

1,
, )( −

−

−
= nL

nL
L

nL

nL
nL r

γ
λα

λα
γ γ ; 

nLnL
b

nLnLnL r ,,,1,,
~
kbb γ+= − ; 2

,,1,, )( βγλββ nLnLnLnL r+= − ; 
 Filtering Part: 

d T xw−=ε ;  
~
kww γε+=  
eturn back to zero by applying the following operation: 

nLnLnnL ,1,, − nLnLnLnLnL ,,,1,, −

nL,a → nL,aη                              (14) 

here η  is a constant close to one often called the leakage 
actor [12]. The likelihood variable is given by using the 
efinition directly: 

nLnL
nL

,
T

,
, ~1

1
xk+

=γ                           (15) 

Let us replace the quantity (*), that has not been used in 

nL,  of (12), by the variable , we obtain:  nLc ,

⎥
⎦

⎤
⎢
⎣

⎡
−+

+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,,

, 1
~

0~

nLanL

nL

nLnL

nL

c
e

c ak
k

λα
        (16) 

e can write the input signal vector extended to the order 
L+1) in two different ways as shown below: 

[ ]TT
,,1 , LnnLnL x −+ = xx  (17a);      (17b) [ ]TT

1,,1 , −+ = nLnnL x xx

f we multiply on the left, the members of left and right of 
xpression (16) by equations (17a) and (17b) respectively; 
e get:  

=+ −LnnLnLnL xc ,,
T

,
~kx

anL

nL
nLnL c

e
+

+
−

−−
1,

2
,

1,
T

1,
~

λα
kx    (18) 

y rearranging (18), we obtain a new recursive formula 
or calculating the likelihood variable which is much less 
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complex than (15), the new expression is given below: 

Table II: M-SMFTF Algorithm (6L) 
Initialization: 

LLLL 0
~

0,0,0, === kaw ; ;  ;;1 00,0, EL
LL λαγ == 100/2

0 LE xσ≥

Variables available at the discrete-time index n: 
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- Prediction Part: 

T

I

V

N
-

 

-

 

1,
T

1,, −−−= nLnLnnL xe xa ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+
⎥
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⎡
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⎤
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, 1
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nLanL
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nLnL

nL

c
e

c ak
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λα
; 

{ }1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γη  ; 2
,1,1,, nLnLnLnL e−− += γλαα  

LnnL
anL

nL
nL xc

c
e

−
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−
+

= ,
1,

2
,

, λα
δ ; 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ  

- Filtering Part: 

nLnLnnL d ,
T

1,, xw −−=ε ;  nLnLnLnLnL ,,,1,,
~
kww γε+= −  

 
 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ                           (19) 

LnnL
anL

nL
nL xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ                   (20) 

The computational complexity of the M-SMFTF algorithm 
is 6L; as illustrated in Table II.  

B. The RM-SMFTF Algorithm  
The Reduced size predictors in the FTF algorithms have 

been successfully used in the FNTF algorithms [13]-[15]. 
The M-SMFTF algorithm can be easily used with reduced 
size prediction part. If we denote P the order of the predictor 
and L the size of adaptive filter, the forward predictor and the 
normalized Kalman gain are given respectively by:   

⎥
⎦

⎤
⎢
⎣

⎡
=

−PL

nP
nL 0

,
,

a
a                               (21) 
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⎡
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nP

anP

nP

nLnL

nL

c
e

c 0

1
~

0~
1,

1,

,

1,,

, a
k

k
λα

       (22)       

where P is much smaller than L. The first (P+1) components 
of the nL,

~k  are updated using the reduced size forward 
variables, the last components are just a shifted version of the 
(P+1)th component of nL,

~k . For this algorithm, we need two 
likelihood variables: the first one, nP,γ  , is used to update the 

forward prediction error variance nP,α , where  is 

(P+1)
nPc ,

th component of nL,
~k . The second likelihood variable, 

nL,γ , is used to update the forward predictor  of order P 

and the transversal filter . The computational 
complexity of the reduced size M-SMFTF (RM-SMFTF) 
algorithm is (2L+4P); it is given in Table III.  

nP,a

nL,w

th
o
d

T

T

I

w
T

R
a
b
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able III: RM-SMFTF Algorithm (2L+4P;  P<<L) 

nitialization: ; 100/2
0 PE xσ≥
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PP λαγ == ; ;10, =Lγ LLL 0

~
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δ ; 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ ; 

 Filtering Part: 

nLnLnnL d ,
T

1,, xw −−=ε ; nLnLnLnLnL ,,,1,,
~
kww γε+= −  
   

C. Convergence analysis  
The analysis uses the common independence assumption 

at the current input signal vector is statistically independent 
f the current coefficient vector of the adaptive filter. We 
efine the weight-error vector at time n as: 

nLLnL ,,opt, www −=∆                        (23) 

he output a priori error nL,ε  can be written as: 

1,
T

,, −∆+= nLnLnnL v wxε                        (24) 

he recursion in (3) on the coefficient error vector is: 

nnLnLnLnLnLnLLnL v,,1,
T

,,,,
~]~[ kwxkIw γγ −∆−=∆ −     (25) 

n a steady state operation, we can write:   

λ
σ

γαα
−

∞=∞→− 1
)()(

2

,
x

inL                    (26) 

here  )(∞γ  is asymptotic value of the slowly variable nL,γ . 
he normalized Kalman gain becomes: 

nLnL ,, )(
1~ xk

∞
=

λα
                           (27) 

eplacing the variable nL,γ  by its steady-state value )(∞γ  
nd using (26) and (27), the recursive expression (23) 
ecomes:  

n
x

nLnLnL
x

LnL v21,
T

,,2,
)1()1(

σλ
λ

σλ
λ −

−∆⎥
⎦

⎤
⎢
⎣

⎡ −
−=∆ −wxxIw   (28) 
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By taking the expected value of both sides of (28) and using 
the independence assumption to yield: 

{ } { 1,
1

, E)2(E −
− ∆−=∆ nLnL ww λ }                (29) 

The steady-state solution of (29) is: If 1<λ ⇒  
{ } L0)(E =∞∆w ; from which we obtain the steady-state mean 

coefficient vector of the M-SMFTF adaptive filter as:   

{ } Lopt,)(E ww =∞                            (30) 

D. Analysis Prediction Part  
We study the propagation of errors in all recursive 

quantities of the prediction part of the M-SMFTF algorithm. 
Assuming that the numerical errors are small, the model of 
error propagation in the recursive variables can be 
approximated by the following linear model: 

)(∆)(∆ 1 nn nn eφFφ += −                      (31) 

where represent the round-off noise. We can write the 
state vector of the errors at the time n as follows: 

)(ne

[ TTT k
n

a
nn φφφ ∆∆=∆ ]                         (32) 

where  and ( )T,
T

, , nLnL
a
n α∆∆=∆ aφ ( )T,

T
, ,~

nLnL
k
n γ∆∆=∆ kφ  

represent respectively the errors cumulated up until the time n 
in the forward and Kalman recursive variables. The 
(2L+2)x(2L+2) dimensional matrix  given by:     ( )nF

( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

nn
nn

n
2221

1211

FF
FF

F                       (33) 

represents the transition matrix. The system (31) is said to be 
stable, in the mean sense, if the eigenvalues of ( ){ }nFE , in 
the steady state, are all less than one in magnitude [9]. The 
operator E{.} denotes the expected value. After a 
propagation analysis of the numerical errors of the 1st order 
and an asymptotic study of the equations of errors 
propagation, we approximate the errors in the forward 
variables ( , ) and the Kalman variables 

(

T
,nLa∆ nL,α∆

T
,

~
nLk∆ , ) by the following linear first order models 

deduced from differentiating ( ,
nL,γ∆

T
,nLa nL,α ) and ( T

,
~

nLk , nL,γ ) 
respectively: 
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T
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By assuming that the perturbation terms ( , , 

, ) remain limited. In an asymptotic mode, we 
can write: 

)(nap )(npα

)(nkp )(npγ

( )T
1,1,1,

~
−−−− nLnLnLL xkI γη LIλη→            (38) 

{ })(E ncγ   
1

1
1 −+− λλ

                    (39) 

We can thus say that the system is numerically stable, in 
the mean sense, for λ and η  between zero and one.  

We note that, the necessary condition of stability is the 
limit of the errors variance in the forward prediction. To 
calculate the covariance matrix of numerical errors in 
forward predictor; we use a statistical approach, 

{ }T
,,E nLnLn aaA ∆∆= . We assume that the components of 

vector  are independent between them and 
independent of the various theoretical variables given in 
the algorithm. With an input signal Gaussian sequence, we 
obtain the following expressions: 

nL,a∆

{ })()(E T
1 nnG aann ppAA += −                 (40) 

( ) ( ) ( )( )21121 22 +−+−−= LG λλη             (41) 

The stability condition of equation (40) is given by the 
solution of the following inequality: 

1<G                                    (42)                  

This inequality is only verified for this condition: 
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λ           (43) 

We note that the lower bound of this condition is always 
smaller than the lower bound of condition (10) of the original 
numerically stable FRLS algorithm. This means that we can 
choose smaller values for the forgetting factor for the 
proposed algorithm and consequently have faster 
convergence rate and better tracking ability. 

IV. SIMULATION RESULTS 
To confirm the validity of our analysis and demonstrate 

the improved numerical performance, some simulations are 
carried out. All plots show the mean squared modelling 
versus the number of iterations. For the purpose of smoothing 
the curves, error samples are averaged over 256 points.  
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A.  Comparative performances for stationary signals 
We used a stationary correlated noise with a spectrum 

equivalent to the average spectrum of speech, called USASI 
noise in the field of acoustic echo cancellation. This signal, 
with mean zero and variance equal to 0.32, sampled at 16 
kHz is filtered by impulse response which represents a real 
impulse response measured in a car and truncated to 256 
samples. We compare the convergence speed and tracking 
capacity of the proposed (M-SMFTF, RM-SMFTF) 
algorithms with NS-FRLS and NLMS algorithms.  

The filter length is L=256, the NLMS ( µ =1) and the 
NS-FRLS ( L3/11−=λ ) algorithms are tuned to obtain 
fastest convergence. The forgetting factor λ and the leakage 
factorη  for the proposed algorithms are chosen according to 
(43), L/11−=λ  of the M-SMFTF and P/11−=λ  of the 
RM-SMFTF algorithms, where P is the predictor order. 

The nonstationarity of the system to be modelled is 
simulated by introducing a linear gain variation on the 
desired signal.  

Fig.2 shows that better performances in convergence 
speed are obtained for the proposed algorithm. The 
differences in the final for the proposed algorithms 
and NS-FRLS algorithm are due to the use of different 
forgetting factors

)(nMSE

λ . It is observed that the proposed 
algorithm converges much faster and tracks better the 
variation of the system than both NS-FRLS and NLMS 
algorithms.   

B. Comparative performances for speech signals 
The input signal used in the simulations is speech signal, 

sampled at 16 kHz. We compare the convergence speed of 
the proposed algorithms with NS-FRLS and NLMS 
algorithms. We simulated an abrupt change in the impulse 
response at the 56320th samples. The choice of the forgetting 
factor for NS-FRLS algorithm to ensure numerical stability is 

L10/11−=λ . The forgetting factor for M-SMFTF 
algorithm is L/11−=λ  and for the RM-SMFTF algorithm 
the forgetting factor is P/11−=λ , but the leakage η  and 
the constant  must be carefully chosen.  ac

 
Fig.2: Comparative performance of the algorithms for USASI noise, 

L=256.  M-SMFTF: λ =0.9961,η =0.985, =0.5, Eac 0=1; 

RM-SMFTF: P=32, λ =0.9688, η =0.9985, =0.5, Eac 0=0.2; 

NS-FRLS: λ =0.9987, E0=1;  NLMS: µ =1 

 
Fig.3: Comparative performance of the algorithms with speech input, 

L=256.  M-SMFTF: λ =0.9961, η =0.96, =0.1, Eac 0=0.5; 

RM-SMFTF:  P=32, λ =0.9688, η =0.99,  =0.1, Eac 0=0.1; 

NS-FRLS: λ =0.9996, E0=0.5;  NLMS: µ =1. 
 
 
In Fig.3, we can see that the initial convergence is almost the 
same for both M-SMFTF and NS-FRLS algorithms. 
However the proposed algorithm achieves better 
re-convergence after the abrupt change in the impulse 
response.  

Different simulations have been done for different sizes L 
and P, and all these results show that there is no degradation 
in the final steady-state of the reduced size predictor 
algorithm even for P<<L. The convergence speed and 
tracking capability of the reduced size predictor algorithm 
can be adjusted by changing the choice of the parameters 

)(nMSE

λ ,η  and . ac

V. CONCLUSION  
We have presented a new algorithm M-SMFTF for 

adaptive filtering with fast convergence and low 
complexity. We have proposed more complexity reduction 
of simplified FTF type algorithm by using a new recursive 
method to compute the likelihood variable. The 
computational complexity of the M-SMFTF algorithm is 6L 
operations per sample and this computational complexity can 
be significantly reduced to (2L+4P) when used with a 
reduced P-size (P<<L) forward predictor. This can be very 
interesting for long filters. The low computational 
complexity of the M-SMFTF when dealing with long filters 
and its performance capabilities makes it very interesting for 
applications such as acoustic echo cancellation. The 
simulation has shown that the performances of the proposed 
algorithm are better than those of the normalized least mean 
square algorithm. 
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