
Bhave Toolset: Modeling and Analysis of
Electronic System Design and System Control

K.L. Man∗, T. Krilavičius†, Š. Valaškevičius‡, Yanyan Wu§ and J.K. Seon¶

Abstract— Behavioral Hybrid Process Calculus
(BHPC) is a formalism for Modeling and analysis of
hybrid systems combining process algebras and the
behavioral approach for Modeling of instantaneous
changes and continuous evolution. BHPC is suppor-
ted by Bhave toolset, containing a tool for a novel way
of visualization of hybrid systems simulations msp-svg
and a new version of hybrid simulator. In this paper,
we present the latest developments of Bhave toolset
and apply it for case studies of system control and
electronic system design.

Keywords: formal methods, electronic system design,

hybrid systems, simulation

1 Introduction

Process algebras/calculi [4, 13, 22] are formal languages
in Computer Science that have formal syntax and se-
mantics for specifying and reasoning about different sys-
tems. In simple words, process algebras are theoretical
frameworks for formal specification and analysis of the
behavior of various systems. Serious efforts have been
made in the past to deal with various systems (e.g. dis-
crete event systems [24, 29], real-time systems [12, 14, 30]
and hybrid systems [3, 5–8, 19, 31]) in a process algebraic
way. Over the years, process algebras have been success-
fully used in a wide range of problems and in practical
applications in both academia and industry for analysis
of many different systems.

Hybrid systems are systems that exhibit both discrete
and continuous behavior. Such systems have proved fruit-
ful in a great diversity of engineering application areas
including air-traffic control, automated manufacturing,
chemical process control and system control. On the
other hand, mathematically, the behavior of electronic
system design (e.g. digital, analogue and mixed-signal

∗Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren’ai
Road, Suzhou, Jiangsu 215123, China. E-mail: ka.man@xjtlu.edu.
cn. Tel: +86 512 8816 1509. Fax: +86 512 8816 1899.
†Vytautas Magnus University (VDU), Vileikos 8, Kaunas, LT-

44404, Lithuania. E-mail: t.krilavicius@if.vdu.lt.
‡Vytautas Magnus University (VDU), Vileikos 8, Kaunas, LT-

44404, Lithuania. E-mail: rakatan@gmail.com.
§Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren’ai

Road, Suzhou, Jiangsu 215123. E-mail: yanyan.wu@xjtlu.edu.cn.
¶LS Industrial Systems, 1026-6,Hogye-dong,Dongan-gu,Anyang-

si,Gyeonggi-do 431-848, South Korea. E-mail: jkseon@lsis.biz.

design) can be described by discrete variables, continu-
ous variables and a set of differential equations, whereas
switching-modes can be used for modeling mixed mod-
els (i.e. mixed-signal design). Due to all these, digital,
analogue and mixed-signal design can be mathematically
described as hybrid systems (with various level of ab-
straction) by nature.

Computer simulation is a powerful tool for analyzing and
optimizing real-world systems with a wide range of suc-
cessful applications. It provides an appealing approach
for the analysis of dynamic behavior of processes and
helps decision makers identify different possible options
by analyzing enormous amounts of data.

Behaviural Hybrid Process Calculus (BHPC) [19] is a hy-
brid process algebra which was specifically designed for
the description of the dynamic behavior of hybrid systems
along with a powerful simulator called Bhave toolset.
Currently, simulation results obtained by means of the
BHPC simulator can also be visualized and analyzed via
Message Sequence Plots (MSP) [19].

In this paper, we first present the latest development of
Bhave toolset. Through case studies, we show the
use of Bhave toolset for addressing several aspects of
system control and mixed-signal design. Related work
of the research activities presented in this paper can be
found at [19–21,34].

2 Behavioral Hybrid Process Algebra

One of the useful techniques for simulation of hybrid
systems that includes continuous evolution and discrete
changes, is Behavioral Hybrid Process Calculus (BHPC)
[6, 19], an extension of classical process algebra that is
suitable for the modeling and analysis of continuous and
hybrid dynamical systems and can be seen as a generaliz-
ation of the behavioral approach [26] in a hybrid setting.
The main strengths of the BHPC are the following.

Sound mathematical foundations. BHPC has sound
mathematical foundations. It means that rigorous
reasoning can be applied to investigate diverse prop-
erties of models.

Behavioral approach. In BHPC continuous evolution

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

is defined in the behavioral setting [26] making it
more general in contrast to other hybrid process al-
gebras (Hybrid χ [31], HyPA [8], ACPsrt

hs [5]), i.e. it
is defined using trajectories (solutions of differential
equations is one of ways of defining trajectories), not
just (solutions of) differential equations.

Separation of concerns. Continuous and discrete be-
haviors are specified orthogonally, therefore they can
be changed and analyzed separately as well as in hy-
brid setting.

Bisimulation is congruence in BHPC, i.e. substitut-
ing bisimilar (processes, that exhibit the same ob-
servable behavior up-to the branching structure)
does not change behavior of the system.

Tools support. BHPC is supported by Bhave toolset,
see Section 3.

We present main ideas of the BHPC in this section, see
[19] for the details.

2.1 Trajectories

We define trajectories over bounded time intervals (0, t],
and map them to a signal space W = (W1 × · · · ×
Wn, (q1, . . . , qn)). Components of the signal space W ∈
W correspond to the different aspects of the continuous-
time behavior, such as current or voltage, and are as-
sociated with trajectory qualifiers qi ∈ T identifying
them. A trajectory in signal space W is a function
ϕ : (0, t] → W1 × · · · × Wn, where t ∈ R+ is the dur-
ation of the trajectory. We define conditions on the end-
points of trajectories or the exit conditions. ⇓ denotes
such conditions, as the restrictions on the set of tra-
jectories: Φ ⇓ Predexit = {ϕ : (0, u] → W1, . . . ,Wn ∈
Φ | Predexit(ϕ(u))}, where u is a time parameter, Φ is
a set of trajectories and Predexit(ϕ(u)) is a predicate
that defines restrictions. The set of trajectories Φ can
be defined in different ways, e.g. by ODE/DAE. See [19]
for the formal treatment.

2.2 Hybrid transition system

All behaviors of BHPC specification are defined by a hy-
brid transition system HTS = 〈S,A,→,W,Φ,→c〉

• S is a state space.

• A is a finite set of (discrete) actions names.

• →⊆ S×A×S is a discrete transition relations, where
a ∈ A. We will denote it s

a−→ s′.

• W is a signal space.

• Φ is a set of trajectories.

• →c⊆ S × Φ × S is a continuous transition relation,
where ϕ ∈ Φ are trajectories. We will denote con-

tinuous transitions s
ϕ−→ s′ for the convenience.

2.2.1 Bisimulation

One of the main tools to compare systems is strong bisim-
ulation. Strong bisimulation requires both subsystems to
be able to imitate each other at every step. A strong
bisimulation for hybrid transition systems requires both
systems to be able to execute the same trajectories and
actions and to have the same branching structure. A bin-
ary relation R ⊆ S × S on the states is a hybrid strong
bisimulation, if for all p, q ∈ S, such that pR q, holds

p
a−→ p′ =⇒ ∃q′ such that q

a−→ q′ and p′ R q′

q
a−→ q′ =⇒ ∃p′ such that p

a−→ p′ and p′ R q′

p
ϕ−→ p′ =⇒ ∃q′ such that q

ϕ−→ q′ and p′ R q′

q
ϕ−→ q′ =⇒ ∃p′ such that p

ϕ−→ p′ and p′ R q′.

The first two statements define bisimulation require-
ments for the discrete actions, and the last two for the
continuous-time transitions.

States p and q are bisimilar (denoted p ∼ q), if there
exists a hybrid strong bisimulation R, containing the pair
(p, q).

2.3 Language

A core language is used for defining evolution and inter-
action of systems

B ::= 0 a . B [f | Φ] . B
∑
i∈I

Bi B ‖HA B P

We will require a consistent signal flow, i.e. only the par-
allel composition is allowed to change the set of trajectory
qualifiers in the process.

Only a subset of complete language is presented in this
paper, see [19] for auxiliary operators, such as renaming
or hiding. Moreover, other operators can be defined on
top of the core language for convenience. We demonstrate
it by introducing parametrized action prefix and guard.

Deadlock 0 Deadlock is the process that does not ex-
hibit any behavior.

Action-prefix a . B Action prefix performs a and con-
tinues as B. A special silent action τ defines directly
unobservable behavior, and is usually used to specify a
non-determinism (e.g. as internal actions in [22, p. 37–
43]).

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

a . B
a−→ B (1)

We will use parametrization of action prefix as in [22, p.
53–58]

a(v : V) . B(v) =
∑
v∈V

a(v) . B(v) (2)

Trajectory-prefix [f | Φ] . B (f) Trajectory prefix
[f | Φ] . B (f), where f is a trajectory variable, starts
with a trajectory or a prefix of a trajectory from the set
of trajectories Φ. If a trajectory or a part of it was taken
and there exists a continuation of the trajectory, then the
system can continue with a trajectory from the set of such
continuations. If a whole trajectory (e.g., as defined by
exit conditions) was taken, then the system can continue
with B.

Let ; be a trajectories concatenation function such that

ϕ ; ψ(t′) =

{
ϕ(t′), 0 < t′ ≤ t
ψ(t′ − t), t < t′ ≤ t+ u

Let \ denotes continuation of trajectory after taking an
initial part of it. Let ϕ and ψ be trajectories of duration
tϕ and tψ, respectively, such that tϕ > tψ, and up-to tψ
both trajectories coincide. Then ϕ\ψ is a continuation
of ϕ after taking ψ with duration tϕ − tψ and coincides
with a part of ϕ from tψ to tϕ shifted to the left (zero)
by tψ. See [19] for the formal treatment of trajectories.

Then we can define trajectory prefix as follows

[f | Φ] .B (f)
ϕ−→ [f ′ | Φ\ϕ] .B (ϕ ; f ′) for all ϕ ∈ Φ

+
(3)

where Φ is a set of trajectories such that both ϕ and ψ

contain the same trajectory qualifiers, and Φ
+

is a set of
all possible non-empty trajectories and trajectory prefixes
from Φ. Notice that ε can be in Φ, because it complies
with any qualifier type. f, f ′ are trajectory variables. Let
ψ be a trajectory and ϕ is taken from (3), then ϕ;ψ ∈ Φ or
ϕ ∈ Φ such that ϕ is finite and non-empty. If a trajectory
or a part of it was taken and there exists a continuation of
the trajectory, then the system can continue with a tra-
jectory from the trajectory continuations set. However, if
a whole trajectory was taken, then the system may con-
tinue with the consecutive process with the substituted
trajectories (see (4) and (5)). (ϕ ; f ′) defines substitu-
tion of the taken trajectories in the following processes,
i.e., all instances of f in B are substituted by the taken
trajectory ϕ concatenated with its follow-up f ′, or if it is
finished, by the whole taken trajectory ϕ.

After defining concatenation (4) and (5) we present a de-
rived rule that explains behavior of the empty trajectory
ε in trajectory prefix.

We will extend notation to make use of trajectory prefix
more convenient

[q1, . . . , qm | Φ ↓ Pred ⇓ Predexit]

where

• q1, . . . , qm are trajectory qualifiers, which can be
used to access corresponding parts of trajectories.

• The set of trajectories can be defined in several dif-
ferent ways. We will allow such notation in the tra-
jectory prefix definition to bring out conditions on
the set of trajectories.

Furthermore, we will allow to define the set of traject-
ories directly in the definition of trajectory prefix, where
commas will be used to separate conditions. We will use
⇓ to separate exit conditions, when it is required.

Concatenation Concatenation extends definition of
trajectory prefix. It formalizes behavior after taking a
complete trajectory. The process can choose to continue
with another trajectory or an action prefix, depending on
the successive process.

Concatenation is formalized by the following derivation
rules.

B (ϕ)
ψ−→ B′

[f | Φ] . B (ϕ)
ϕ;ψ−−→ B′

ϕ ∈ Φ (4)

B (ε)
a−→ B′

[f | Φ] . B (f)
a−→ B′

ε ∈ Φ (5)

In (4) it is shown, how to concatenate two trajectories.
While (5) defines a situation, where after taking a whole
trajectory process continues with an action prefix.

For a convenience we derive an equation from the concat-
enation and trajectory prefix rules. If ε ∈ Φ then [f | Φ] .
B(f) behaves in the same way as [f | Φ \ ε] . B(f) +B(ε)

Choice
∑
{B(v) | v ∈ I} Choice is a generalized non-

deterministic choice of processes (I is an arbitrary index
set). It chooses before taking an action prefix or traject-
ory prefix. Binary version of choice is denoted by B1+B2.

B (w)
a−→ B′∑

v∈I
B (v)

a−→ B′
w ∈ I (6)

B (w)
ϕ−→ B′∑

v∈I
B (v)

ϕ−→ B′
w ∈ I (7)

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

Choice for action prefix is defined in 6 the choice for ac-
tion prefix is defined, it is the same as in usual process
algebras. Rule 7 tells that choice for trajectories is made
before taking a trajectory.

Parallel composition B1 ‖HA B2 Parallel composition
models concurrent evolution of several processes. During
the evolution they may interact with each other via syn-
chronization on discrete and continuous-time transitions.
In BHPC synchronization on identical names is assumed
as the basic synchronization concept. In order to avoid
context-dependent interpretations of operators, the set of
action names A and the set of trajectory qualifiers H that
are subject to synchronization, are made explicit in the
parallel operator ‖HA .

This form of synchronization implies that parallel com-
ponents jointly execute identical actions or trajectories
with common signal evolutions that occur in their trans-
itions and are subject to synchronization.

The basic idea of synchronizing trajectories is not much
different than that of synchronizing actions. Let B1 and
B2 be the processes that can take trajectories ϕ and ψ,
such that coinciding qualifiers of both trajectories belong
to H and evolve in the same manner. Then the resulting
trajectory is a synchronized trajectory of B1 ‖HA B2 that
simultaneously changes the states of B1 and B2 accord-
ing to χ = ϕ ×H ψ, where ×H defines composition of
trajectories in such a way that χ contains all qualifiers of
ϕ and ψ.

We define the following deduction rules for parallel com-
position

B1
a−→ B′1, B2

a−→ B′2

B1 ‖HA B2
a−→ B′1 ‖HA B′2

a ∈ A (8)

B1
a−→ B′1

B1 ‖HA B2
a−→ B′1 ‖HA B2

B2 ‖HA B1
a−→ B2 ‖HA B′1

a /∈ A (9)

B1
ϕ−→ B′1, B2

ψ−→ B′2

B1 ‖HA B2
ϕ×Hψ−−−−→ B′1 ‖HA B′2

(10)

Rules (8) and (9) define parallel composition for actions
in a well known interleaving fashion. In (10) parallel com-
position for trajectories is defined. Because trajectories
always synchronize, one rule is enough.

Recursion Recursion is a tool to define processes in
terms of each other, as in the equation P = B, where
P is the process identifier and B is a process expression
that may only contain actions and signal types of B.

B
a−→ B′

P
a−→ B′

P = B
B

ϕ−→ B′

P
ϕ−→ B′

P = B (11)

Guard 〈Pred〉 Guard 〈Pred〉 operator evaluates Pred
conditions, and if they are not satisfied, stops the progress
of the process.

〈Pred(x)〉 . B(x) =
∑

w|=Pred(w)

B (w) (12)

Here x are process parameters (variables).

Strong Bisimulation and Congruence. The hybrid
strong bisimulation relation (equivalence) defined for the
HTS is a congruence relation w.r.t. all operations defined
above [19]. Hence, bisimilar components can be inter-
changed without changing systems behavior, and that
can be effectively employed while building and improving
systems (models).

3 Bhave toolset

BHPC is supported by Bhave toolset [15]. The toolset al-
lows modeling, simulation and visualization of the hybrid
models [16,34]. It consists of several tools.

Discrete Bhave [18] allows discrete simulation of the
BHPC specifications.

Hybrid simulator [33, 34] is a tool for modeling and
simulation of hybrid process algebras. Basically, it is
a framework to implement a simulator for a selected
process algebra.

Bhave simulator [33,34] is an implementation of simu-
lator for BHPC based on the hybrid simulator. It al-
lows hybrid simulation of BHPC specifications. Cur-
rent version supports a subset of BHPC. A snap-
shot of the system with examples is available from
bhpc-simulator.sourceforge.net.

BHPC2Mod can translate a restricted set of BHPC
models to Modelica [11] language, and then simu-
late them using Dymola [10] or OpenModelica [25].
However, because Modelica does not have formal se-
mantics, translation does not necessary preserves all
the properties. Moreover, parallel composition is not
translated [32]. It is not supported.

MSP-SVG is a visualization tool that uses Message Se-
quence Plots (MSP) [19,28,33,34] approach for visu-
alizing hybrid evolution. It is available at http:

//msp-svg.sourceforge.net/. See Section 3.2 for
details about msp-svg.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

□
□
□
v

v

qual1

qual2

qual3

□
□
□

v

v

qual1

qual2

qual4

act1 act2act3 act3

Processi

Processj

Figure 1: MSP example.

The current versions of tools (Bhave and msp-svg) are
built not just as prototypes, but also as a hybrid “sand-
box”, a place to experiment with BHPC and related
developments. Architecture and implementation of the
tools allow accommodating diverse changes and test the
algorithms developed for BHPC or other (hybrid) process
algebras or MSP-based visualization techniques compar-
atively easy.

Our plans include further development of the process al-
gebra and Bhave toolset. We are planning to improve
and extend Bhave and integrate it with msp-svg.

3.1 Simulator for Hybrid Process Algebras

3.1.1 Generic architecture

Simulator for hybrid process algebras takes a specifica-
tions as an input and then interprets each statement ac-
cording to the process algebra, it implements, semantics.
Current implementation of uses a stack based approach
[2, pp. 418-422] to store the current state, because it is a
standard approach for executing recursive function calls.
Moreover, abstract interfaces are used to define the bases
operator types instead of using other operators directly.

The base of the simulator structure is a non-deterministic
choice selector, a choice of all possible simulation flows
at the current step, formally - a normal form [19, p.106].
Expansion laws [19, p.106-110] are used to transform pro-
cesses to a /emphnormal form. Execute stage is primarily
designed for execution of actions and trajectories, at this
stage the operations are executed. Abstract algorithm is
as follows.

1. Do:
2. Expand available choices.
3. Non-deterministically select one choice discarding

others.
4. Execute expression.
5. While there are unfinished choices.

Simulation of Continuous Behavior. Usually, the
trajectories of hybrid process algebras are expressed as a
system of differential algebraic equations (DAE) or ordin-
ary differential equations (ODE) describing the evolution
of the system variables. We use SUNDIALS IDA library
[1] to solve ODE/DAE. It is derived from DASPK and
is designed to solve DAE systems in form F (t, y, y′) = 0.
IDA library was chosen because it provides a fast and el-
egant solution for the problem and allows using custom
evaluation functions for the integration. Hence, the same
calculations logic is applied both to guard, discrete vari-
ables assignment and continuous-time evolution solving.
As SUNDIALS IDA library provides a clean API in C
programming language, a C++ adapter class DaeSolver
is written for the simulator. This class uses simulator’s
Evaluable class family functionality to solve equations
and then passes the result back to IDA. Also, in order
to use a different DAE solver library or tool, only the
DaeSolver class should be changed.

3.2 Visualization of Hybrid Evolutions

Simulation results usually visualize an evolution of the
system in time. Event traces or message sequence charts
(MSC) [27] adequately represent discrete system beha-
vior, and graphs are convenient for the ordinary continu-

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

m
ai

n
.s

et
P
ar

am
s

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

B
o
u
n
ci

n
g
B
al

l.
b
o
u
n
ce

E
R
R
 >

>
 T

ra
je

ct
o
ry

 e
va

lu
at

io
n
 f

ai
le

d
:

so
m

e
ex

it
 c

o
n
d
it
io

-25.2

-21.1

-17

-12.9

-8.75

-4.64

-0.527

3.59

7.7

11.8

15.9

20

24.2

28.3

32.4

0 4.61 8.21 10.7 12.5 13.7 14.6 15.2 15.615.916.116.316.4

BouncingBall BouncingBall.h
BouncingBall.v
BouncingBall.v'

Figure 2: Simulation of the bouncing ball, Section 4.1.

ous systems. However, in hybrid systems we have both
the evolution of system variables and events. Hence, a
combined view is crucial to fully analyze hybrid system
behavior. See [19, p. 118-124] for the details.

We believe, that Message Sequence Plots (MSP) [19, p.
118-124] contain all the necessary components for an ad-
equate visualization of hybrid systems. It has two com-
pounds: message-sequence charts rotated 90◦ combined
with plots. We explain MSP by an example depicted in
Figure 1.

Plots over time-lines show continuous-time evolution.

A legend allows selecting qualifiers of interest, that
are depicted in the plot. If several processes
evolve concurrently, the synchronizing qualifiers ap-
pear for both processes. In Figure 1 qualifiers
qual1, qual2, qual3 and qual4 are depicted. Processi
is related with qualifiers qual1, qual2 and qual3, and
only qualifiers qual1 and qual3 are selected to be vis-
ible. Processj is related with qualifiers qual1, qual2
and qual4, and qualifiers qual2 and qual4 are selected
to be visible.

Single horizontal lines connected to the correspond-
ing boxes with process identifiers, represent pro-
cesses and the time-line (or life-line in MSC ter-
minology). Time is assumed to flow to the right
along each time-line at the same speed. Processi
and Processj are represented by the horizontal lines
and boxes with processes identifiers in the example.

Labeled vertical lines going across time-lines repres-

ent communication, i.e. (parametrized) action pre-
fixes in BHPC. Notice that we use simple lines in-
stead of arrows, because communication in BHPC is
not directed. However, the MSP (and related tool)
can be easily modified to display direction of actions.
Communication of Processi and Processj consists
of actions act1, act2 and act3.

Triple horizontal time-lines depict suspension of the
time-flow. Single actions are placed on the time-line
at the time that relates to their moment of occur-
rence. A sequence of actions occurs at one moment in
time, when there is no continuous behavior between
the actions. We suspend the flow of time to allow in-
sight in the ordering of these actions. In the example,
suspension of the time is depicted on the time-line
as three parallel solid lines.

Figure 1 contains all information that would be avail-
able in an ordinary plot. Correspondingly, all inform-
ation that is visible in message sequence charts, is also
visible in MSP. Furthermore, in MSP all processes and
communication between them are visualized. The pro-
posed technique can be easily adopted to other hybrid
system modeling frameworks with minimal changes, e.g.,
if communication is directed, arrows can be used to depict
it.

Additional notation, such as decorating the results with
process expressions (e.g. action and trajectory prefixes),
adding recursive calls, providing information about re-
naming of qualifiers in the legend, forking of processes to
depict parallelism. See [17] for details.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

h
ea
te
r.
o
ff

h
ea
te
r.
o
n

h
ea
te
r.
o
ff

h
ea
te
r.
o
n

h
ea
te
r.
o
ff

h
ea
te
r.
o
n

h
ea
te
r.
o
ff

h
ea
te
r.
o
n

18.1

18.2

18.4

18.6

18.7

18.9

19

19.2

19.4

19.5

19.7

19.9

20

20.2

20.4

20.5

20.7

20.8

14.6 17.7 18.8 23.9 26.1 27.2 32.2 37.3 38.5 43.6 48.7 50 51.4

room room.l

Figure 3: Evolution of thermostat, Section 4.2.

Figures 2, 3 and 5 depict evolution of the bouncing
ball simulation from Section 4.1, the thermostat from
Section 4.2 and the two tanks from Section 4.3, re-
spectively, using a proof of concept tool msp-svg. Ex-
ecutable and source code of msp-svg are available at
sourceforge.net/projects/msp-svg/, see [33, 34] for
the details.

4 Application of BHPC

4.1 Bouncing Ball

Bouncing ball is a common example of hybrid process
algebra systems. The system [19, pp. 12, 86] consists of
one ball and a ground plane. The ball in the system is
defined by its altitude h, vertical speed v and the constant
c, which describes the energy that is lost on every bounce.
Also, the ball is constantly affected by the gravitational
acceleration g = 9.81.

The formal specification is rather simple.

BouncingBall(h, v) =

[h’ = v ; // dh/dt = v

v’ = -9.81 // dv/dt = -g

| h] // when h = 0, stop

. bounce{v’ = 0;} // bounce action

// bounce with 0.7 velocity loss

. BouncingBall(h, -0.7 * v);

// set simulation parameters

main() = setParams{step=1e-1}

// invoke the bouncing process

.BouncingBall(12, 20);

The system consists of two processes:

• BouncingBall process defines the trajectory and the

bounce action of the ball. The motion is described
by the derivative of the altitude, which is the ver-
tical speed v. The speed is affected by the accel-
eration v̇ = −g. This motion is executed until the
ball touches the ground plane (h = 0) and a discrete
bounce action is executed. As the ball bounces, a
fraction c = 0.7 of its energy is lost, and the ball
changes the direction upwards.

• The process main is the simulation entry point. A
discrete action setParams is invoked, which changes
the parameters for the simulation – the parameter
“step” defines the integration interval length for the
DAE solver. Then, a BouncingBall process is in-
voked with the initial parameters h = 12 and v = 20.

Figure 2 displays the results of bouncing ball simula-
tion. It shows the speed and altitude change over time
together with the discrete action bounce. Visualization
of the model evolution is generated by using a proto-
type Message Sequence Plot (MSP) visualization applic-
ation [17, 21, 23], proposed in [19, pp. 120-123]. MSP
displays the changes of the system’s process variables to-
gether with the actions that are performed.

The energy of the system is reduced by a fraction in every
bounce, which results in a shorter timespan with every
bounce. This leads to Zeno behavior [19, p. 124], where
the system tries to execute an infinite amount of bounces
in a finite amount of time. The simulator prevents such
behavior by forcing a small fraction of the initial integra-
tion interval to simulate regardless of the trajectory exit
conditions and checks the result after the first step. Such
situation can be seen in the 16.4 second of the simulation,
when the error is printed.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

The source

V1 V2

lin 1 lin 2

dout 1 dout 2

Figure 4: Two
tanks scheme.

sw
it
ch

er
.s

w
it
ch

1
 <

->
 m

ai
n
.s

w
it
ch

1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

2
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

2

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

1
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

1

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
2

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

2
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

2

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

1
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

1

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
2

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

2
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

2

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

1
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

1

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
2

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

2
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

2

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

1
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

1

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
2

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

2
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

2

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
1

ta
n
k.

fi
n
is

h
 <

->
 t

an
k.

fi
n
is

h
 <

->
 s

w
it
ch

er
.f

in
is

h
 <

->
 s

w
it
ch

C
h
ec

ke
r

sw
it
ch

er
.s

w
it
ch

1
 <

->
 s

w
it
ch

C
h
ec

ke
r.

sw
it
ch

1

sw
it
ch

C
h
ec

ke
r.

fi
lle

d
2

E
R
R
 >

>
 T

ra
je

ct
o
ry

 e
va

lu
at

io
n
 f

ai
le

d
:

so
m

e
ex

it
 c

o
n
d
it
io

n
s

ar
e
 n

eg

1

1.11

1.22

1.33

1.44

1.56

1.67

1.78

1.89

2

2.11

2.22

2.33

2.44

2.56

2.67

2.78

2.89

3

0 1 3 4 5 5.5 6 6.25 6.5 6.62 6.75

twoTanks twoTanks.l1
twoTanks.l2

Figure 5: Simulation of the two tanks example, Section 4.3.

R

L
I

E

C
Vd

Id

Figure 6: Tunnel diode circuit.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
0

0,005

0,01

0,015

0,02

0,025

0,03

Vd

Il

Figure 7: Non-oscillating tunnel diode circuit: current vs
voltage

4.2 Thermostat

A thermostat is another widely known example of hy-
brid systems [19, p. 13]. It defines a system, where the
thermostat controls the temperature of a room. The sys-
tem consists of three elements – the room, which looses
the temperature over time, a heater, and a thermostat,
which senses the temperature of the room, and controls
the heater. The goal of the controller is to maintain the
temperature inside the interval of the required temperat-
ures [lmin, lmax].

The temperature of the room is defined by the function
l(t) = Θe−Kt + h(1 − e−Kt). K in the given function
is a constant, determined by the room, h is a constant,
determined by the power of the heater and Θ denotes the
initial temperature of the room. The derivative d

dt l =

K(h − l) of the given function is used to calculate the
temperature changes over time during the simulation [19].

A BHPC thermostat model for the simulation is as fol-
lows.

const K = 0.1;

const H = 22;

heater(h) = [h’ = 0 | room.l - (18 + rand())]

. on{h = H}

. [h’ = 0 | (20 + rand())-room.l]

. off{h = 0}

. heater(h);

room(l) = [l’ = K*(heater.h-l) |

(l - 18)*(21 - l)]

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

0,00E+00 5,00E-09 1,00E-08 1,50E-08 2,00E-08 2,50E-08 3,00E-08 3,50E-08 4,00E-08 4,50E-08
0

0,005

0,01

0,015

0,02

0,025

0,03

t

Il

Figure 8: Non oscillating tunnel diode circuit: current

0,00E+00 1,00E+02 2,00E+02 3,00E+02 4,00E+02 5,00E+02 6,00E+02 7,00E+02 8,00E+02 9,00E+02
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

t

Vd

Figure 9: Non-oscillating tunnel diode circuit: voltage

. error_temp_out_of_range;

main() = setParams{step=1e-1;tStop=100}

. room(19) || _] heater(0);

The following processes are defined in the model:

heater(h) defines a heater with a thermostat. This
process tracks the changes of the temperature in the
room and modifies the power of the heater – turns
it off or on.

room(l) represents the room and its temperature.
The trajectory is calculating the temperature of the
room during the whole simulation and the exit condi-
tions of it are only the limits of the required temper-
ature interval (using a parabola (l − lmin)(lmax − l)

for specifying the range). If the trajectory is fin-
ished before the simulation end, it means only that
the temperature was out of the required bounds and
an error action is performed.

main() sets the parameters for the simulation and
invokes both the heater and room processes in par-
allel.

The simulation result of the thermostat system model is
presented in Figure 3. It shows how the thermostat and
the heater are affecting the temperature of the room.
When the heater is off, the temperature of the room
drops rapidly and once it is in the range [18, 19] (the
lower bounds of the thermostat activation), the heater is
turned on. The temperature then slowly rises (how fast it
rises depends on the power of the heater – the constant h)

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

0,00E+00 5,00E-07 1,00E-06 1,50E-06 2,00E-06 2,50E-06 3,00E-06 3,50E-06 4,00E-06
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

t

Il

Figure 10: Oscillating tunnel diode circuit: current

0,00E+00 5,00E-07 1,00E-06 1,50E-06 2,00E-06 2,50E-06 3,00E-06 3,50E-06 4,00E-06
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

t

Vd

Figure 11: Oscillating tunnel diode circuit: voltage

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Vc

Il

Figure 12: Oscillating tunnel diode circuit: current vs voltage

to the upper checking bounds of the thermostat [20, 21]
and the heater is turned off.

The process continues until the time of the simulation
reaches the limit tStop and then the simulator exits.

Simulation results are depicted in Figure 3.

4.3 Two Tanks

Two tanks model [19, p. 89] specifies a hybrid system,
where a mutual fluid source fills two separate tanks (Fig-
ure 4). Only one tank is receiving the fluid input at a
time. At the bottom, each of the tanks has an opening,
through which the fluid flows out at a constant rate dout
(different for each tank). Switching the source pipe from
the fluid source to any of the tanks happens instantly,
and the pipes to each tank have different diameters (lin
rate, at which the tank is filled with the fluid). The ob-
jective of the system is to keep fluid level in each of the
tanks in the interval [lmin, lmax] = [1, 5]. The system

starts with initial fluid levels in the tanks given (lleft0 = 2

and lright0 = 3). The BHPC code for the simulation of
this model is as follows.

tank(new l, new d_out, new l_in) =

[l’ = l_in - d_out; l_in’=0; d_out’=0;

| (5 - l) ; (l - 1) ;]

. <(l > 5) + (l < 1)>

. tank(l, d_out, l_in);

twoTanks(l1, l2, out1, out2, in1, in2) =

(tank(l1, out1, in1) [twoTanks.l1/l,

twoTanks.out1/d_out, twoTanks.in1/l_in])

||_]

(tank(l2, out2, in2) [twoTanks.l2/l,

twoTanks.out2/d_out, twoTanks.in2/l_in]);

switcher(new in1, new in2) =

switch1{ twoTanks.in1=in1; twoTanks.in2=0;}

. [| (5 - twoTanks.l1); (twoTanks.l2 - 1);

(twoTanks.l1 - 1); (5 - twoTanks.l2);]

. finish

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

. switch2 {twoTanks.in1=0; twoTanks.in2=in2;}

. [| (5 - twoTanks.l1); (twoTanks.l2 - 1);

(twoTanks.l1 - 1); (5 - twoTanks.l2);]

. finish

. switcher(in1, in2);

switchChecker() = [finish].

(<(twoTanks.in1 == 0)*(twoTanks.in2 != 0)>

.switch2.filled1.switchChecker())

+

(<(twoTanks.in1 != 0)*(twoTanks.in2 == 0)>

.switch1.filled2.switchChecker());

main() = setParams{step=1e-1}.((

twoTanks(2, 3, 1, 2)

||_]

switcher(2, 3)

) ||finish,switch1,switch2]

(switch1.switchChecker()));

The system starts with the process tank definition, which
describes the trajectory of the evolution of the fluid level
in the tank. This trajectory ends when the fluid level of
this or other tank reaches [1, 5] range limits. After the
trajectory, there is a guard operator, which ensures, that
the fluid level is in the required range − if the guard is
evaluated to true, a deadlock occurs. The tank process
then continues with recursion repeating the same opera-
tions.

twoTanks process describes a system of two tanks, where
both tanks evolve in parallel. Also, the variables of each
tank are renamed to use twoTank process variables.

A switcher models the pipe switching controller, which
idles until the either of the tanks reaches the required
limits and then instantly switches the pipe to the other
tank. The behavior of this controller is checked by the
switchChecker process. It ensures that the pipe switch-
ing operation is performed in the right process evolution
step and issues filled1 and filled2 actions to notify the
possible listeners about the last position of the pipe.

The process main in BHave is the starting point of the
system. This process sets the required integration step
parameter for DAE solver and invokes twoTanks in par-
allel to the switcher.

The visualization of the two tanks model evolution is
presented in Figure 5. The system starts with the switch1
action, which sets the inflow parameters for the tanks.
Then the trajectories of fluid flow are executed. Here
it can be seen, that Tank2 output is faster than Tank1
input, thus, when pipe is switched, tank1 contains only
3 units of fluid level. After the pipe is switched, the
rates of inflow in the Tank1 and the outflow of the Tank2
are equal. After each full cycle of pipe switching, the
levels of the fluids in the tanks are approaching the lower

limit at 1, which leads to Zeno behavior [19, p. 124],
where the system will try to execute an infinite amount
of pipe switching actions in a finite amount of time. Like
in the bouncing ball example (Section 4.1), the simulator
detects the trajectory error and prints it, stopping the
simulation.

4.4 Tunnel Diode Circuit

We present results of experiments with the tunnel-diode
circuit from [9]. The circuit is depicted in Figure 6. State
of the system is defined by two state variables: the cur-
rent through the inductor Il and the voltage across the
diode Vd. Behavior is defined by the following differential
equations

İl =
1

C
(−Id(Vd) + Il) (13)

V̇d =
1

L
(E −RIl − Vd) (14)

where

Id(Vd) = V 3
d − 1.5V 2

d + 0.6Vd

defines non-linear characteristics of the tunnel diode.

We provide a simple model of the system, that consists of
one process, namely TunnelDiode, that contains a tra-
jectory prefix defining evolution of the circuit over time.
Exit conditions of the trajectory prefix define expected
intervals for the current Il and voltage Vd.

TunnelDiode(Il, Vd) =

[Vd’ = (1 / C) * (Il -

(Vd * Vd * Vd -

1.5 * Vd * Vd + 0.6 * Vd));

Il’ = (1 / L) * (E - R * Il - Vd)

| (Vd - 0); (Vd - 0.92);

(Il - 0); (Il - 0.08)]

. stop;

We performed simulation with two different sets of para-
meters.

Non-oscillating Oscillating
C (F) 10−9 10−9

L (H) 10−6 10−6

E (V) 0.3 10−9

R (Ω) 50 0.3

Initial values: Il = 0.025A and Vd = 0.74V . Notice, that
only voltage differs.

As expected, in the first case simulation stabilizes in the
equilibrium. Figures 8, 9 and 7 depict the current, voltage
and current vs voltage of the non-oscillating tunnel diode
circuit, respectively.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

With the second set of parameters we get an oscillating
system in the expected intervals. Simulation of the oscil-
lating tunnel diode circuit is depicted in Figures 10, 11
and 12.

5 Conclusions

Modeling and analysis of the tunnel diode circuit shows
that Behavioral Hybrid Process Calculus (BHPC) and
its toolset can be used for the formal specification and
simulation of electronic systems.

Application of the proof-of-concept msp-svg tool for
visualization of other examples presented in Section 4
demonstrates advantages of the Message Sequence Plots
over simple plots, because not only switching points are
visible, but a cause (a related event) as well.

Our future work will focus on several aspects:

• Application of the toolset to complex analog and
mixed-signal design.

• Modular specifications of diverse circuits, i.e. model-
ing of circuits as parallel components, e.g. modeling
tunnel diode circuit as parallel interconnection of ca-
pacitor, inductor, resistor, tunnel diode and power
source.

• Improvements of the modeling language. Currently
we use the language, that consists only of basic con-
structs. We are planning to add some syntactical
constructs for convenience.

• Improvements of tools. We are planning to improve
simulator and msp-svg tools, integrate them.

• Simulation of HyPA [8] using Hybrid Simulator to
compare BHPC and HyPA.

• Integration of Bhave toolset with other hybrid sys-
tems modeling, simulation and verification tools, dir-
ectly or via an interchange format.

References

[1] SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers, https://computation.llnl.

gov/casc/sundials/description/description.

html#descr_ida, 2010.

[2] Abelson, H., Sussman, G.J., Sussman, J. Structure
and Interpretation of Computer Programs, The MIT
Press, January, 2007.

[3] Alur, R., Courcoubetis, C., Halbwachs, N., Hen-
zinger, T.A., Ho, P.H., Nicollin, X., Olivero, A.,
Sifakis, J., Yovine, S., The algorithmic analysis of
hybrid systems, TCS V138, pp.3–34, 1995.

[4] Baeten, J.C.M., Weijland, W.P., Process Algebra,
V18, Camb. Tracts in TCS, Camb. Univ. Press,
Cambridge, UK, 1990.

[5] Bergstra, J.A., Middelburg, C.A., Process Algebra
for Hybrid Systems, Theoretical Computer Science,
V335, pp.215–280, 2005.

[6] Brinksma, E., Krilavičius, T., Usenko, Y.S., Pro-
cess Algebraic Approach to Hybrid Systems, Proc.
of 16th IFAC World Congress, July, 2005 ,Prague,
Czech Rep. pp.1–6.

[7] Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-
Vincentelli, A.L., Language and Tools for Hybrid
Systems Design, Journal of Foundations and Trends,
V1, pp.1–177, 2005.

[8] Cuijpers, P.J.L., Reniers, M.A. Hybrid Process Al-
gebra, Journal of Logic and Algebraic Programming,
V62, pp.191–245, 2005.

[9] Denman, W., Formal Verification of Analog and
Mixed Signal Designs, master thesis, Concordia
Univ., 2009.

[10] Dynasim, http://www.dynasim.se/, last accessed:
2006 May 11, 2006.

[11] Fritzson, P., Engelson, V., Modelica - A Unified
Object-Oriented Language for System Modelling and
Simulation, 1998.

[12] Geilen, M., Formal Techniques for Verification of
Complex Real-time Systems, phd thesis, Tech. Univ.
of Eindhoven, 2001.

[13] Hoare, C.A.R., Communicating Sequential Pro-
cesses, Prent.-Hall, 1985.

[14] Hooman, J., Specification and Compositional Veri-
fication of Real-Time Systems, Springer, 1991.

[15] Krilavičius, T., Bhave :: Simulation of Hybrid Sys-
tems, http://fmt.cs.utwente.nl/tools/bhave/,
2006.

[16] Krilavičius, T., Simulation of Mechatronic Systems
Using Behavioural Hybrid Process Calculus, Elec-
tron. and Elec. Eng., V1, pp.45–48, 2008.

[17] Krilavičius, T., Man, K., Intelligent Automation and
Computer Engineering, chapter Behavioural Hybrid
Process Calculus for Modelling and Analysis of Hy-
brid and Electronic Systems, Springer, 2009.

[18] Krilavičius, T., Schonenberg, H., Discrete Sim-
ulation of Behavioural Hybrid Process Calculus,
IFM2005 Doctoral Symposium, Tech. Univ. of Eind-
hoven, Dept. of Math. and CS, November, 2005,
Eindhoven, Netherlands, ISSN 0926-4515, pp.33–38.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

[19] Krilavčius, T., Hybrid Techniques for Hybrid Sys-
tems, phd thesis, Univ. of Twente, 2006.

[20] Man, K.L., Schellekens, M.P., Current Trends
in Intelligent Systems and Computer Engineer-
ing, chapter Interoperability of Performance and
Functional Analysis for Electronic System Designs
in Behavioural Hybrid Process Calculus (BHPC),
Springer, 2008.

[21] Man, K., Krilavičius, T., Chen, C., Leung, H.,
Application of Bhave Toolset for Systems Control
and Electronic System Design, Lecture Notes in En-
gineering and Computer Science: Proceedings of
The International MultiConference of Engineers and
Computer Scientists 2010, IMECS 2010, March,
2010, Hongkong, pp.1336-1341

[22] Milner, R., Communication and Concurrency,
Pren.-Hall, 1989.

[23] Prototype application for Message Sequence
Plot visualisation, http://sourceforge.net/

projects/msp-svg/, March, 2010.

[24] Naumoski, G., Alberts, W., A Discrete-Event Sim-
ulator for Systems Engineering, phd thesis, Tech.
Univ. of Eindhoven, 1998.

[25] OpenModelica System website, OpenModelica
System, http://www.ida.liu.se/\~{}pelab/

modelica/OpenModelica.html, http://www.ida.

liu.se/~pelab/modelica/OpenModelica.html,
2009.

[26] Polderman, J.W., Willems, J.C., Introduction to
Mathematical Systems Theory: a behavioral ap-
proach, Springer, 1998.

[27] Rudolph, E., Graubmann, P., Grabowski, J., Tu-
torial on Message Sequence Charts, Comput. Netw.
ISDN Syst., V28, pp.1629–1641, 1996.

[28] Schonenberg, M.H., Discrete Simulation of Behavi-
oural Hybrid Process Algebra, master thesis, Univ.
of Twente, 2006.

[29] van Beek, D.A., Gordijn, S.H.F., Rooda, J.E. In-
tegrating Continuous-Time and Discrete-Event Con-
cepts in Modelling and Simulation of Manufacturing
Machines, Sim. Pract. and Theory, V5, pp.653–669,
1997.

[30] van Beek, D.A., Man, K.L., Reniers, M.A., Rooda,
J.E., Schiffelers, R.R.H., Syntax and Semantics of
Timed Chi, technical report, CS-Report 05-09, Tech.
Univ. of Eindhoven, Dept. of CS, The Netherlands,
2005.

[31] van Beek, D.A., Man, K.L., Reniers, M.A., Rooda,
J.E., Schiffelers, R.R.H., Syntax and Consistent

Equation Semantics of Hybrid Chi, JLAP, V68,
pp.129–210, 2006.

[32] van Putten, A., Behavioural Hybrid Process Calculus
Parser and Translator to Modelica, master thesis,
Univ. of Twente, 2006.

[33] Valaškevičius, Š., Simulation Tool for Hybrid Pro-
cess Algebras, master thesis, Vytautas Magnus Uni-
versity, 2010.

[34] Valaškevičius, Š., Krilavičius, T., Hybrid process al-
gebra simulation tool, Information Society and Uni-
versity Studies XV, IVUS 2010, Vytautas Magnus
University, 6 May, 2010, Kaunas, Lithuania, pp.1-6.

Engineering Letters, 18:3, EL_18_3_06

(Advance online publication: 19 August 2010)

__

