
 
 

 

 
Abstract—This paper coordinates pricing and inventory 

replenishment decisions in a multi-level supply chain composed 
of multiple suppliers, one manufacturer and multiple retailers. 
We model this problem as a three-level nested Nash game where 
all the suppliers formulate the bottom-level Nash game, the 
whole supplier sector play the middle-level Nash game with the 
manufacturer, and both sectors as a group player formulate the 
top-level Nash game with the retailers. Analytical method and 
solution algorithm are developed to determine the equilibrium 
of the game. A numerical study is conducted to understand the 
influence of different parameters on the decisions and profits of 
the supply chain and its constituent members. Several 
interesting research findings have been obtained. 

Index Terms—pricing, replenishment, multi-level supply 
chain, Nash game.  

I. INTRODUCTION 

 In the decentralized supply chain, inconsistence and 
incoordination existed between local objectives and the total 
system objectives make the supply chain lose its 
competitiveness increasingly ([10]). Many researchers have 
recommended organizational coordination for managing 
supply chain efficiently ([1, 3, 5, 12]). Integrating pricing 
with inventory decisions is an important aspect to 
manufacturing and retail industries.  

Coordinating pricing and inventory decisions of supply 
chain (CPISC) has been studied by researchers at about fifty 
years ago. Weng and Wong [15] and Weng [14] propose a 
model of supplier-retailer relationship and confirm that 
coordinated decisions on pricing and inventory benefit both 
the individual chain members and the entire system. 
Reference [2] analyzes the problem of coordinating pricing 
and inventory replenishment policies in a supply chain 
consisting of a wholesaler, one or more geographically 
dispersed retailers. They show that optimally coordinated 
policy could be implemented cooperatively by an 
inventory-consignment agreement. Prafulla et al. [11] present 
a set of models of coordination for pricing and order quantity 
decisions in a one manufacturer and one retailer supply chain. 
They also discuss the advantages and disadvantages of 
various coordination possibilities. The research we have 
discussed above, mainly focus on coordination of individual 
entities or two-stage channels. In reality, a supply chain 
usually consists of multiple firms (suppliers, manufacturers, 
retailers, etc). Jabber and Goyal [6] consider coordination of 
order quantity in a multiple suppliers, a single vendor and 
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multiple buyers supply chain. Their study focuses on 
coordination of inventory policies in three-level supply 
chains with multiple firms at each stage.  

Recently, Game Theory has been used as an alternative to 
analyze the marketing and inventory policies in supply chain 
wide. Weng [13] study a supply chain with one manufacturer 
and multiple identical retailers. He shows that the 
Stackelberg game guaranteed perfect coordination 
considering quantity discounts and franchise fees. Yu et al. 
[17] simultaneously consider pricing and order intervals as 
decisions variable using Stackelberg game in a supply chain 
with one manufacturer and multiple retailers. Esmaeili et al. 
[4] propose several game models of seller-buyer relationship 
to optimize pricing and lot sizing decisions. Game-theoretic 
approaches are employed to coordinate pricing and inventory 
policies in the above research, but the authors still focus on 
the two-stage supply chain.  

In this paper, we investigate the CPISC problem in a 
multi-level supply chain consisting of multiple suppliers, a 
single manufacturer and multiple retailers. The manufacturer 
purchases different types of raw materials from his suppliers. 
Single sourcing strategy is adopted between the manufacturer 
and the suppliers. Then the manufacturer uses the raw 
materials to produce different products for different 
independent retailers with limited production capacity. In this 
supply chain, all the chain members are rational and 
determine their pricing and replenishment decisions to 
maximize their own profits non-cooperatively. 

We describe the CPISC problem as a three-level nested 
Nash game with respect to the overall supply chain. The 
suppliers formulate the bottom-level Nash game and as a 
whole play the middle-level Nash game with the 
manufacturer. Last, the suppliers and the manufacturer being 
a group formulate the top-level Nash game with the retailers. 
The three-level nested Nash game settles an equilibrium 
solution such that any chain member cannot improve his 
profits by acting unilaterally without degrading the 
performance of other players. We propose both analytical 
and computational methods to solve this nested Nash game.  

This paper is organized as follows. The next section gives 
the CPISC problem description and notations to be used. 
Section 3 develops the three-level nested Nash game model 
for the CPISC problem. Section 4 proposes the analytical and 
computational methods used to solve the CPISC problem in 
Section 3. In section 5, a numerical study and corresponding 
sensitivity analysis for some selected parameters have been 
presented. Finally, this paper concludes in Section 6 with 
some suggestions for further work. 
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II. PROBLEM STATEMENT AND NOTATIONS 

A. Problem description and assumptions 

In the three-level supply chain, we consider the retailers 
facing the customer demands of different products, which 
can be produced by the manufacturer with different raw 
materials purchased from the suppliers. These 
non-cooperative suppliers reach an equilibrium and as a 
whole negotiate with the manufacturer on their pricing and 
inventory decisions to maximize their own profits. After the 
suppliers and the manufacturer reach an agreement, the 
manufacturer will purchase these raw materials to produce 
different products for the retailers. Negotiation will also be 
conducted between the manufacturer and the retailers on their 
pricing and inventory decisions. When an agreement is 
achieved between them, the retailers will purchase these 
products and then distribute to their customers. We then give 
the following assumptions of this paper: 
(1) Each retailer only sells one type of product. The 

retailers’ markets are assumed to be independent of each 
other. The annual demand function for each retailer is 
the decreasing and convex function with respect to his 
own retail price.  

(2) Solo sourcing strategy is adopted between supplies and 
manufacturer. That is to say, each supplier provides one 
type of raw materials to the manufacturer and the 
manufacturer purchases one type of raw material from 
only one supplier. 

(3) The integer multipliers mechanism [9] for replenishment 
is adopted. That is, each supplier’s cycle time is an 
integer multiplier of the cycle time of the manufacturer 
and the manufacturer’s replenishment time is the integer 
multipliers of all the retailers.  

(4) The inventory of the raw materials for the manufacturer 
only occurs when production is set up.  

(5) Shortage are not permitted, hence the annual production 
capacity is greater than or equal to the total annual 
market demand ([4]). 

B. Notations 

All the input parameters and variables used in our models 
will be stated as follow. Assume the following relevant 
parameters for the retailer: 

L: Total number of retailers 

lr : Index of retailer l 

lr
A : A constant in the demand function of retailer l, 

which represents his market scale 

lre : Coefficient of the product’s demand elasticity for 

retailer l  

lrp : Retail price charged to the customer by retailer l  

lrD : Retailer l’s annual demand  

lrR : Retailer l’s annual fixed costs for the facilities and 

organization to carry this product  

lr
X : Decision vectors set of retailer l. 

l lr rx X  is his 

decision vector. 

lr
Z : Objective (payoff) function of retailer l 

The retailer’s decision variables are: 

lrG : Retailer l’s profit margin  

lr
k : The integer divisor used to determine the 

replenishment cycle of retailer l 
The manufacturer’s relevant parameters are: 
m: Index of manufacturer 

lmph : Holding costs per unit of product l inventory 

sv
mrh : Holding costs per unit of raw material purchased 

from supplier v  

mS : Setup cost per production  

mO : Ordering processing cost per order of raw materials 

lP : Annual production capacity product l, which is a 

known constant 

mR : Manufacturer’s annual fixed costs for the facilities 

and organization for the production of this product  

lmp : Wholesale price charged by the manufacturer to the 

retailer l 

lmc : Production cost per unit product l for the 

manufacturer 

mX : Decision vectors set of the manufacturer.  

m mx X  is his decision vector. 

mZ : Objective (payoff) function of the manufacturer 

The manufacturer’s decision variables are: 

lmG : Manufacturer’s profit margin for product l 

T : Manufacturer’s setup time interval 
The relevant parameters for the supplier are: 
V: Total number of suppliers 

vs : Index of supplier v, v=1,2,…,V 

vsh : Holding costs per unit of raw material inventory for 

supplier v 

vsc : Raw material cost paid by supplier v 

vsR : Supplier v’s annual fixed costs for the facilities and 

organization to carry the raw material 

vsO : Order processing cost for supplier v per order 

vs : Usage of supplier v’s raw material to produce a unit 

product l 

vsp : Raw material price charged by supplier v to the 

manufacturer 

vsX : Decision vectors set of supplier v. 
v vs sx X  is his 

decision vector. 

vsZ : Objective (payoff) function of supplier v 

The supplier’s decision variables are: 

vsG : Supplier v’s profit margin 

vsK : The integer multiplier used to determine the 

replenishment cycle of supplier v 
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III. MODEL FORMULATION 

A. The three-level nest Nash game scheme 

We model the CPISC problem as a three-level nested Nash 
game with V+ L+1 players, i.e., V suppliers, one 
manufacturer and L retailers. Each supplier controls decision 

vectors set 
vsX  (v=1,2,…,V) to maximize his payoff 

function 
vsZ . A decision vector 

v vs sx X includes profit 

margin 
vsG and replenishment decisions 

vsK . The 

manufacturer controls the decision vectors set mX  to 

maximize his payoff function mZ . His decision vector 

m mx X  consists of profit margin 
lmG  for different 

product l (l=1,2,…L) and setup time interval T. Each retailer 

controls the decision vectors set 
lr

X , whose decision vector 

l lr rx X  is composed of profit margin 
lr

G  and 

replenishment decisions 
lr

k , to maximize his payoff function 

lr
Z .  

In our game framework, firstly, the V suppliers formulate 
the bottom-level Nash game. Given the manufacturer’s and 
the retailers’ decision vectors, each supplier’s decision vector 

v vs sx X  varies with the change of the other suppliers’ 

decision vectors to maximize his payoff function 
vsZ . When 

none of them would like to alter their decisions, the 
bottom-level Nash equilibrium is obtained. Secondly, the 
suppliers in equilibrium being a player formulate the 
middle-level Nash game with the manufacturer. In this game, 
given the retailers’ decision vectors, the suppliers adjust their 

decision vectors  
1
,...,

Vs s sx x x  with the change of the 

manufacturer’s decisions, while the manufacturer varies his 
decision vector 

m mx X  as the suppliers’ decisions 

changing until none of them could improve his payoff 
function by unilaterally altering his decisions. Thus, the 
middle-level Nash equilibrium achieves. Lastly, the top-level 
Nash game is played between the suppliers and the 
manufacturer in equilibrium and all the retailers. Each 

retailer’s decision vector 
l lr rx X  varies with the change of 

the suppliers’ and the manufacturer’s decisions and the other 
retailers’ decisions. The suppliers and the manufacturer also 

adjust their equilibrium decision vectors  ,s mx x  with the 

change of the retailers’ decisions. The process continues until 
the suppliers, the manufacturer and the retailers cannot 
increase their payoffs by changing their decisions. That is the 
top-level Nash equilibrium reaches.  

B. The retailers’ model 

We first consider the objective (payoff) function 
lr

Z  for 

the retailers. The retailer’s objective is to maximize his net 

profit by optimizing his profit margin 
lr

G  and replenishment 

decision 
lr

k . 

As indicated in the fourth point of the assumption in 
section 2.1, the integer multipliers mechanism is employed 

between the manufacturer and the retailers. Since the setup 
time interval for the manufacturer is assumed to be T, the 

replenishment cycle for retailer l is /
lr

T k . 
lr

k  should be a 

positive integer. Thus, the annual holding cost is 

/ 2
l l lr r rh TD k  (see Fig. 1(a)) and the ordering process cost is 

/
l lr rO k T .  

lv ls rTD
lu ls rTD

l

l

r

r

TD

k

v lv ls s r
l

KT D

  The retailer l faces the holding cost, the ordering cost and an 
annual fixed cost. Therefore, the retailer l’s objective 
function is given by the following equation: 

, 2
max l l l

l l l l l

l
r rl l

r r r
r r r r r

r
k G

TD O k
Z G D h R

k T
    ,                                   (1) 

Subject to 
{1, 2,3,...}

lr
k  ,                                                            (2) 

   
l l lr r mG p p  ,                                                               (3) 

l l l lr r r rD A e p  ,                                                           (4) 

     0
lr

G  ,                                                                        (5) 

0
lr lD P  .                                                                (6) 

    Constraint (2) shows the demand function. Constraint (3) 
gives the value of the divisor used to determine the retailer l’s 
replenishment cycle time. Constraint (4) indicates the 
relationship between the prices (the retail price and the 
wholesale price) and retailer l’s profit margin. Constraint (5) 

ensures that the value of 
lr

G  is nonnegative. Constraint (6) 

gives the bounds of the annual demand, which cannot exceed 
the annual production capacity of the product. 
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C. The manufacturer’s model 

The manufacturer’s objective is to determine his decision 

vector mx , composed of the profit margins for all the 

products 
lmG  and the setup time interval for production T, to 

maximize his net profit. 
   The manufacturer faces annual holding costs, setup and 
ordering costs, and an annual fixed cost. The annual holding 
cost for the manufacturer is composed of two parts: the cost 
of holding raw materials used to convert to products, the cost 
of holding products. During the production portion, the 
average inventory of raw material v used for product l is 

/ 2
lv ls rTD . The production time in a year is /

lr lD P . 

During the non-production portion of the cycle, the raw 
materials inventory drops to zero and the holding cost is zero 
according to our assumption. Hence, the annual holding cost 

for raw material v is  2
/ 2

s lv lv
mr s r lh T D P . The annual 

inventory for product l’s is given by 1
1

2
l

l

l

r
r

r l

DT
D

k P

 
   

 
 

(as suggested by [8]). The behavior of the inventory level for 
the manufacturer is illustrated as Fig. 1(b). The setup cost 

mS and ordering cost mO occur at the beginning of each 

production. Thus, we can easily derive the manufacturer’s 

objective (payoff) function mZ : 

 
1

,..., ,..., ,

2

1
1

2

2

max l

l l l l
l L

l

lv l

sv

m m m

r
m m r r mp

l l r l

s r m m
mr m

l v l

G G G T

DT
Z G D D h

k P

T D S O
h R

P T



  
         


  

 



     (7) 

Subject to   

l l lv v lm m s s m
v

G p p c   ,  for each l=1,2,…L              (8) 

    0
lmG  ,  for each l=1,2,…L                                        (9) 

0T  .                                                                       (10) 
Constraint (8) gives the relationship between the price (the 

wholesale price and the raw material price) and the 
manufacturer’s profit margin. Constraint (9) and (10) ensure 
that the values of 

lmG  and T are nonnegative. 

D. The suppliers’ model 

Each supplier’s problem is to determine an optimal 

decision vector 
vsx (including replenishment decisions 

vsK and profit margin 
vsG ) to maximize his net profit.  

According to the fourth point of the assumption in section 
2.1, the integer multipliers mechanism is adopted between 
the suppliers and the manufacturer. So the replenishment 
cycle time for supplier v is 

vsK T . The raw material inventory 

drops every T year by 
lv ls r

l

T D  starting from 

( 1)
v lv ls s r

l

K T D   as Fig. 1(c) shows. Therefore, the 

holding cost is  
( 1) ( ) ( 2) ( ) ... ( )

v lv l v v lv l v lv l vs s r s s s r s s r s
l l l

K T D Th K T D Th T D Th          

 which is equal to 
( 1)

2

v lv l

v

s s r
l

s

K T D
h

 
. The supplier faces 

holding costs, ordering costs, and an annual fixed cost. Thus, 

the supplier v’s objective (payoff) function 
vsZ  is: 

,

( 1)

2
max

v lv l
v

v v lv l v v

v
s sv v

s s r
sl

s s s r s s
l s

K G

K T D O
Z G D h R

K T





   


    (11) 

Subject to 
   1, 2,3,...

vsK  ,                                                        (12) 

v v vs s sG p c  ,                                                            (13) 

    0
vsG  .                                                                     (14) 

Constraint (12) gives the value of supplier’s multiplier 
used to determine his replenishment cycle time. Constraint 
(13) indicates the relationship between the raw material price 
and the supplier’s profit margin. Constraint (14) ensures the 
non-negativeness of 

vsG . 

IV. SOLUTION ALGORITHM 

In this paper, we mainly based on analytical theory used by 
[7] to compute Nash equilibrium. In order to determine the 
three-level nested Nash equilibrium, we first use analytic 
method to calculate the best reaction functions of each player 
and employ algorithm procedure to build the Nash 
equilibrium. 

A. Reaction functions 

1) The retailers’ reactions 

We express the retailer l’s demand function by the 
corresponding profit margins. Substituting (3), (8), (13), we 
can rewrite (5) as: 

 
l l l l l lv v v lr r r r m s s s m

v

D A e G G G c c 
      

 
       (15) 

Now suppose that the decision variables for suppliers and 
manufacturer are fixed. Then the retailer’s problem of 
finding the optimal replenishment cycle becomes: 

 min
2

l l l

l l
rl

l

r r r
r r

k
r

TD k O
U h

k T
  .                                    (16) 

The value of 
lr

k  that minimize 
lr

U  is by the smallest *

lr
k  

that satisfies: 

   
2

* * * *1 1
2

l l

l l l l

l

r r
r r r r

r

T h D
k k k k

O
    .               (17) 

The best reaction 
lr

k  can be expressed as [13]: 

2
*

2
1 1 / 2l l

l

l

r r
r

r

T h D
k

O

  
    
    

.                         (18) 

Here, we define a    as the largest integer no larger than 

a. 
We then consider the optimal value of 

lr
G . From 

constraints (6) and (7), we can obtain lower bound and the 
upper bound of 

lr
G : 
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 max 0, l

l l lv v v l

l

r l
r m s s s m

vr

A P
G G G c c

e


   
         

   

(19) 

 l

l l lv v v l

l

r
r m s s s m

vr

A
G G G c c

e
      

 
                (20) 

Substituted (16) into (2), we can see that 
lr

Z  is a quadratic 

function of 
lr

G . Because the second derivative of 
lr

Z  with 

respect to 
lr

G  is negative, we have: 

2

2
2 0l

l

l

r
r

r

Z
e

G


  


.                                               (21) 

Thus, 
lr

Z  is a concave function of 
lr

G .  

Set the first derivative of 
lr

Z  with respect to 
lr

G  equal to 

zero. Then 
lr

G  can be obtained as: 

2 4
l

l

l l

rl
r

r r

h TC
G

e k
  ,                                                 (22) 

where  
l l l lv v v ll r r m s s s m

v

C A e G G c c      
 

 . 

If 
lr

G  obtained from (22) is in the interval of ,
l lr rG G 

 
, it 

is obviously the optimal reaction *

lr
G  of the retailer. 

Otherwise, we have to substitute the bounds (19) and (20) 
into (2), the bound that provides higher profit is the best 

reaction *

lr
G . 

2) The manufacturer’s reactions 

Assume that the decision variables for the suppliers and 
the retailers are fixed. The manufacturer’s problem of finding 
the optimal setup interval in this case becomes: 

 2

1
min 1

2 2
lv ll

l l sv

l

s rr m m
m r mp mr

T
l l vr l l

T DD S OT
U D h h

k P P T

   
          

 

 (23) 
Since the second derivation of (23), 

 2

2 3

2
0m mm

S OU

T T


  


, the optimal T for the minimum 

of mU  can be derived from:  

 2

2

1 1
1 0

2 2
lv ll

l l sv

l

s rrm m m
r mp mr

l l vr l l

DDU S O
D h h

T k P P T

   
            

 
 

(24) 
or 

 
*

2

1 1
1

2 2
lv ll

l l sv

l

m m

s rr
r mp mr

l l vr l l

S O
T

DD
D h h

k P P






  
        

 

.      

(25) 

Obviously, the optimal *T  obtained from (25) satisfies 
constraint (11). 

The net profit mZ  is the quadratic function about 
lmG . 

From constraints (7) and (10), we can obtain lower and the 

upper bounds of 
lmG : 

 max 0, l

l l lv v v l

l

r l
m r s s s m

vr

A P
G G G c c

e


            
 ,      

(26) 

 l

l l lv v v l

l

r
m r s s s m

vr

A
G G G c c

e
      

 
 .          (27) 

mZ ’s second derivation about 
lmG  is  

22

2

1
2 1 l

l l l lv sv

l l

rm
r r mp s mr

vm r l

e TZ
e e T h h

G k P


               


      (28) 
If  

2

2
0

l

m

m

Z

G





，                                                        (29) 

the optimal 
lmG  can be obtained from the first order condition 

of mZ : 

0
l

m

m

Z

G





                                                                (30) 

Substitute (16) into (30), we have: 

1
1

2

21
2 1

2

l

l

l

l l

l l l

lv sv

l

mp
m

r

m m

mp r r
s mr

vr l l

h T
W

k
G W

h T e e T
h

k P P


 
   

   
 

     
 


       

(31) 

where  
1

l

l l lv v v

l

r
m r s s s m

vr

A
W G G c c

e
      

 
 . 

If 
lmG  obtained from (31) is in the interval of 

,
l lm mG G 

  , it is the optimal reaction *

lmG  of the 

manufacturer. Otherwise, mZ  reaches its maximal value 

when 
lmG  is at its upper bound or lower bound. The bound 

that provides higher profit is the optimal reaction *

lmG . 

If 
2

2
0

l

m

m

Z

G





, we also have to find the bound that 

provides maximal value of mZ .  That is the best reaction 
*

lmG . 

3) The suppliers’ reactions 

Lastly, we consider the reaction functions for the 
suppliers. Suppose that the decision variables for retailers 
and manufacturer are fixed. The supplier’s problem of 
finding the optimal replenishment cycle becomes: 

Engineering Letters, 18:4, EL_18_4_09

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



 
 

 

 
( 1)

min
2

v lv l
v

v v
sv

v

s s r
sl

s sK
s

K T D O
U h

K T


 


.            (32) 

The optimal 
vsK  that minimize 

vsU  can be expressed as 

follows: 

*
2

8
1 1 / 2v

v

v lv l

s
s

s s r
l

O
K

T h D

  
      
    


.              (33) 

We then consider supplier v’s optimal reaction for 
vsG . 

The second order condition for 
vsZ ,  

2
2

2
2 0v

lv l

v

s
s r

ls

Z
e

G



  

  .                                 (34) 

Thus the necessary condition to maximize the supplier’s 

net profit 
vsZ  is: 

2

2

( 1)
0

2

v lv l
v

lv l v lv l v

v

s s r
s l

s r s s r s
l ls

K T eZ
D G e h

G


 


   




 

.    (35) 
Substitute (16) into (35), we can obtain: 

1,...,

2

( 1)

2 4

lv l lu u lv

v

v v

lv l

s r s s s l
l u V l

su v
s s

s r
l

e G E
K T

G h
e

  






 


 

  


,       

(36) 

where 
l l l l lv v ll r r r m s s m

v

E A e G G c c 
     

 
 . 

From constraints (7) and (15), we can obtain the upper 

bound and lower bound of 
vsG : 

 1
max 0, l

v l l lu u u lv v l

l lv lv

r l
s r m s s s s s m

u vr s s

A P
G G G G c c c

e
 

  

              


,   (37) 

 1
l

v l l lu u u lv v l

l lv lv

r
s r m s s s s s m

u vr s s

A
G G G G c c c

e
 

  

        
 


.       (38) 

If 
vsG  obtained from (36) is in the interval of ,

v vs sG G 
 

, 

it is the best reaction *

vsG  of supplier v. Otherwise, we have 

to substitute the bounds (37) and (38) into (12), the bound 

that provides higher profit is the optimal reaction *

vs
G . 

B. Algorithm 

We denote  ,
l l lr r rX G k ,  

1 2
, ,..., ,

Lm m m mX G G G T  and 

 ,
v v vs s sX G K  as the sets of decision vectors of retailer l,  

manufacturer and supplier v, respectively. 
1

...
Vs s sX X X   , 

1
...

Lr r rX X X   , 
ms s mX X X   and 

ms rX X X   are the 

strategy profile sets of the suppliers, the retailers, the 
suppliers and the manufacturer, and all the chain members.  

We present the following algorithm for solving the 
three-level nested Nash game model:  
Step 0. Initialize   (0) (0) (0) (0), ,s m rx x x x  in strategy set. 

Step 1. Denote (0)

lrx


 as the strategy profile of all the chain 

members in (0)x  except for retailer l. For each retailer l, 
fixed (0)

lrx


, find out the optimal reaction  * * *,
l l lr r rx G k  to 

optimize the retailer l’s payoff function 
lr

Z  in its strategy set 

lr
I . 

Step 2. Denote (0)
mx  as the strategy profile of all the chain 

members in (0)x  except for the manufacturer. Fixed (0)
mx , 

find out the optimal reaction  
1 2

* * * * *, ,..., ,
Lm m m mx G G G T , to 

optimize the profit function 
mZ  in its strategy set mI .   

Step 3. Denote (0)

vsx


 as the strategy profile of all the chain 

members in (0)x  except for supplier v. For each supplier v, 
fixed (0)

vsx


, find out the optimal reaction  * * *,
v v vs s sx G K  to 

optimize the profit function 
vsZ  in its strategy set 

vsI . If 

* (0) 0s sx x  , the bottom level Nash Equilibrium *
sx  

obtained, Go step 4. Otherwise, (0) *
s sx x , repeat step 3. 

Step 4.  * * *,ms s mx x x . If * (0) 0ms msx x  , the middle level 

Nash Equilibrium *
msx  obtained, Go step 5. Otherwise, 

(0) *
ms msx x , go step 2. 

Step 5.  * * *,ms rx x x . If * (0) 0x x  , the above level Nash 

Equilibrium *x  obtained. Output the optimal results and 
stop. Otherwise, (0) *x x , go step 1. 

V. NUMERICAL EXAMPLE AND SENSITIVE ANALYSIS 

In this section, we present a simple numerical example to 
demonstrate the applicability of the proposed solution 
procedure to our game model. We consider a supply chain 
consisting of three suppliers, one single manufacturer and 
two retailers. The manufacturer procures three kinds of raw 
materials from the three suppliers. Then the manufacturer 
uses them to produce two different products and distributes 
them to two retailers. The related input parameters for the 
base example are based on the suggestions from other 
researchers ([7, 11, 16]). For example, the holding cost per 
unit final product at any retailer should be higher than the 
manufacturer’s. The manufacturer’s setup cost should be 
much larger than any ordering cost. These parameters for the 
based example are given as: 

1
0.01sh  , 

2
0.008sh  , 

3
0.002sh  ,

1
12sO  , 

2
23sO  , 

2
13sO  , 

1
0.93sc  , 

2
2sc  , 

3
6sc  , 

1
0.05

smrh  , 
2

0.02
smrh  , 

3
0.04

smrh  , 
1

0.5mph  , 

2
1mph  , 

1
15mc  , 

2
25mc  , 

11
1s  , 

12
2s  , 

13
3s  , 

21
5s  , 

22
4s  , 

23
2s  , 1000mS  , 50mO  , 

1 500000P  , 
2 300000P  , 

1
1rh  , 

2
2rh  , 

1
200000rA  , 

2
250000rA  , 

1
1600re  , 

2
1400re  , 

1
40rO  , 

2
30rO  . And the fixed cost for all the 

players are 1000. By applying the above solution procedure 
in section 5.2, the optimal results for the suppliers, the 
manufacturer and the retailers are shown in Table 1. In order 
to ensure that our conclusions are not based purely on the 
chosen numerical values of the base example, we also 
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conduct some sensitive analysis on some parameters, 
including the market related parameter, the production 
related parameter and the raw material related parameter. 

Through the three-level nested Nash game model and the 
numerical example, some meaningful managerial 
implications can be drawn: 

(1) The increase of market parameter 
1r

e  will reduce the 

retailer 1’s profit, but benefit the other retailer. When 
1r

e  

increases, the change of the retailer 1’s demand is more 
sensitive to the change of his retail price compared with the 
base example. The retailer 1’s profit can be less reduced by 
lowering down his retail price. But his market demand cannot 
be increased, which makes the manufacturer seek for higher 
profit from other product to fill up the loss deduced by this 
product / retail market. It is good news to the other product / 
retailer, because the manufacturer will lower down his 
wholesale price to stimulate this market demand.  

(2) When the manufacturer’s setup cost mS  increases, the 

manufacturer’s profit decreases more significantly than the 
retailers’, while some suppliers’ profits increase. The 

increase of mS  makes the manufacturer produce more 

product with higher profit margin (product 2) and reduce the 
production of lower profitable product (product 1). The 
usage of raw materials increases as the change of the 
manufacturer’s production strategy. At the same time, some 
suppliers bump up their prices, thus bringing higher profits to 
them. 
(3) The impact of the increase of supplier 1’s raw material 

cost 
1s

c  on his own profit may not as significant as that on 

the other suppliers’. The increase of 
1s

c  makes the supplier 1 

raise his raw material price and result in an increase cost in 
final products, as well as the decrease in market demands. 
Hence, the other suppliers will reduce their prices to keep the 
market and optimize their individual profits. Supplier 1 has 
the much lower profit margin than other suppliers, so he will 
not reduce his profit margin. Hence, the supplier 1’s profit 
decreases least.  

(4) When the market parameter 
1r

e , the manufacturer’s setup 

cost mS , or the supplier’s raw material cost 
1s

c increase, the 

manufacturer’s setup time interval will be lengthened. A 

higher 
1r

e  or 
1s

c results in the total market demands 

decrease, as well as a lower inventory consumption rate. The 

increase of mS  makes the manufacturer’s cost per 

production hike up. Hence, the manufacturer has to conduct 
his production less frequently. 

VI. CONCLUSION 

In this paper, we have considered coordination of pricing 
and replenishment cycle in a multi-level supply chain 
composed of multiple suppliers, one single manufacturer and 
multiple retailers. Sensitive analysis has been conducted on 
market parameter, production parameter and raw material 
parameter. The results of the numerical example also show 
that: (a) when one retailer’s market becomes more sensitive 
to their price, his profit will be decreased, while the other 
retailer’s profit will increase; (b) the increase of the 

manufacturer’s production setup cost will bring losses to 
himself and the retailers, but may increase the profits of some 
suppliers; (c) the increase of raw material cost causes losses 
to all the supply chain members. Surprisingly, the profit of 
this raw material’s supplier may not decrease as significant as 
the other suppliers’; (d) the setup time interval for the 
manufacture will be lengthened as the increase of the 
retailer’s price sensitivity, the manufacturer’s setup cost or 
the supplier’s raw material cost. 

However, this paper has the following limitations, which 
can be extended in the further research. Although this paper 
considers multiple products and multiple retailers, the 
competition among them is not covered. Under this 
competition, the demand of one product / retailer is not only 
the function of his own price, but also the other products’ / 
retailers’ prices. Secondly, the suppliers are assumed to be 
selected and single sourcing strategy is adopted. In fact, 
either supplier selection or multiple sourcing is an inevitable 
part of supply chain management. Also, we assume that the 
production rate is greater than or equal to the demand rate to 
avoid shortage cost. Without this assumption, the extra cost 
should be incorporated into the future work. 
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Table 1. Results for suppliers, manufacturer and retailers under different parameters 

(a) Product demand and profits for suppliers, manufacturer and retailers 

 

 

    

 

 

 

 

(b) Pricing and replenishment decisions for suppliers, manufacturer and retailers 

1
s

p  
2

s
p  

3
s

p  
1mp  

2
m

p  
3

r
p  

3
r

p  
1

s
K

2
s

K
3

s
K

1
r

k
2

r
k  T  

1.77 6.15 15.15 79.37 101.96 102.20 140.28 1 1 2 6 11 0.2691 

1.99 5.99 13.58 71.98 100.42 88.09 139.51 1 1 2 6 11 0.2695 

1.76 6.20 15.27 79.55 101.61 102.28 140.10 1 1 1 7 14 0.3252 

2.23 6.09 15.01 79.44 103.50 102.23 141.05 1 1 2 6 11 0.2707 

 

  1
r

D  

(104) 
2

r
D  

(104) 
1

s
Z  

(105) 
2

s
Z  

(105) 
3

s
Z  

(105) 

mZ  

(105) 
3

r
Z  

(105) 
3

r
Z  

(105) 
Base 

example 
 3.6486 5.3608 2.5335 11.909 19.804 7.7953 8.0236 18.943 

1
r

e  1920 3.0870 5.4689 3.2029 11.181 15.305 7.4206 4.7535 19.597 

m
S  1500 3.6345 5.3857 2.5306 12.081 20.084 6.7750 7.8407 18.269 

1
m

c  1.395 3.6426 5.2531 2.4945 11.568 19.296 7.5513 7.9950 18.149 

(Continued) 
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