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Host Pathogen Interactions: Insight of Delay
Response Recovery and Optimal Control in
Disease Pathogenesis
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Abstract— Research in the infection and recovery,
based on mathematical understanding is aimed at de-
veloping how the immune system protects against in-
fectious diseases, with a major focus on host-pathogen
interactions [1]. In recent years greatest challenges
in front of humanity is learning how the immune
response protects against variety of breathing and
emerging infectious disease. A lot of theoretical and
experimental investigations of natural selections in
host-pathogen system been explored and it has been
established that vaccination is the most cost effective
public health tool in human history [2]. In this re-
search articles we attempt to offers an opportunity
to examine the mathematical relationship that form-
ing a model between host and pathogen as in biology
and manifests the time rate of change of these species
for better understanding of the recovery of the dis-
ease. On that outlook a recovery rate of the infected
host to that of susceptible host is incorporated in our
proposed mathematical model. Then we introduce a
discrete time delay to the model to describe the time
requirement for recovery from infected host to sus-
ceptible host by using various drugs or vaccinations.
Again we use optimal control that is characterized in
terms of the optimality of the system, to achieve im-
proved quality of treatment. The model is analyzed
theoretically and numerically. Numerical solution of
the model is in conformity with those obtained the-
oretically. An effort is made to relate the model to
prototype biological system by exploring a probable
disease free parametric region. We also studied the
effect of time delay on the stability of the infected
equilibrium and optimal control process which can re-
duce the infected host populations.
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1 Introduction

Mathematics explores the language of science and technology.
Its application in theoretical biology has become immense im-
portant in analyzing the spread and control of infectious dis-
ease. So far mathematical analysis carried through modelling
of biological process is enormously useful in treatment of dis-
ease, various detection, and prevention therapy and control
programs by using a variety of mathematical tools and tech-
niques [3], [4] [5], [6], [7], [8], [9], [10], [11], [12]. In that
sense differential equations could be used potentially to under-
stand epidemiological systems in order to contain the outbreak
of epidemiological diseases, which was considered initially by
Ronald Ross way back in 1911 [13]. By using a set of differ-
ential equation Sir Ross understood that a certain thresholds
relating to malarial eruption within the species Homo sapi-
ens was helped him greatly towards discovering malaria vac-
cine. A incredible assortment of models have been formulated
using mathematical perception and method, to analyze epi-
demiological or such class of biological systems specially when
infectious disease are involved in the system. These mod-
els have involved aspects such as passive immunity, general
loss of vaccine and disease-acquired immunity, stages of in-
fection, vertical transmission, disease vectors, macroparasite
loads, age structure, spatial spread, vaccination quarantine,
chemotherapy, etc. [14], [15]. It would be mentioned here
that Hammer (1906) [16] formulated and analyzed a discrete
time delay model to understand the recurrence of measles epi-
demics. Daniel Bernoulli (1970) started the pioneering ven-
ture of applying mathematical concepts in case of epidemics
like small pox. Not only has that, these special models been
formulated as disease such as rubella, chickenpox, whooping
cough, rabies, diphtheria, filariasis, rabies, gonorrhoea, her-
pes, syphilis, and HIV/AIDS for enrich understanding of bio-
logical system [14].

Over that last few years microbiologist tried to introduce the
thought of the term host-pathogen interaction [17], [18], [19],
that microbial pathogenesis reflects an interaction between
two entities host and pathogen [20]. From that point of view
of disease pathogenesis, the interaction is reducible into two
outcomes: those that result in damage to the host and those
that result in no damage. Disease occurs when the host sus-
tains sufficient damage to perturb homeostasis [21], [22]. With
an idea of that host damage or no damage is the most per-
tinent consequence of the host-pathogen interaction. In a bi-
ological or immunological system when we considering dis-
ease eruption, the ultimate apprehension of our researcher is
to count actual amount of damage through potentially seri-
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ous pathogens which will be depend upon the virulence of
pathogen-host interaction by any means research work [23].
Now we are going to able discuss about host-pathogen mod-
els which are mathematically prototypes pertaining to epi-
demiology and these are in immense important in view of the
emergence and re-emergence of epidemiological disease in the
present day of global scenario. In this type of model the host
population is divided into two classes, susceptible (S) i.e.,
healthy organisms and infected individuals (/). Pathogens
(V') cause infection to host transforming S to I. The model
actually describes the time rate of change of S, I, and V
including various realistic model parameters arising out of in-
fluence from environment, immunization, inter-class contact
etc. These classes of models are important in their own rights
and are also relevant for predator-prey or host-parasite type of
models. In the predator-prey models, the effect of pathogenic
diseases on the model dynamics and its constituents is an im-
portant area from mathematical as well as ecological point of
view. Thus researchers are paying increased attention to the
entire spectrum of host-pathogen research from recent novel
insight into innate immunity to the pathogenesis of major
global pandemics, such as HIV, TB, malaria and pathogen-
esis of emerging infections such as SARS and hemorrhagic
fevers [2], [24], [25].

Now we look into the sequence of historical events relating to
host-pathogen interactions with enormous ideas of biological
as well as mathematical research for recent years. Though
earlier we have mentioned the work of Arturo and Liise [20],
[21] where they signifies their ideas that host-pathogen in-
teractions can be analyzed using host damage as the com-
mon denominator for characterizing microbial pathogenecity
and can provide a conceptual frame work for incorporating
the importance of the host response into the outcome of the
host microbe interaction. They have also established that the
measures of damage that rely on mortality, tissue destruction,
or clinical disease may be too intensive to characterize host-
pathogen interactions that lead to colonization or chronicity.
Roy and Chattopadhyay [1] focused in their recent works on
three species mathematical model of host-pathogen interac-
tions that the removal of infected host population is caused
by the biological and physical realizable threshold of recov-
ery rate. Chattopadhyay, Mukhopadhyay and Roy [26] took
a generalized Gause model of prey-predator character includ-
ing viral infection and studied the stability of the different
populations. Hethcote and Driessche [27] formulated SIS epi-
demiologic models where delay has been incorporated corre-
sponding to the infectious period, and disease related deaths.
They have shown that the model with logistic dynamics, pe-
riodic solutions in the infectious fraction can occur as the
population approaches extinction for a small set of param-
eter values. Furthermore another pioneer work carried out by
Ennos [23] where he has drawn his attention that the trans-
port of co-evolved pathogen-host systems into new environ-
ment may lead to the evolution of altered levels of pathogen
aggressiveness, if transmission rates are different in the new
environment. With the growing research in the prey-predator
and other prototypical systems, it became apparent that, the
pathogen or viral growth through replication influences the
model dynamics. Bairagi, Roy and Chattopadhyay [28] em-
phasized the same in a subsequent communication. Bairagi,
Roy and Chattopadhyay [29] in their pioneer communication

M Pathogen
Mortality

Figure 1: Schematic diagram of the model system equa-
tions(2.6) depicting the inter flow of constituent popula-
tions.

in recent years, carried a comparative study of a predator-prey
model with several response function. More recently Stengel
[30] examine through a set of differential equations forming
by a wild-type model of host pathogen and also the mutant
infection. His study shows that current drug class can pro-
vide indirect control of low fitness drug-resistant HIV strains
through dynamic coupling to wild-type strains and immune
system dynamics. From computational analysis he conclude
that “hit early, hit hard” therapy is optimal, derived from
clinical experience.

In this paper we consider a conventional host-pathogen model
including a recovery of the infected individuals to the healthy
organisms termed as susceptible [1]. The essential features of
a conventional host pathogen system such as, logistic growth
of susceptible, pathogen replication, lysis death of infected
individuals and mortality of pathogens, are all incorporated
in the model. We would predominantly explore the bearing
of host recovery on the stability of the system and related
characteristics.

In this paper we also propose and analyze mathematical
model of host-pathogen interactions, assuming infected hosts
which do not grow or reproduce but they can recover from
pathogenic infection and move to add to the susceptible host
population and this recovery would stem out from immuniza-
tion or vaccination. Thus there exists a finite time lag or delay
in the process of recovery and this finite time lag exist be-
tween actively infected host and getting its subsequent recov-
ery. Such realistic time lag has been incorporated in the model
under consideration. In this case our aim is to study the dy-
namics of the proposed model including delay and to explore
the crucial system parameters and their ranges in order to ob-
tain different theoretical behaviors predicted from the inter-
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action between susceptible host, infected host and pathogen,
and moreover the recovery response against pathogen infected
host population through immunization or vaccination.

In section 4 of our research article we have used an optimal
control theory paradigm to host-pathogen interactions model
with therapeutic outlook and such therapeutic control as a
way to suppress the pathogenic production. Our analytical
and numerical results reveal that how a cost-effective com-
bination of treatment efforts may depend on the population
size, cost of implementing treatments control and the different
parameters of the model.

The model is analyzed in two different avenues, analytical
and numerical. Coupled differential equations depicting the
model system are made dimensionless and the linearized fixed
point solutions of these equations are obtained. Existence,
uniqueness and boundedness of the non trivial fixed point so-
lutions are checked. Stability of the system is analyzed and
conditions are obtained. In section 3 of our research arti-
cle we have find out Sufficient Conditions for Nonexistence
of Delay Induced Instability and Criterion for Preservation of
Stability,Instability and Bifurcation Results. Lastly we have
find out Optimally Controlling Therapy. Model equations are
solved numerically to check threshold values of different model
parameters and the concurrence of these solutions with those
obtained analytically are checked. Numerical findings are in
agreement with the theoretical results.

2 The Basic Assumptions and the Math-
ematical Model

We consider a host pathogen model consisting of a host pop-
ulation, whose concentration is denoted by N ([N] = number
of host per designated area) and a pathogen population in-
flicting infection in the host population whose concentration
is denoted by V' ([V] = number of pathogens per designated
area). In the presence of pathogenic infection, the host pop-
ulation is divided into two disjoint classes, susceptible S, and
infected 1.

The following assumptions are made to formulate the basic
model equations.

(Al): In the ideal case of no pathogen the growth of suscep-
tible host population follows the logistic law [6] implying that
this growth is entirely controlled by an intrinsic birth rate
constant r(€ Ry) with a carrying capacity K(€ R+). The
mathematical form of such logistic growth is

%:TN(:[—

=z

). (2.1)

(A2): Introduction of pathogen in the system splits the host
population into two disjoint classes, namely susceptible host
S and infected host I, such that at any time t the total host
population remains as

N(t)=5(t)+ I(t). (2.2)
(A3): S increases its population by reproduction as per logis-
tic law (2.1), but I are incapable of any reproduction [6].

(A4): At any instant of time, all susceptible host popula-
tion (S) are equally susceptible and all infected population
are equally infectious.

(A5): It is assumed that the spread of disease takes place in
two avenues namely, by pathogens as well as by contact of a
susceptible host with a infected host. Pathogens are maxi-
mally infect v susceptible hosts per day. This infection rate
is half maximal at susceptible host population density of h
host.

It should be noted here that some researchers argued in fa-
vor of proportional mixing rate of contact between S and [
rather than a simple law of mass action. But Greenwood ex-
periment [4] on prototype systems showed that quantitative
results remain the same in either cases of the mentioned con-
tact processes.

Following assumptions (A3), (A4) and (A5), equation (2.1)
can be written as

~SV

G =rS(1— ) = AST - 225

dt

(2.3)

where A\(€ R4 ) is the intensity of infection by infected host
and and (€ Ry ) is the force of infection through contact with
pathogens.

The equation depicting the dynamics of pathogen population
thus becomes

av. _ SV

dt —  hy+S

+ndl — pV (2.4)
where d(€ R,) is the death rate constant of I. Note that
we consider the mortality of I to be completely due to lysis
and there exists no separate base line mortality of it. Here
n(€ R4 ) is the rate of cell lysis (replication of pathogens) and
the natural death rate of pathogens is denoted as u(€ R4).

Based on the string of arguments the time rate of change of I
can be written as

ySV.
h~y+S

dL — ST +

dt

—dlI. (2.5)
(A6): We assume that the infected hosts do not grow or re-
produce but they can recover from pathogenic infection and
move to add to the susceptible host population. Such recov-
ery would stem out from immunization or vaccination. We
consider a recovery rate of I to be denoted by 6(€ Ry).

Following the above assumption (Al — A6), the final set of
equations depicting the dynamics of susceptible host, infected
host and pathogens can be written as

9 =rS(1— SH) = ASI - 55 461
sv
dr AST+ A3V —dl - 51 (2.6)
o= _h1+vs +ndl —pv
where, S(0) >0, I(0) >0, V(0)>0.

The set of equations (2.6) constitute a generalized mathemat-
ical model for host-pathogen. A schematic diagram showing
the flow of different constituent masses of host and pathogens
conforming to the mathematical equations (2.6) . The vari-
ables of model equations (2.6) are to be made dimensionless
for the sake of simplicity. Here we rescale all the variables in
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Figure 2: Population densities of Susceptible host (S), In-
fected host (I) and Pathogen (V) are plotted as a function
of time for the Recovery rate § = 0.2. Other parameters
are as in Table.1.
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Figure 3: Population densities of Susceptible host (S), In-
fected host (I) and Pathogen (V) are plotted as a function
of time for the Recovery rate § = 0.4. Other parameters
are as in Table.1.

terms of carrying capacity K. Thus we apply the transforma-
tion, s = %,i = %,v = %,T = rt and get the following di-
mensionless form of the model equation (2.6). For notational
convenience we will replace 7 by t henceforth. The rescaled
equations are

ds — §(1 — (s +1)) — asi — i’j_”s—&—mi

ui :asi—&—%—fi—mi (2.7)
dv __ bsv .
E__c+s+gl_h'v
_ MK _ qK? _h _ s _ d
Where(;afT, b= s C—TFY, m =, f—;,
g="1% and h=2~%.
r r

2.1 Existence, Uniqueness and Bounded-

ness

We observe that right hand side of equation (2.7) are smooth
functions of the variables s,i,v and parameters, as long
as these quantities are non-negative, so local existence and
uniqueness properties hold in the positive octant for some time
interval (0,¢7). In the next theorem we show that the linear
combination of susceptible host, infected host and pathogens
is less than a finite quantity or in other words, the solution of

the system (2.7) is bounded.

Theorem 2.1 All the solution y(t) of (2.7), where y =
(s,1,v), is uniformly bounded for yo € RS’&.

Proof: We define a function W(¢t) : Ro,+ — Ro,+ by

W(t)=s+i+uv. (2.1.1)

Observe that W is well defined and differentiable on some
maximal interval (0,ty)

The time derivative of (2.1.1) along the solutions of (2.7) is

W = (s+i)(1—s—i) — fi — 22+ gi— ho,

. dvzt(t) S(s—l)z—s—(f—g)i—hv—i—l

If we assume that, 0 < o < min.(1,f —g,h) then we get

d‘/gt(t) + o<1 foreach te(0,ty).

Applying the theory of differential inequality [5] we obtain,
0 < W(s,i,v) < %(1 —e 2 + W(s(0),i(0),v(0))e" ¢, and
for t — oo, we have

0<W< 5 (2.1.2)

Hence all the solutions of y(¢) that initiate in R are confined
in the region B = {(s,i,v) € R} : W = %-i—lﬁ, for any k>
0}. Hence the proof.

2.2 Equilibria Conditions

System (2.7) possesses the following equilibria: Fo(0,0,0),
E1(1,0,0), and E*(s*,3",v")

where, " = S*Sg:_jj), v* =
root of

gi*(s"+c)
bs*+h(s*+c)

and s is the positive

D(s%)? = Qos™ — Q3 =0 (2.2.1)
and Q1 = ab+ah, Q2 =bf+hf+bm+mh—bg—ach and Q3 =
(m + f)ch. Note that equation (2.2.1) has a unique positive

2
_ Q2 +/0Z4a0; 93’ £ >0, Q>0

root, given by s* 307
(b+h)(m 4+ f) > (gb+ach). It is

and Q3 >0 for which

to be noted here that
s it <1 (2.2.2)

This condition is due to the fact that s(t) 4+ i(t) < 1,V ¢ > 0.
2.3 Stability Analysis

Constructing the variational matrix about any arbitrary equi-
librium E(s,,v), we state and prove the following theorems:

Theorem 2.3.1 The system (2.7) is unstable around Ej for
all parametric values. (The proof is obvious).

Theorem 2.3.2 The system (2.7) is asymptotically stable
around Fi if a + th) < (m+ f).
Proof: The variational matrix corresponding to F; is

-1 —1—a+m 1_+bc
0 a-m—-f = (2.3.1)
0 g 11175 —h

The eigenvalue of the variational matrix corresponding to
equilibrium F; is

x=-1 and x*—9ix—92=0 (2.3.2)
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Figure 4: Population densities of Susceptible host (S), In-
fected host (I) and Pathogen (V) are plotted as a function
of time for the Recovery rate § = 0.6. Other parameters
are as in Table.1.

where, 91 = a—m — f —h —
Hlht 1)+ 5%
eigenvalues implies that it has two roots and it is obvious that
the system (2.7) is asymptotically stable around Fi if a+

<(m+f).

Theorem 2.3.3  The system (2.7) is always stable
around E* for all parametric values if

m and Y2 = (a —m —

The last equation of (2.3.2) containing two

gb
b+h(14c)

. L L * . 2
(1) mcwv(mTJrf7 m:—f) <2s 2< mlm(ﬁ7 #fﬂ’ 29),
o maw(?ﬁi,i’z%? e A ) < f < EEmE
(#91) min( )>a

g+f7 f+g ’
(iv) m > maz(L, 202 2(1 4 g)),

+f 1+
(v) e> "8 (vi) > 2

Proof: Observe that from first two equations of the sys-
tem (2.7), we always have

deti) — (s +0)(1 - Fi<(s+1)(1 = (s +1)).
Hence [32] we have lim;_,o, {s(t) +i(t)} < 1. Thus we
have s* +i* < 1 and the last condition (2.2.1) is always
satisfied.

(s+1)) —

The characteristic equation of the linearized system of
(2.7), corresponding to E,, is given by

€3+ Asf? + A1+ Ag = 0. (2.3.3)

Where,
A2 =25"+i"—1-g +m+f—as +ai* + (sbcfc)za
Al +(fci1;;2 + (bf:_f)Q + agq()* + leZ + —|—g — gz

—2gs* —m + mi* +2ms —f+ fi*+2fs*

+as* — 2a(s*)? + £ 4 HE 4 o et
2. Ul
Ay = ag? it 2g(s ) i + ini i + afgv(z )
4 f9GD)? 92(1’*)2 _ gm()® | 2gms™i" _ mgi”
v* g v* (*)2 v* 1)*b h v*
gi* gi* myg(i bechv* cfhv*
+ v* v* + v* + (s*+c)? + (s*+c)?"
(2.3.4)
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Figure 5: Equilibrium solutions of S, I and V are plotted
as a function of recovery rate 6 < 1.0

From Routh-Hurwitz criterion, £* is locally asymptoti-
cally stable if and only if A5 > 0,4y > 0 and A A; —
A() > 0.

From the signs of those defined in (2.3.4), it is clear that
Ag > 0. It is easy to verify that Ag > 0 for all parametric
values, provided

(i) max(L,s%) < f, (i) i* > 12, (2.3.5)
It is also easy to verify that, AsA4; — Ag > 0 for all

parametric values provided,

(i) max(T5t mif S ) <st < min(ﬁ, #}:_gﬂgh
(14) max(3as* 2g7 9, “42, g(ga)7 abst) < f < Hz_g)a
(vit) mm(giff fig) > a,
(iv) m > max(Z, 2f+1 .21+ 9)),
(U) m+f.

(2.3.6)

From (2.3.5) and (2.3.6) it is obvious that system (2.7) is
always for all parametric values and hence completes the
theorem.

2.4 Global stability of the system

The Equilibrium E*(s*,i*,v*) is local asymptotic stable,
we construct the Lyapunov function

U(s,i,v) =wi(s — s* —s*lni)+wz(i—i* —i*lnl%)
+wz(v —v* —v*In %)

Calculate the upper right derivation U(s*,i*,v*) along
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Figure 6: Equilibrium solutions of S, I and V" are plotted
as a function of recovery rate § > 1.0

the system(2.7) we obtain,

DU (s*,i%,v*) = wi =G +wa 55§+ ws U
= —’U)l(S — S*)Z — bwl(s — 5*)(510 Si]—ﬂ) — (wl + awq

— awz)(s — s*)(i — i) — mwi (s — s*)(£ = &)

s—s* ds

Fwn(s =) (3 — ) +bwali = ) (e — wieta)
+ gwg(v - 'U*)(% - :7) - bwg(U - ’U*)(sic o s"s+c)
< 0.

(2.4.1)

When, wy > we and s € (0,00), ¢ € (0,00) and

v € (0,00), then the minimum and maximum of i
g and % are tends to zero respectively.

Thus, DTU(s*,i*,v*) < 0, According to the Lyapunov-
LaSalle inveriance principal, E*(s*,i*,v*) is globally
asymptotically stable.

2.5 Numerical solutions of the model Equa-
tions

Theoretical analysis of the model is done to explore sta-
bility, equilibria and uniqueness of the solutions and their
boundedness and global stability of the system. But, for
physical realization of the time evolution of different host
and pathogen populations with varying model parame-
ters, we consider numerical solutions of the set of equa-
tions (2.6). This enables us to visualize the dynamical
behaviors of variables S, I, and V. Values of different
constant model parameters, as given in Table.1, were cho-
sen from the amassed literature in the field. Note that
we want to emphasize the role of the recovery rate within
the model.

With the positive octant restriction on S, I, V at t =0
(iie, S > 0,1 >0,V > 0) we have chosen S(0) = 2,
I(0) = 1.5, V(0) = 11. We have considered variation in
the recovery rate (0). It is to be mentioned here that ¢

200
~100
s
3 &
1 " 10 12
05 6
it sy

Figure 7: Phase Plane Population densities of Susceptible
host (S), Infected host(I) and Pathogen (V) are plotted
as a function of time for the Recovery rate § = 0.6. Other
parameters are as in Table.1.

is taken in arbitrary units. To begin with, we check the
time evolution of S, I, and V with increasing 9.

Table.1. Values of parameters used for models dynamics
calculations.

Para- | Definition Default
meter Value
(day 1)
r Maximal growth rate 0.2
of susceptible host
K Carrying capacity 20 unit designated area
h~ Half-maximal at a 9 unit designated area

target cell density

A Force of infection
through contact with
infected host

0% Force of infection
through contact
with pathogens

0.2 unit designated area

0.04 unit designated area

d Lysis death rate 2.5 liter
of infected host

n Pathogens 115
replication factor

m Mortality rate 2.2

of pathogen

In Figure 2, we have shown these hosts and pathogen
populations as a function of time for § = 0.2. Note that,
we have gone upto a time ¢ = 350 days. This is because,
a thorough check on the system reveals stabilization of all
these populations well before ¢ = 350 and within this the
characteristic features of the system are manifested. In
Figure 2, we find oscillatory solutions for all three pop-
ulations bounded by stable upper and lower limits. As
we increase 0, the upper and lower limits of solutions
come closer (see Figure3). Beyond some § the two limits
of solutions merge into one and thereafter, unique stable
solutions for all three populations exist (see Figure 4).
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Figure 8: Population densities of Susceptible host (S), In-
fected host (I) and Pathogen (V) are plotted as a function
of time for the Recovery rate 6 = 0.2,0.4,0.6 and 7 = 1.
Other parameters are as in Table.1.

In Figure 5(a), Figure 5(b), and Figure 5(c) we have plot-
ted stable solutions for S,I, and V' populations for small
values of 0 < § < 1. Here we find that with 6 < 0.6 stable
solutions are oscillatory for all three populations where
bifurcating line towards lower § ~ 0.6 denote the stable
single solution of each population.

Figures 6 contains stable and unique solutions for differ-
ent populations for larger (6 > 1). We find that stable
(solution) value of susceptible host increases monoton-
ically, but the same for infected host rises faster and
similar rise in pathogen stable solution is the steepest.
With ¢ < 1, the system will be stable for small time span
but, for 6 > 1 the system undergoes initially bifurcated
and there after the susceptible host populations increases
monotonically, and other two populations that is infected
hosts and pathogens are goes to extinction.

The phase plane S- I- V (Figure 7) represents the tra-
jectory starting with the initial point which exhibits the
limit cycle oscillation and after some time it moves to-
wards the interior equilibrium point.

3 Time delayed model

In this section we have introduced a time delay in the re-
covery term of our basic mathematical model (2.6) of the
host-pathogen interactions in lieu of this recovery from

IR 00 0 40 60 0 100 200 300 40 500 600

Time (Day) —————>

Figure 9: Population densities of Susceptible host (S),
Infected host (I) and Pathogen (V) are plotted as a func-
tion of time for the Recovery rate § = 0.2,0.4,0.6 and
7 = 9. Other parameters are as in Table.1.

pathogenic infection which move to add to the suscepti-
ble host population. We are considering that this recov-
ery would stem out from immunization or vaccination. In
that sense it is obvious that there exists a finite time lag
or delay in the process of recovery and this finite time lag
exist between actively infected host and getting its subse-
quent recovery. Such realistic time lag has been incorpo-
rated in the model under consideration. Thus equations
(2.6) can be written as:

45 =rS(1 = SH) = AST — 5% +61(t — 7)

dt

SV
G = AST+ 30 —dI - 81 (3.1)
dav. _ _ A5V

& = " hogs Tndl —pV.

The variables of model equations (3.1) are to be made
dimensionless for the sake of simplicity. Thus the rescaled
equations are,

%:s(l—(s—ki))—asi— bsv 4 mi(t — )

di . bsv . oo
%zaszbs—tm‘—fz—mz (3.2)
E:_c+s+gz_hv
where, a = M| p= 22 oo o0 pod
T T T T T
g:”?d, and h="1.

Equation (3.2) has only one positive root, existence and
uniqueness of the steady state is confirmed by Descartses
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rule of sing. Now we investigate the stability of the steady
state E*(s*,i*,v*) by linearization s = ¢’ —s*, i = I' —i*,
v = v’ —v*. Then we obtain the characteristic equation
of the system (3.2) is given by

03+ A0 + (B+Ce " )0+ D+ Ee " =0. (3.3)

Where,

A=02-a)s* =1+ (a+1)i*+ (m+ f+h) + 2=
B=fh—f—h+ fi*+afi* 4+ hi* + aht™ —m + hm
+ mi* + ami* 4+ as* + 2fs* + 2hs* — ahs® + 2ms*
s*+*c sz+2 5 s*+c . 2s*«#c s:«l»c f*jc
+ bfs aSE;:g befo + (bcm’v bes™v
C =ami* (> 0),
* * %\ 2 bfs* bgs”* bfs*i*
+2fhs* + 2hms* = 2ah(s*)? — 2% — 2 + 25

bev* s*+4c
+ oz (> 0),
_ _bs* + bgs”* + bs*i* + abs™i* + bms* + 25(5*)2
s*4c + (s*+c) s*4c)? + (s*+c)2(> O)’
D = fhi* — fh+ afhi* — hm + hmi* + ahmi* + ahs*
+ abfs*i* + bgs™i _ bms* + bms*i* + abms®i* 4 ab(s*)*

s*4c s*4c s*+4c s*+c s*+4c s*+c
+ 2bf(s*)? + 2bg(s*)? N 2ab(s*)3 2b2(cg(s*))§'u*
s*+4c s*+4c s*+4c s*+4c
2bm(s*)? 2b%c(s™)20* 2ab%c(s*) v
+ + .
s*+c (s*+c)3 (s*4c)?
2abgs™i* befhv* bchmuv™ behs*v*
+ e T oo T ot T g2 (> 0)
_ -« abms™i® _ 2b%cms*v* _ behmv*
E = ahmi P CEDE R (> 0).
(3.4)

Now to determine the nature of the stability, we require
the sign of the real parts of the roots of the system(3.3)

®(0,7) =60+ A0* + (B+Ce )0+ D+ Ee 7. (3.5)

Substituting 8 = (1) + iw(7) in (3.3) and separating
real and imaginary parts we obtain the following tran-
scendental equations:

uf — 3ugw? + A(ud — w?) + Buy + cuje "7 coswT
+ewe "1 TsinwT + D + EFe ™7 coswt =0

(3.6)
3uiw — w3 + 2Auiw + +Bw + Cwe ™7 coswT

—Cure "7 sinwt — Fe sinwt = 0. (3.7)

—Uul1T

3.1 Sufficient Conditions for Nonexistence
of Delay Induced Instability:

To find the conditions for nonexistence of delay induced
instability, we now use the following theorem of [33].

Theorem 3.1.1: A set of necessary and sufficient con-
ditions for the equilibrium E* to be asymptotically stable
for all 7 > 0 is the following:

(i)Real parts of all the roots of ¢(6,0) = 0 are negative.
(ii) For real w and 7 > 0, ¢(iw,7) # 0, where i = \/—1.

Proof: Here ¢(0,0) = 0 has roots whose real parts are
negative provided (3.5) holds. Now for w = 0,

®(0,7) =D+ E #0. (3.1.1)

0 I
St) ¢ <
0 | | | | | | | |

o 1 2 3 4 5 6 1T & 9

10
It) st

0 | | | | | | | |
o 1t 2 3 4 5 6 17 & 9

10 g
V) |

uuuuuuu

"
uuuuuuuuu

Figure 10: Population densities of Susceptible host (S),
Infected host (I) and Pathogen (V) are plotted as a func-
tion of 7.

For w # 0,
P(iw, 7) = —iw3 — Aw? + (B + Ce™“T)iw
iwT (3.1.2)
+(D + Ee™™T)
Separating real and imaginary parts we get,
Aw? — D = Cwsinwt + E coswT (3.1.3)
and
w3 — Bw = Cwcoswt — Esinwr (3.1.4)

squaring and adding the above two equation, we get
(Aw? — D)? + (w® — Bw)? = C*w? + E% (3.1.5)

Let the right hand side of (3.1.5) be denoted by f(w).

Now for arbitrary real w , we get from(3.1.5)

f(w) < a’w* + (c® — 2aE)w? + E% (3.1.6)
Therefore a sufficient condition for the non existence of
a real number w satisfying ¢(iw,7) = 0 can now be ob-
tained from (3.1.5) and (3.1.6) as

wb + (A% - 2B)w* + (B? = 2AD — C?)w?
+D? — E* > 0. (3:1.7)
The inequality which we can write in the form of

WO+ Put + Qu?+ Ry >0 (3.1.8)
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Figure 11: Population of S, I, V for the cases without
control and with control.

where,

P=A2-2B Q=B 2AD- (>
P el (3.1.9)

The sufficient conditions can be obtained if,

a(s*)%v* mv* m
i) g >map(2EL me mil),
i1) m<mm(a+1 s*(a + 1)),

s*(s"+c) 1 2(1+m+f))
2c ’a+1’  (a+1) ’

m+f
2m+2f+a ’

v) m+ f>max(l,a+ 1,as, ;*,

(

(

(v91) @* >max(
(iv) s

(

s*(as” +a0+b))
s*+c
(3.1.10)

Therefore condition (i) and (ii) of the above theorems are
satisfied if (3.1.5) holds.

3.2  Criterion for Preservation of Stability,

Instability and Bifurcation Results:

Let us consider 6§ and hence u; and w as functions of 7.
We are interested in the change of stability of E* which
will occur at the values of 7 for which u; = 0 and w # 0.
Let 7 be such that for which u1(7) = 0 and w(7) = © # 0.
Then equations (3.6) and (3.7) become

—A@? + Cosinb? + D + Ecos? = 0, (3.2.1)
—&% + Bo 4+ Co cos @ — Esin@f = 0. (3.2.2)
Now eliminating 7 we get
W8 4+ (A2 —2B)0* + (B% — C? — 2AD)o? (32.3)
+D? - E? =0. -

To analyze the change in the behavior of the stability of
E* with respect to 7, we examine the sign of % as up
crosses zero. If this derivative is positive (negative) then
clearly a stabilization (destabilization) can not take place
at that value of 7. We differentiate equations (3.6) and

1 1
—R=0.3

0.8 —R=0.4 0.8

0.6 0.6
%E E
> '3

04 0.4

02 0.2

0 01 02 03 04 §5 o6 07 o8 o9

Time Time

Figure 12: Optimal treatment schedule with different
weight factor R.

(3.7) w.r.t. 7, then setting 7 = 7, u; =0 and w = & we
get,

X9(7) 4 YI2(7) = a
) v 3.2.4
Pty Kb —p 02
Where,
X = —30% 4+ B — Ccosw7 — 7|E cosw? + Cw sin 07|
Y = —240 + Csino7 + 7[Cw cos 0T — E sin &7]
a = Eosin@or — Co? cos 07
B8 = E&cos & + Co?sin 7.
(3.2.5)
Solving (3.2.4) we can write,
$u (7) = A (3.2.6)

dd’“ (7) has the same sign as aX —fY. From (3.2.5) after
simplification and solving (3.2.1) and (3.2.2) again we get,

aX — BY = @[30 + 2(A? — 2B)@?

(B2~ C?— 24D)]. (3:2.7)
Let F(z)= 2"+ Pi2*+ Pyz + Ps,
where,
P, =A?> 2B, P,=B?>-(C?-2AD, (3.2.8)

and P3 = D? — E?

which is the left hand side of the equation (3.2.3) with
~2
w

=z.
Therefore, F(&?) = 0. (3.2.9)
Now, 9€(0?) =301 +2P0? + Py = 22500
A 2 duy
= (o) = g2t g
= () = e T (@),
(3.2.10)

Hence the criterion of instability (stability) of E* are (1)
if the polynomial F'(z) has no positive root (being con-
tradiction to the existence of @ > 0 be real) there can
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Figure 13: The system behavior for optimal treatment
when final time ¢ 74,4 = 1. Keeping all other parameter
as in Table.1.

be no change of stability. (2) if F'(z) is increasing (de-
creasing) at all of its positive roots, instability (stability)
is preserved. Now in this case, if (I) P3 < 0, F(z) has
unique positive real root and then it must increase at that
point [since F'(z) is a cubic in 2z, Lt,_oF(z) = oo]. (II)
P3 > 0, then (1) is satisfied, i.e. there can be no change
of stability. (III)If P, < 0, Ps > 0 then minimum of F'(z)
will exist at

- 7P1+x/3Pff3Pz (3.2.11)
and if, F(Zp) > 0. (3.2.12)
ie. 2P° — 9P Py +27P; > 2(P,2 —3P,)%  (3.2.13)

Since, 27P; — 3P, Py, > 27PF5.

Hence 2Py(P} —3P,) 4 27P; — 3PPy > 27P3 + 2P;°.
(3.2.14)
Thus for equation(3.1.2) to hold it is sufficient that

27P; — 2P% > 2(Py? — 3Py)3

27Pg+2P 3\ 2
P2 (2TEs12P g

: (3.2.15)

Py >

Therefore, we get the following theorem.

Theorem 3.2.1: If P; < 0 and if E* is unstable for
7 =0, it will remain unstable for T > 0.

Theorem 3.2.2: If P; < 0 and if E* is asymptotically
stable for T = 0, it is impossible that it remains stable for
7 > 0. Hence there exists a T > 0, such that forT < 7, E*
is asymptotically stable and for T > 7, E* is unstable and
as T increases together with 7, E* bifurcates into small
amplitude periodic solutions of Hopf type (Marsden and
McCracken, 1976) [34]. The existence of unique 7 is given
by

7= Larctan[BE=2CC] 4 21X =0,1,2... (3.2.16)

aE+Cpw @

Our required 7 is given by n = 0 in (3.2.16) and hence
the Hopf bifurcation criteria is satisfied.

x10°

0.8

0.6

54
g

04

0.2
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Time Time Time

Figure 14: The adjoint variable &;(t), &2(t), &3(t) of the
optimality system.

3.3 Numerical Experiment of the Delayed
Model of Host Pathogen Interactions

Numerical solution of the model equation (3.1) with the
the basic model parameters set to their standard val-
ues as in Table.l. In figure 1 we study of the delay
model numerically and plot the time series solutions of
the model variables corresponding to the three popula-
tion densities, S, I and V sweeping the values of delay
factor as well as § the recovery rate. We find that delay
makes the initial oscillation in the solution trajectories
to persist for longer of time. However as § increase the
amplitude of oscillation reduce short of time to moves
towards it stable region. This is clearly see in differ-
ent panels in figure 8(a(1),a(2),a(3)) for 6 = 0.2, in
Figure 8(b(1),6(2),b(3)) for ¢ = 0.4, and in Figure
8(c(1),¢(2),¢(3)) for §=0.6.

Again we also see that as 7 increases, and for consider-
ation of § = 0.2, with all the other model parameters
are chosen to assume their standard values as in Table.1,
the amplitude of oscillation for all three population S,
I and V bounded by upper and lower limits. As in-
creases 0 = 0.4, 6 = 0.6 the upper and lower limits
of solution come enlarge. This is clearly see in differ-
ent panels in Figure 9(a(1),b(1),¢(1)) for 6 = 0.2, in
Figure 9(a(2),b(2),¢(2)) for 0 = 0.4 and in Figure
9(a(3),b(3),¢(3)) for §=0.6.

Thus from Figure 8 and from Figure 9, it is clear that an
increasing 7 makes the oscillations to be carried further
on the time scale. This is a signature of local instability
inflicted by the delay in the recovery. However an increase
in the numerical value of parameter §, the amplitude of
oscillations in the solutions and reduces the time span
of the persistence of oscillations. This is clearly demon-
strated by the plots of different panels in Figure 8. This
plots seems to signified that there is a competition be-
tween the delay factor 7 and the recovery rate of infected
pathogens § for dominance within the system.
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However in Figure 9 specially we observe that for small
values of 7, when inflicted with considering § = 0.2 initial
value of recovery rate of infected host, local instability is
not so high. But increasing value of § the asymptotic time
series solutions are oscillatory but stable and bounded by
an upper and a lower limits. As 0 increases further the
boundary between the upper and lower limits of oscilla-
tions enlarges monotonically.

For the above set of parameters( Table.1) we can eval-
uate the value of 79 = 7.11. In figure 10 the system
undergoes a Hopf-bifurcation at the interior equilibrium
point E*(5.38,5.38,5.35) when 7 = 79. We observe that
when 7 < 7 the system is stable and when the value
of 7 crosses the critical value 7y the system switches a
unstable condition from the stable condition.

4 Optimal control strategy of host-
pathogen interactions

In this section we have used an optimal control theory
strategy to host-pathogen interactions model with
therapeutic point of view and such view in reality as a
way to suppress the pathogenic production. Also it is to
examine whether any qualitative differences in treatment
outcomes among the models have a significant impact
on the optimal therapeutic value. Thus on that stare,
an optimal therapeutic treatment is considered with
the control affecting interaction term ﬂ. This control
represents the percentage of effect of the therapy that
reflects an interaction of host with the pathogens and
this interaction specially implies that the pathogens are
maximally infect v susceptible hosts per day. This infec-
tion rate is half maximal at susceptible host population
density of h., host. Thus in equation (2.6) the control
u(t) multiplies the parameter v in first two equation.
Here our main object is to minimize the infected host
population as well as minimize the systemic cost of drug
treatment. In order to that we formulate an optimal
control problem. We also want to maximize the level
of susceptible host. So in the model (2.6) we use a
control variable u(t), represents the drug dose satisfying
0 < u(t) < 1. Here u(t) = 1 represents the maximal use
of therapy and u(t) = 0 represents no treatment.

We choose our control class measurable function defined
on [tstartstfinar] With the condition 0 < wu(t) < 1, ie

{u(t)|u(t) is measurable, 0 < wu(t) < 1, t €
[tstart: tfinal] }- Based on the above assumption, the opti-
mal control problem is formulated as:

9 =rS(1— SH) = AST —u(t) 5% + 61
4= AST+u(t) %Y — dI — 61 (4.1)
U = =5 +ndl - pv

Define the objective function

J(u) = [Hi[S(t) — RL(1

tstart 2

—u(t))?]dt (4.2)

If the control u(t) = 0 corresponds to maximal use
of drug,then the maximal cost is representedas (1 —
u(t)).The parameter R > 0 represents the desired
‘weight” on the benefit and cost. The goal,therefore

is to characterize the optimal control w* satisfying
mazo<y<id (u) = J(u*).
Define the Lagrangian to be:

L(S, I,V u,&1,6,83) = S(t) — Ré(l —u(t))?

+&1(rS(1 = SE) = AST — u(t) Vs +61)

+&(AST + u(t >$S+Vs —dI — 6I)

(= 75V 4 nd — V) + wi(Bu(t) + wa(H)(1 — u(t))

(4.3)

w1(t) > 0,wa(t) > 0 are the penalty multipliers satisfying
w1(t)u(t) = 0 andws(¢)(1 — u(t)) = 0. Thus, the Maxi-
mum Principal give the existence of adjoint variables sat-
isfying:

51 = _g_é = _[( +&r(l - ﬁ) Al — u(t)hjzs
+u(t )(hv%) + &M +u(t) 7 - ul) s
+€3( h +S+ (h'ySV) )]

g =-%=—[&% -5 +9)
+£2(AS a-9) + &1

&= -5 = —[a(—ult)72s) + Lu() (723s)

)
(4.4)

Where &(tfina) = 0 for i=1,2,3 are the transversality
condition. The Lagrangian is maximized with respect to
the with respect to u at the optimal u*,so the derivative
of the Lagrangian with respect to u at u* is zero. Since,

= —&u(t )h%i-vs + Saul(t ),lSJrVS + wi(t)u(t)
+uwa(t)(1 = u(t)) — Rz(1 —u(t)*+
+ terms without wu(t).

(4.5)

Differentiating this expression for L with respect to u
gives:

au = (& - &) ,?j_vs +wi(t) — wal(t) (4.6)
+R(1—u(t)) =0 at u*. '
Solving for the optimal control yields
. (E2—61) s +wi () —w2()+R
wr(t) = T m @

Now we are try to find out u*(t), using different penalty
multipliers in three different cases:

(i) Fort|0 < wu*(t) <1, we have wi(t) = wa(t) = 0, hence
the optimal control is;

_ SV +R
u*(t) = E-t)mFsth 51)1’% *3
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(ii) For t|u*(t) = 1, we have w; =0

Hence, u*(t) = 1—7(52 &R) s,
which implies
(52—&1)%+R

S
(§2 - 51) };Y7+VS7 1< RH’

(iii) For t|u*(t) = 0, we have wy(t) > 0,ws(t) = 0, hence
the optimal control is;

0 S wz(t) =

E2—&1) P2 w1 (H)+R
u*(t):O:(2 ”"WRS SChSy

(52*51)%+R

Therefore, wq(t) > 0 implies that, 7

hence

IN

0,

— SV+R(hy+S *
(L2 flg(hwisf 2t = 0 = wr(h).

Combining the above three cases, the optimal control is
characterized as

* . - SV+R(h~+S
u*(t) = mln(((fz gl)lg(h7+5)( v ))+’ 1). (4.8)
Where,
((52—£1)75V+R(h7+s))+ _
R(h,+89) =
[%H if (2-6) 255 +R>0 !
0, if  (62-&1) 55 +R<0

If (& — &) < 0 for some t,then u*(t) # l.hence.0 <
u*(t) < 1 for those t,which Infected host should be ad-
ministered.

Theorem 4.1: An optimal control u* for equation (4.1)
which maximizes the objective function (4.2) is charac-
terized by (4.8), where the notation e = max(e, 0).

The uniqueness of solutions to the optimal system equa-
tion (4.1), completed with (4.4) together with u* charac-
terization equation (4.8), can be obtained by the standard
results. Thus the unique optimal control is represented in
term of the unique solution of the optimal system. Note
that we could have only treated the casee < u < 1,¢ > 0,
which would say that the drug never completely stopped
infected host reproduction.

4.1 Existence of an Optimal Control

The boundebness of solutions of the system (4.1) for the
finite time interval is used to prove the existence of an
optimal system are determined.

45 —pS+0I,  S(t) =S,

dl — \ST + }jiVS, I(t) = I

ﬂ = ﬁdl, V( ) Vo

or,

S\’ o ) OS S
0 _ v _ 0
I = M+ hj+5‘ AS hj+§ I
v 0 nd v

Since this is a linear system in finite time with bounded
coefficient, then the suppersolution S, I, V are uniformly
bounded.

Theorem 4.1.1: There exist an optimal control u* that
maximizes the objective function J(u).

To proved this theorem,the following conditions must be
satisfied.

(I) The class of all initial conditions with a control u such
that u is a Lebesgueintegrable function on [tstart, t final
with values in the admissible control set and such that
the state system is satisfied is not empty.

(IT) The admissible control is closed and convex.

(III) The right hand side of the state system is contin-
uous,is bounded above by a sum of the bounded control
and the state,and can be written as a linear function ofu
with coefficients depending on time and the state vari-
able.

(IV') The integrand of the function is concave on the ad-
missible control set and is bounded above dy ¢a — ¢1|1 —
u|?, where ¢; > 0, and p > 1.

First, existence result in [37] for the state system (4.1) for
bounded coeflicient is invoked. The control set is closed
and convex by defination.The right hand side of the sys-
tem (4.1) has at most linear growth since the state so-
lution are a Priori bounded.In addition, the integrand in
the functional [S(t) — R3(1 — u(t))?], is concave on the
admissible control set. To complete the existence of an
optimal control, one use that [S(t) — R3(1 — u(t))?] <
co — c1|l — ul?, where ¢; > 0 and p > 1. We conclude
there exists an optimal control.

4.2 Uniqueness of the Optimal System

Theorem 4.2.1: For tiq sufficiently small,bounded
solutions to the optimal system are unique.
Proof: Suppose (S7I7V7 517§25€3) and (§7j7vagl7£27£3)
are two different solutions of our optimal system (4.1)
and (4.8). Let S = eMipy, I = eMipy, V = e’\“tpg7
§=e Mg, L =e Mgy, & =e Mgz and § = eMip,
I = eMipy, Vo= eMips, & = e M@, & = e Mgy,
€3 = e Mtgg, where \; > 0.
(qz7q1)eA1t7p1p3+R(hw+6“tp1))+ 1)
R(hy+erPp1) ’
(q‘z7q'1)ek”vm+R(_hw+€“tP‘1))+ 1).
R(h+eritpy) ’

Therefore, © = min((

and u = min((

Now we substitute S = e**p; in to the first ODE of

(4.1) and (4.8) we get,

A1t
(1) pi+Xpr=rpi(1- %) — AeMipips

e (ga—q)e  ypips+ R(hy+e M ipr) 4
mln(( R(h7+€>‘1tp1) ) 31)
YPi1p3

(eAltm) + dpo.

Similarly, for I = e Mipy, V = eMips, & = e Mg, & =
_’\”CIZ & =c A”q?, and S = eMipy, I =e ”pz V=

ps, & = e MG, & = e Mg, & = e Mg, we
obtam
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Ph+ Aip2 = eMApipo

(2).

. (g2—q1)e  ypips+R(hy+eripi)\ + A1t YP1p:
+ min(( Rh e iTpn) )t e thl“im
- (d + 5)1727
(8) p3+Mps= —6’\1‘5% + ndp2 — pps,
(4) —qi +Maqr = eMt 4 qufr(l — eMt 2Ry ety
. _ At S R(ho et
— (min(({E=tgmnis e i)y 1))
B A
N Goerttp?] + a2(eM"Apz +
. ¢ (a2—q1)e M ypips+ R(hy+e 1ipy)
(min (= ) =) 1)
et h~vp3 ) _ Mt hyYP343
(hyteritpr)? (hy+eritpy)2?
(5) =5+ Mgz = (M PET — 2MiNpig) + GgrieMt) +
g2(eM Ap1 — d — 8) + g3,
(6) - —q3 » + A1q3 =
- la2—gq1)e 1 ypips+ R(hy+e 1 p1) At yP1(g2—g1)
(mln(( — R(h,yl-q-z*ltpl; : )+71)) 1th1+972%1t;1
QS(e’\ltﬁ + ).

Now we subtract the equations for S and S, I and I, V
and V, & and &1, & and &, & and £3. Thereafter multi-
ply each equation by appropriate difference of functions
and integrate from tgiqr t0 ¢rinar. Next we add six inte-
gral equation and will use estimates to obtain uniqueness.
Thus,

301 = P1)?(tpinat) + M1 :’:Zﬁ’:t (p1 — pr)dt

<r ffi““:‘ pr)%dt
_%tmfkﬂp—mﬂm—mw
—(x+X) tti;m:l M (p1p2 — p1p2) (p1 — p1)dt
o fre BBy BB () — )t
+6 [ (py — o) (pr — pr)dt.
<clgﬁwm 51)? + (p2 — p2)% + (ps — p3)?]dt
+ Caetitrimat [0 [(p) — )2 4 (py — )2 + (01 — 1)
+ (g2 — ¢2)?]dt.

Where the constants él and C~'2 depend on the coeflicients
and the bounds on states and adjoints. Combining six of
these estimates gives

L(p1 — 1) (tginat) + (P2 — P2)2(tfinal)
+ 2(p3 — P3)?(tfinat) + 2 (@1 — @) (tstart)
+ 5(92 — ¢2)*(tstart) + 5(a3 — G3)* (tstart)
+ A1 [ (py = p1)? + (p2 — p2)? + (ps — p3)?
+ (1 —q1)* + (02 — @2)* + (g3 — g3)?]dt
< (Cy + Cae™trinet) 110! [(py — py)?
+ (p2 —p2)*> + (ps —p3)° + (1 — @)°
+ (g2 — 2)* + (g3 — g3)?]dt.

Thus from above equation we conclude that

(A1 = Cp — CoePitrinar) tifmtzl [(p1 — p1)* + (p2 — P2)?
+(ps —p3)? + (1 — @1)* + (02 — @2)° + (g3 — ¢3)?]dt
<0.

where (jl, Co depend on the coefficients and the bounds
on pi, P2, P3, 41, G2 ,qg If we choose A1 such that Ay >
C1 4 Cy and tfina < 3,\ 111( A1), then p; = p1, p2 =
D2, P3 =DP3, (1 = q1, 92 = G2, Q3 = q3.

Thus, we can say that the solution of the system of such
nonlinear boundary value problem is unique for a small
time interval. The optimal control u* gives an unique
solution of the optimal system. The above optimal con-
trol give an optimal treatment strategy for the pathogen
infected individual.

4.3 Numerical Experiment of Optimal Con-
trol Strategy

For the numerical illustration of the optimal control prob-
lem (4.1) and (4.2) we assume tfinq = 1, which can be
used as an initial guess. We solve the optimality system
by making the changes of the variable T = t/t ;54 and
transferring the interval [0, 1]. Here T represents the step
size which is used for better strategy with a line search
method and which will maximize the reduction of perfor-
mance measure. Here we choose ¢ fina = 1+ Atfina and
initially ¢7ina = 1. We also assume that At e = 0.1
and our desired value of ¢ = 100. The solution are
displayed in Figure 11, Figure 12, Figure 13, Figure 14.

In Figure 11, for non treated system ( i.e u = 1) the
system is unstable, while the system moves to more ad-
equate level when the optimal treatment is used. It has
also been observed that the system moves to its stable
region more rapidly as u is reduced from 0.7 to 0.1.

In Figure 12, it has been observed that the optimal con-
trol u*(t) reduces with time [for (0,0.5)] and as R re-
duces for 0.4 to 0.3, u(t) rapidly moves towards its opti-
mal strategy. But for 0.5 < T' < 1 the optimal strategy
moves towards no treatment strategy (i.e u*(t) = 1). We
also observed that, if the weight factor R is reduced then
the optimal treatment is reached to its maximum level.
It should be noted here that for lower weight factor this
drug is more toxic and during use of this drug it is re-
quired in a less amount.

If we consider the time limit of uses of drugs is near about
500 days then what will be the therapeutic effect in our
model of host pathogen interactions? It has been shown
that from our numerical results that if it is used for less
than 10 days the result for best treatment is to be appear
for using drug, but if it is introduce for more than 50 days
the worst condition will appear inspite of a better one.

From Figure 13 we see that the optimal drug treatment is
more effective than the fixed drug treatment. For optimal
drug therapy for susceptible host populations increase to
its maximal level with short period of time, though it
has sharp decline at the end because of cessation of drug
enables the infection of rebound to destroy the host pop-
ulation. The infected host population decreases to its
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low level but at the end of the treatment schedule, when
drug therapy is removed, the infection level eventually
rises again. It is also numerically experimented that af-
ter using of ‘control drug therapy’ set in motion, initially
pathogen population increases, whereas in a certain pe-
riod of time for effect of that drug, pathogen population
rapidly decreases to its small size population.

5 Discussion and Conclusions

We have considered a mathematical model of a host-
pathogen system including a recovery of the infected host
to the susceptible. It is also assumed in our model that
the spread of disease takes place in two avenues namely,
by pathogens as well as by contact of a susceptible host
with a infected host and this pathogens are maximally
infect v susceptible hosts per day and this infection rate
is half maximal at susceptible host population density of
h host. The set of differential equations of the model
are solved both analytically and numerically. Here, In
the first section we put emphasis on the recovery of the
infected host to their healthy class. We have analyzed
the model in-depth, particularly to see the effects of host
recovery on the model dynamics and its solutions.

In section 1 our theoretical analysis of the existence,
uniqueness and boundedness of the asymptotic solu-
tions show that perimetrically conditioned solutions for
the model equations do exist and they are unique
and bounded in well defined regions of the parameter
space. The analysis further show that the system pos-
sesses several equilibria, some of which are denoted by
Ey(0,0,0), E1(1,0,0), and E*(s*,i*,v*). However, by
stability analysis of equilibria, we find that the system
is unstable around F for all parametric values and F; is
locally asymptotically stable. Also the system is locally
asymptotically stable around E*. In fact £* is globally
asymptotically stable.

Since infected hosts which do not grow or reproduce but
they can recover from pathogenic infection and move to
add to the susceptible host population and this recovery
would stem out from immunization or vaccination thus
there exists a finite time lag or delay in the process of
recovery and this finite time lag exist between actively
infected host and getting its subsequent recovery. In sec-
tion 2 we studied “Sufficient Conditions for Nonexistence
of Delay Induced Instability” and “Criterion for Preser-
vation of Stability, Instability and Bifurcation Results”
to see the dynamics of the proposed model including de-
lay and to explore the crucial system parameters and
their ranges in order to obtain different theoretical be-
haviors predicted from the interaction between suscepti-
ble host, infected host and pathogen, and moreover the
recovery response against pathogen infected host popula-
tion through immunization or vaccination.

In section 3 in our research article we have used an op-

timal control theory paradigm to host-pathogen inter-
actions model with therapeutic outlook and such ther-
apeutic control as a way to suppress the pathogenic pro-
duction. Our analytical results reveal that how a cost-
effective combination of treatment efforts may depend on
the population size, cost of implementing treatments con-
trol for different parameters of the model.

Complete numerical solutions of the model equations for
the parameters as in (Table.1), yield results which are
consistent with the parametric conditions obtained ana-
lytically. In this case too we put emphasis on how the
model dynamics evolve with the recovery rate (6). We
find that, for very small to moderate values of § (< 0.6),
stable solutions for all three populations are oscillatory.
But, for § > 0.6, the solutions are single valued and sta-
ble. Again with 0 > 1 the system get stable single solu-
tion after small bifurcation. When recovery rate attains
a threshold § ~ 100 (in units of per designated area),
only the susceptible host population (S) survives asymp-
totically while infected host (I) and pathogen (V') pop-
ulations are pushed to extinction. This feature of recov-
ery and sustenance of the host population subsiding any
pathogenic attack, in biological terms, means that the
system enters a disease-free zone. Our numerical calcula-
tions show that the removal of infected host population,
coupled with a finite rate of death of pathogen, actually
forces the pathogen population towards extinction path.
Notice that the threshold value of the recovery rate in
the present case is higher than its biologically realizable
value. This threshold § can be scaled down to sensible
limits provided we can set the death rate of infected host
(d) to a value higher than that considered here, and also
the rate of contacts (A & ~) of S with I and V respec-
tively to their further lower values. Actually, in a bio-
logical prototype of host-pathogen model, numerical val-
ues of the parameters d, \, v are externally controllable.
Hence the prediction that, a disease free situation for the
host population can be effected at biologically and phys-
ically realizable threshold of recovery rate, only setting
the externally controllable parameters to their respective
suitable values.

Numerical solution of the model equation (3.1) with the
the basic model parameters set to their standard values
as in Table.1. In figure 1 we study of the delay model nu-
merically and plot the time series solutions of the model
variables corresponding to three population densities, S,
I and V sweeping the values of delay factor as well as
0 the recovery rate. We find that delay makes the ini-
tial oscillation in the solution trajectories to persist for
longer of time. However as § increase the amplitude of
oscillation reduce short of time to moves towards it stable
region. Figure 8 and from Figure 9, reflects that an in-
creasing of 7 makes the oscillations to be carried further
on the time scale. This is a signature of local instability
inflicted by the delay in the recovery. However an increase
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in the numerical value of parameter 9, the amplitude of
oscillations in the solutions and reduces the time span
of the persistence of oscillations. This is clearly demon-
strated by the plots of different panels in Figure 8. This
plots seems to signified that there is a competition be-
tween the delay factor 7 and the recovery rate of infected
pathogens ¢ for dominance within the system. For the
above set of parameters ( Table.1) we can evaluate the
value of 79 = 7.11. In figure 10 shows that the system
undergoes a Hopf-bifurcation at the interior equilibrium
point E*(5.38,5.38,5.35) when 7 = 79. We observe that
when 7 < 79 the system is stable and when the value
of 7 crosses the critical value 7y the system switches a
unstable condition from the stable condition.

In Numerical simulation of section 4 it has been observed
that the optimal control of drug reduces with time and
rapidly moves towards its optimal strategy in certain pe-
riod of time. But when time is increases the optimal
strategy has no effect. Again it has been observed that if
the drug is used for less than 10 days the result for best
treatment will appear, but if it is introduce for more than
50 days (Figure 12.) the worst condition will be reflected
in treatment.
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