
 
 

 

 
Abstract—Space Robot is extensively utilized in space 

program, such as the Space Station Freedom. Furthermore the 
space robot is expected to maintain failed satellites and to 
capture space debris in the autonomous manner in the near 
future. This paper deals with the robust control of space robot 
in capturing operation of the target and controlling the 
spacecraft motion under unknown parameters, like mass and 
inertia tensor. The sliding mode control is applied to obtain the 
above robust control. Numerical simulations were conducted 
and the validity of our approach is demonstrated. 
 

Index Terms—Space robot, Robust Control, Sliding mode 
control  
 

I. INTRODUCTION 

Space robot technology has been rapidly developed and 
extensively used in the space station program. Most of these 
space robots are a kind of remote manipulator systems 
controlled by astronauts from inside or outside of space 
station. In the space application more intelligent system is 
desirable to reduce the workload and hazardous risk of those 
astronauts. Therefore in the near future this technology will 
be expected to perform the wider range of operations, such as 
to maintain failed satellites and to capture space debris in the 
autonomous manner by the space robot. This capability will 
tremendously decrease the extravehicular operations of 
astronauts, which are most time consuming and terribly 
exhausting. In this respect the autonomy will be mandatory. 

In the space robot operation there are a few features like 
the reactive behavior of attitude motion of the space robot by 
robot arm operation and the parameter change in attitude 
dynamic equations of motion by capturing the target and so 
on. Generally speaking the failed target and debris will not be 
accurately known a priori and freely rotating, that is, some of 
physical parameters are unknown. In the above respect some 
kind of robustness of the space robot control must be 
incorporated[1].    

This study deals with the space robot operation, i.e., 
controlling the attitude of the space robot and controlling the 
robot arm under the changed mass property. The sliding 
mode control[2] is applied to the control of attitude motion 
and the robot arm in which the absolute supremum value  
method[3]  was used to assure the robustness.   
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II. MODEL OF SPACE ROBOT 

The Model of a space robot is illustrated in Fig.1. A robot 
arm is mounted on the body of the spacecraft. The robot arm 
is articulated with 3 rotary joints and the motion of the robot 
arm is assumed to be two dimensional. This assumption is not 
inconsistent with reality. The out of plane motion can be 
separated from the in-plane motion. 

Link lengths of robot arm are given by )3,2,1,0( ili . The 

position of the space robot in the inertia space is denoted by 
the coordinates YX , and angles of joints are )3,2,1,0( ii  in 

which 0 gives the attitude angle of space robot body. 

 

 
Fig.1 Model of Space Robot 

 

III. EQUATIONS OF MOTION 

 
Dynamical equations of motion for space robot are derived 

using Lagrange formula. It will be obtained as follows. 
K  is the kinetic energy and P is the potential energy, 

then, Lagrange equations of motion is expressed in the 
following: 
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Both energies are given as below: 
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where m , v


, 
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 and  I are mass , velocity vector,  angular 
velocity vector and moment of inertia, respectively. 

Detailed Geometry of the space robot is shown in the 
Appendix A. 

Center of mass for the space robot and each link is given 
by  

)3,2,1,0(, iss iYiX .  And the velocity is iv .  ia  expresses 
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the length between the joint and link center of mass, and ib  

gives the length between the joint and link center of mass. 
Then we have the following relationships: 
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The potential energies for free floating bodies on the orbit 
are given by the following: 

00 P  

01 P  

02 P                        

03 P  

Those equations are summarized as in eq.(7) by 
substituting the above relations, where )(M  is the inertia 

matrix and ),(  h includes centrifugal and Coriolis terms. 

)(tu  is translational control force, attitude control and joint 

control torque vector for space robot. 
)(),()()( tuhtqM                                           (7) 

where  

                       TYXq 3210   

 T3210   . 

Further we assume the following relations: 
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In which )(0 M and ),(0  h are defined as nominal value matrix 

and vector, )(M⊿  and ),(  h⊿ are called deference from 

nominal values and absolute supremum values are defined as 
bellow; 
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And further, absolute supremum values of elements of time 
derivative )(ijM  of matrix )(M was also defined in the 

following manner; 
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The absolute supremum value ),(ˆ tqvi will be given as 

follows; 
   ),(ˆ)()( tvtqM iid                                          (13). 

IV. SLIDING MODE CONTROL 

The sliding mode control restricts the trajectory of  plant 
states on a hyper plane by the control and slides it to the 
equilibrium point in an asymptotic manner. 

First let us design the switching hyper plane. The target 
trajectory is given by dq  and controlling errors are defined 

by the followings; 
)()()( tqtqte d                                           (14) 

)()()( tqtqte d                                            (15). 

And then we give the switching hyper plane as an equation 
(10). 

)()()( tetet                                                 (16) 
where  

),,( 1 ndiag      0i . 

If 0)( t holds, then, )(te in eq. (16) satisfies the asymptotic 
stable differential equation and 0)( e is assured. In order 
to secure the state is approaching to the hyper plane, the 
following Lyapunov function is introduced. And the negative 
definiteness of its time derivative will be proved. 
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The time derivative of eq.(17) is given by 
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Let us define )(tu  as follows; 
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Here we choose P and Q  which satisfy 0)( sV .  

In the first place elements of the diagonal matrix Q  are 
determined as below; 
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Then we have 
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And the second term of eq. (20) becomes negative 
semi-definite. In the next place if we define  elements of 
diagonal matrix P as follows; 
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By the Gershgorin’s theorem, for an arbitrary matrix 
][ ijaA  , if the following inequality is satisfied; 
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then, the matrix A is positive semi-definite. Therefore if we 
apply 0ik  to the eq. (24), then, we have the negative 

definiteness of the first term in eq. (20). This means 
0V .The above concludes the proof of the negative 

definiteness of the Lyapunov function. 
        A typical design process for the absolute supremum will 
be shown in the Appendix B, where                  is evaluated. 

And in order to avoid the chattering phenomena, we 
introduce saturation function in place of sgn function. 
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V. NUMERICAL SIMULATIONS 

 
We conducted numerical simulations for the space robot 
model defined in Fig.1. And to perform the mission two 
phases are introduced. 

 
PHASE I 
To capture the target the robot arm follows the motion of the 
target for 10 seconds. By this operation grasping operation 
will be completed 
 

In order to realize to follow the target, a goal 
trajectory )(trd  for the position of endeffector of the robot 

arm is defined and then, the joint trajectory for )(tqd is 

calculated. The position of the center of target is tX  and tY , 

and the distance between the center of the target and the 
grasping point is given by tr . And the target has the rotational 

motion. Then we have the following relations; 
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 dddd tq 321000)(                  (28) 

 
PHASE II 
After the grasping operation the velocity of the endeffector 
will be controlled to be 0 [m/sec]. 
 

To realize the above operation a goal trajectory for the 
joint velocity is given by linear functions of time which 
reduce the velocity to 0 [m/sec] after the 30 [sec]. The joint 
velocity vector is given by eq. (29). 

The supremum value is determined by Table 1. 
 )()()(000)( 321 ttttq dddd                           (29) 

 
Table 1 Parameters of the Target 
 Target Assumed 

Value for 
determining 

the 
Suremum 

Value 
Mass ][Kg  500 600 

Moment of 

Inertia ][ 2Kgm  

333.33 400 

Rotational 
Velocity ][deg/ s  

0.5 0.5 

Size 2[m]×2[m] 2[m]×2[m] 

 
 In Table 2 parameters for the space robot are defined. 

 
 Table 2 Parameters of the Space Robot 
 Body Link 

1 
Link 

2 
Link 

3 
Mass ][Kg  1500 40 40 30 

Link 
Length ][m  

1.5 1.5 1.5 1.0 

Moment of 
Inertia 

][ 2Kgm  

1000 30 30 10 

Initial 
Angle 
[deg]  

0 45 90 -45 

      
Other parameters are assumed as follows; 
 

100654321  kkkkkk  

5,10,15 654321    

05.0654321   . 

 
Some of the above parameters are determined by iterative 
manner. 
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Positions of the space robot and the target at 0 and 10 
seconds are illustrated in Fig.2. 

Results of the Phase I are shown in Figs.3-9.  
The performance of tracking the target is satisfactory 

and the error of tracking was below 1 [mm].     
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Fig.2 Target and Space Robot Position at 0 and 10 [sec] 
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Fig.3 History of Space Robot Position 
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Fig.4 History of Control Force for Space Robot 
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Fig.5 History of Space Robot Attitude Angle 
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Fig. 6 History of Control Input Torque 

 

0 2 4 6 8 10
-50

0

50

100

Time[s]

J
o
in

t 
A

n
gl

e
[d

e
g]

 

 


1


2


3

 
Fig.7 History of Joint Angles 
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Fig.8 History of Desired Joint Angles 
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Fig.9 History of Joint Torque Input 

 
 

Results of Phase II control are given by Figs.10-19. 
The control of  position and velocity of the space robot is 

satisfactory and control input for  spacecraft position and 
joint angles is sufficiently small, for instance, the maximum 
torque for both the space robot attitude control and  joint 
control is smaller than 1 [Nm].  These values are consistent 
with the space application. 

In general mounted thruster forces are from 1N to 10N 
for thousand kg class spacecrafts and typical arm length for 
the torque will be 2m or 3m. Furthermore, typical toque 
capability by reaction wheel for the attitude control of 
spacecraft is 1Nm. These facts validate the applicability of 
our approach. 
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Fig.10 History of Space Robot Position 
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Fig.11 History of Space Robot Velocities 
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Fig.12 History of Translational Control Input 
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Fig.13 History of Space Robot Attitude Angle 
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Fig.14 History of Attitude Angle Velocity 
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Fig.15 History of Torque Control Input for Space Robot 
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Fig.16 History of Joint Angles for Space Robot 
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Fig.17 History of Desired Joint Velocities 
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Fig.18 History of Joint Angles 
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Fig.19 History of Torque Control Input  

VI. CONCLUSION 

     In this study robust control of space robot for unknown 
target capturing operation was discussed. The target initially 
has freely rotating motion, therefore we defined two phases, 
in which we have operations of grasping the target and 
stabilizing both the space robot and the target. The sliding 
mode control was applied to have the robustness of control.  
Numerical simulations were conducted and the results show 
the consistency with space application requirement. This 
validates our approach. 

 
 

Appendix A: Geometry of the Space Robot 
 

 
 
 
 
Appendix B: Evaluation of Absolute Supremum 

Value 
 
Unknown values for the equation of motion will be target  
moment of inertia        , mass              and location 
of center of mass of joint 3 and link 3                 which 

includes 
 unknown target. If we assume               is    the distance of  
Link 3 and target center of mass before the connection with 
target and        is distance after the connection, then, we 
obtain the following: 

43arg aaa ett  .                             (B.1) 

    Let us take the typical value                      for the evaluation of the 
absolute supremum value. 
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     In order to design the supremum values we assume upper values 
of  target moment of inertia           , mass                 and distance 
of Joint 3 and Link 3 center of mass as follows: 
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upperett mm arg                                                (B.3) 

upperett aa arg  

    By substituting (B.3) in to (B.2), we  obtain the supremum value 
 of                      as below: 
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