
 

 

 

  

Abstract—In the paper a blackjack type optimal stopping 

problem is considered. A decision maker (DM) observes se-

quentially the values of a finite sequence of nonnegative random 

variables. After each observation the DM decides whether to 

stop or to continue. If the DM decides to stop at a given moment 

they obtain a payoff dependent on the sum of already observed 

values. The greater the sum, the more the DM gains, unless the 

sum exceeds a given positive number. If so, the decision maker 

loses all or part of the payoff. It can be shown that under some 

elementary assumptions the optimal stopping rule (OSR) for 

such a problem has so-called threshold structure. However, even 

in such a case the relationship between the problem design pa-

rameters and the risk connected with the OSR cannot be ex-

amined via any formal method due to its very complex proba-

bilistic nature. Thus in the paper it is proposed to make use of 

the Monte Carlo simulations combined with regression analysis 

to study this aspect of the OSR performance.  

 
Index Terms— Monte Carlo simulations, optimal stopping 

rules, risk analysis, sequential decision making.  

 

I. INTRODUCTION 

PTIMAL stopping problems form a class of optimization 

problems with a wide range of applications in mathe-

matical statistics, engineering, industry, economics, and ma-

thematical finance. The most interesting include e.g. the 

system-maintenance management [7], job-search and 

house-hunting problems [1],[6],[21], the pricing of perpetual 

American options as well as the optimal timing to invest in a 

project or capitalizing an asset, [2], [10],[12],[20],[23]. 

In this paper we consider a “blackjack type problem” 

(BTP). The BTP models a class of optimal stopping decision 

tasks in which a decision maker observes sequentially the 

values of a finite sequence X1, X2,…,XN of nonnegative ran-

dom variables. After each observation a decision maker (DM) 

decides whether to stop or to continue. If the DM decides to 

stop at the moment k he/she obtains a payoff dependent on the 

sum X1+…+Xk . The greater the sum, the more the DM gains, 

unless the sum exceeds a given number T – a limit given in the 

problem. If so, the DM loses all or part of the payoff. Such 

problems can represent various real world situations which 

can be observed in engineering, economics, finance or social 

life. To illustrate this class of optimal stopping problems 

consider three examples from totally different domains. The 

first example is service with work time limit. A DM controls a 
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mechanism which should not work longer than a given time 

period T. He/she has several jobs to process in sequential 

order with each job requiring a random time for its execution. 

After each job the DM must decide whether to start next one 

or to stop. Every initiated job must be completed. The longer 

the mechanism works, the more the DM gains but if the work 

time exceeds the limit T the DM will be punished in some 

way. 

The second example is a problem of loading a device with 

a limit of load bearing capacity. Many types of machines 

(trucks, cranes etc.) or other engineering structures (such as 

dams, roofs, bridges, computer servers) may be subjected to 

excessive overloads resulting in possibly breakage of the 

mechanism or structure. Assume a DM observes a process of 

loading of such a device. During the loading process the load 

is increased in random steps, as for example during a flood (a 

dam) or heavy snowfall (a roof). Assume that the limit of load 

bearing capacity of the device is given. After each observation 

the DM decides whether to stop (in order to prevent a dan-

gerous overloading) or to continue the process of loading. The 

DM wants the device to bear as much load as possible. 

However on the other hand if the limit of the load bearing 

capacity is crossed than the gain for the DM is dramatically 

decreased.  

The third problem is blackjack type game. One such game 

is played on a points system that gives numeric values to every 

card in a single deck of playing cards. The cards are given to a 

player sequentially until he/she decides to stop. The score is 

the sum of the values in hand. The player with the highest total 

score wins as long as it doesn't exceed a given limit number. If 

a player’s cards exceed the limit then the player loses and 

his/her bet is taken by the dealer.  

Typically in the theory of optimal stopping, see e.g. 

[4],[15], [22], the solution of any optimal stopping problem 

consists of the optimal stopping rule (OSR) and the value of 

the problem, i.e. the greatest expected payoff possible to 

achieve. A solution for BTP satisfying some general as-

sumptions is given in [9]. It appears that under some ele-

mentary conditions, the OSR is of so-called threshold type. 

Such OSRs are especially interesting because of their very 

simple structure, [5],[10],[16],[24]. However, the depen-

dence between the expected gain and the design parameters of 

the problem is rather complex. Even more complex is the 

relation between these parameters and various characteristics 

of the risk connected with a given OSR. Usually there is no 

analytical expression relating the design parameters of the 

decision problem to the corresponding risk characteristics of 

the decision rule. It is a common situation - in most optimal 

stopping problems, or more generally, sequential decision 
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problems, the relation cannot be studied via for-

mal-theoretical methods. In many problems where the rela-

tionship between some dependent and the independent va-

riables is extremely complex or unknown the Monte Carlo 

simulations approach can be adopted, see e.g. [3], [11], [13], 

[14], [17], [25], [26]. However, the Monte Carlo methods 

allow us to solve a specific given problem rather than to 

obtain some general expressions describing the relation in 

which we are interested. Thus in order to obtain some more 

general results we propose combining the Monte Carlo me-

thod with the regression analysis. The latter helps us to esti-

mate and express analytically the relationship between some 

risk characteristics of the OSR and the problem design pa-

rameters. Similar approach to study some optimal stopping 

problems may be found in [3],[11].  

The paper is organized as follows. In Section II we for-

mally state a general BTP and summarize some important 

results from the theory of optimal stopping. In Subsection II.C 

we present an important class of BTPs which can be effec-

tively solved and which will be studied in details. Next, in 

Subsections II.D and II.E we describe the design parameters 

of the BTP and define considered risk characteristics. In 

Subsection III.A we present a Monte Carlo experiment which 

we use in order to generate data containing the necessary 

information about the relations which we want to study. In 

Subsection III.B, as a kind of benchmark, we make use of the 

proposed methodology to build a model for the expected 

payoff as a function of the problem design parameters and 

compare the result with the known theoretical formula. Fi-

nally, in Subsections III.D, E and F, we present and discuss 

regression models obtained for the considered risk characte-

ristics.  

II. FORMAL STATEMENT OF THE PROBLEM  

The formal model for the class of problems we consider in 

this paper is the following. Let X1 , X2 , …, XN be a finite 

sequence of random variables. A DM observes sequentially 

the values of the variables and decides whether to stop or to 

continue. If the process is stopped at the moment k the DM 

gains a value )( 1∑ =+ k
i iXyW , where W is a given real 

function and y ≥ 0 is an initial state of the process. The func-

tion W is positive and nondecreasing on the interval (0, T] and 

is nonincreasing for arguments greater than T. Such a problem 

will be called blackjack type problem (BTP) if the random 

variables are nonnegative and the payoff function W achieves 

its only maximum for TXy
k
i i =+ ∑ =1 .  

Our task is to find a stopping rule which maximizes the 

expected payoff for a decision maker. 

A. Optimal Stopping Theory – Necessary Definitions and 

Results 

In order to present solutions of certain BTPs, we need some 

formal definitions and results from the theory of optimal 

stopping. They can be found e.g. in [4], [22].  

Let X1 , X2 , … be a sequence of independent random va-

riables. Let Fn denote the σ -algebra generated by the random 

variables X1 , X2 , …, Xn in an underlying probability space (Ω  

F,P) A stopping rule is a random variable τ with values in a set 

of natural numbers such that {τ=n}∈ Fn for n=1,2,… and 

P(τ<¶)=1. Let M(n) be a class of all stopping rules τ such 

that P( τ≤ n)=1.  

Let (Yn,Fn), n=1,2,… , be a homogenous Markov chain 

with values in a state space (Y ,B). Let W:R+ØR be a Borel 

measurable function which values W(y) will be interpreted as 

the gain for a DM when the chain (Y n,Fn) is stopped at the 

state y. Assume that for a given state y and for a given stop-

ping rule τ the expectation E(W(Yτ)|Y0=y) exists. Then it is 

natural to interpret the value - denoted by EyW(Yτ) - as the 

mean gain corresponding to a chosen stopping rule τ.  

Let us define a function VN by the equation: 

 

VN(y) = 
)(W

sup
NM∈τ

 EyW(Yτ) (3) 

 

where MW(N) is a set of all stopping rules belonging to M(N) 

for which the expectations EyW(Yτ) exist for all y∈ Y and are 

larger than -¶. The value VN (y) is called a value of the 

problem of optimal stopping when the initial state of the 

process is y and the boundary for the possible number of steps 

is N. 

A stopping rule τ*∈ MW(N) which for all y∈Y satisfies the 

condition 

  

EyW(Yτ∗)= VN(y) (4) 

 

is called an optimal stopping rule. 

Let B denote a class of all Borel measurable functions W 

for which the expectations EyW(Y1) exist for all y∈Y. Let us 

define an operator Q operating on functions W ∈ B by 

QW(y) = max{W(y), EyW(Y1)}. Consequantly, by definition,  

Q
n
W(y) = max{Q

n-1
W(y) , EyQ

n-1
W(y)}.   

The following theorem, which can be found in [4], provides 

us with the solution to the optimal stopping problem in the 

considered case. 

Theorem Assume that W ∈ B. Then:   

i. Vn(y) = Qn
W(y) , n=1,2,…  

ii. Vn(y) = max{W(y), EyVn-1(Y1)}, where V0(y) = W(y)  

iii. A stopping rule 
*
nτ  defined by  

)}()(:1min{*
kkknn YWYVnk =≤≤= −τ  

is an optimal stopping rule in a class MW(n)  

If Ey|W(Yk)| < ¶ , for k=1,…,n , then the stopping rule *
nτ  is 

optimal in the class M(n).  

 It results from  the Theorem  that the DM should compare 

the gain resulting from "stopping" with the optimal expected 

gain resulting from "continuing" and should stop at the first 

moment when the both values are equal. However this general 

result, as well as other results from the optimal stopping 

theory, see e.g [4], [22], describe only the qualitative features 

of the solution but they do not provide us with any effective 

method for finding the OSR and the value VN of the problem. 

As it was emphasized in the literature, see e.g. [15], from 

practical point of view it is always of interest to find both, 

OSR and VN in an explicit form. One such result will be 

presented in the sequel.   
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B. Effective Solutions of some Classes of Blackjack Type 

Problems 

Let us consider the BTP and let ∑
=

+=
n

i
in XyY

1

, where 

y ≥0. It is easy to see that the sequence (Yn,Fn) , n=1,2,…, 

forms a Markov chain with the initial state of the process 

Y0=y. Thus our BTP is a special case of the more general 

problem described in Subsection IIA. It follows from the 

Theorem that an optimal stopping rule *
nτ eMW(n) may be 

expressed in the following way:  

}:1min{ **
kkn Ynk S∈≤≤=τ

 (5) 

with the stopping sets *
kS , k=1,…,n given by: 

)}()(:Y{*
yWyVy knk =∈= −S

 (6) 

It appears that particularly interesting situation occurs 

when there exists a positive number t* such that the following 

conditions hold:  

 

W(y) < EyW(Y1) for 0 ≤ y < t*  (7) 

and  

W(y) ≥ EyW(Y1) for y ≥ t* (8) 

 

It was proved in [9], that in any BTP the conditions (7) and 

(8) yilde the following inequalities: 

 

 W(y) < EyVn-1(Y1) for 0 ≤ y < t*  

and   

W(y) ≥ EyVn-1(Y1) for y ≥ t*, n=2,…,N,  

 

Consequently, in such a case the following Proposition 

results immediately from the Theorem. 

 

Proposition. If there exists a real number t*, 0< t* <T, such 

that the conditions (7) and (8) hold then the OSR for the BTP 

is given by formulae (5) and (6) with the threshold type 

stopping sets  

),[ ** ∞= tkS  , k=1,…,N-1 (9) 

The value VN(y) of the problem can be calculated for y< t* 

with the help of the following recursive equation: 

∫∫
∞

−

−
− +++=

yt

yt
nn dxxfxyWdxxfxyVyV

*

*

0 1 )()()()()(
 

n=2,…,N ,  (10) 

with the initial condition dxxfxyWyV ∫
∞

+=
01 )()()( .É  

The condition stated in the Proposition is fulfilled in many 

practically interesting problems, see [9]. One such problem 

will be considered in the next Subsection. 

C. Blackjack Type Problem with Linear Payoff and Ex-

ponential Step.  

The following important class of optimal stopping prob-

lems will be considered in details. The class can model var-

ious BTPs, especially those connected with the queuing 

theory, such as the service with work time limit problem de-

scribed in the introduction. 

 Let us assume that the DM observe a sequence of i.i.d. 

random variables having an exponential distribution with the 

density function:  

0,)()exp(
1

)( ),0[ >−= ∞ λ
λλ

t
t

tf 1  (11) 

So, intuitively we can think, that in this problem the DM 

approaches the limit T with exponential steps of an average 

length λ.  

Let the payoff function W be given by the following equa-

tion: 





>

≤⋅
=

Ty

TyyB
yW

,0

,
)(  (12) 

with B > 0.  

According the formula (12) the DM obtains positive payoff 

which is proportional to the state y of the process, unless the 

state is greater than the limit T. If so, then the player gains 0. 

It was shown in [8], that such a problem satisfies the con-

ditions (7) and (8) with the threshold   

)1ln(*

λ
λ

T
Tt +−=  (13) 

So, the OSR τ* given by (5) and (9) tells us to continue the 

observation as long as the sum of the initial state and already 

observed values do not exceed the above given value t*. Note, 

that the threshold t* is independent of N and B. In order to 

compute its value we need to know only two  parameters of 

the problem, T and λ. 

D. The Design Parameters of the Problem 

The design parameters of the problem are the following: 

the limit T, the step distribution parameter  λ, the upper bound 

for the number of possible steps N, and the payoff function 

parameter B. Let us assume that the initial state y of the 

process equals 0 and let us confine ourselves to these situa-

tions where the value of the problem VN(0) is positive. It 

reflects the case where the optimal stopping rule tells the 

decision maker to make at least one observation. For sim-

plicity, from now on the symbol VN denotes VN(0)  

For a given problem design the value VN can be computed 

with the help of the recursive equation (10). Usually the 

calculations are rather arduous but fortunately in the consi-

dered case they can be done by any symbolic manipulation 

software. All calculations and simulations presented in this 

paper were coded and performed in Wolfram Mathematica. 

As an example we present here an analytical expression for 

the function relating the design parameters and the value V10 . 

We will make use of this expression in Subsection III.B where 

the theoretical values will be compared with their Monte 

Carlo estimates. Below  presented formula was calculated by 

Mathematica :  

V10 = Be
-K

T(362880K)
-1

[3628800+3628800e
K
 

- 6894720K – 4717440K
2 - 1874880K

3 - 514080K
4  

- 105840K
5 - 17136K

6 - 2232K
7 - 234K

8 - 19K
9 – K10  

+ 9(362880 + 685440K + 463680K
2
 + 181440K

3
 + 48720K

4
 

+ 9744K
5
 + 1512K

6
 + 184K

7
 + 17K

8
 + K

9
 )ln(1+K)  

- 36 (40320 + 75600K + 50400K
2
 + 19320K

3
 + 5040K

4
  

+ 966K
5
 + 140K

6
 + 15K

7
 + K

8
)ln(1+K)

2
 + 84(5040 + 9360K + 

6120K
2 + 2280K

3 + 570K
4 + 102K

5 + 13K
6 + K7)ln(1+K)3 - 

126(720 +1320K + 840K
2
 + 300K

3
 + 70K

4
 + 11K

5
  

+ K
6
 )ln(1+K)

4
 + 126(120 +216K + 132K

2
 + 44K

3
 + 9K

4
  

+ K
5
 )ln(1+K)

5
 – 84(24 +42K + 24K

2
 + 7K

3
 + K

4
)ln(1+K)

6
  

+ 36(6+10K + 5K
2
 + K

3
 )ln(1+K)

7
 - 9(2+3K + K

2
)ln(1+K)

8
  

+ (1+ K)ln(1+K)9] (14) 
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The parameter K appearing in the above expression is de-

fined as the ratio T/λ. As we see the value of the problem 

depends on T and λ only through this ratio.  Intuitively, the 

parameter K can be interpreted as an average number of steps 

needed to cover the distance T.   

Formulae similar to (14) can be obtained for any N but for 

larger values of the boundary the calculations are very 

time-consuming and the results are too big to place them in 

the text. Note that there is no explicit formula relating the 

value of the problem and the boundary for the number of steps 

N.  

Because the optimal stopping rule is independent of B and 

the expected value of the payoff as well as the value of the 

problem are linear functions of B we assume without loss of 

generality that B=1.  

E. Important Characteristics of the OSR 

In the situation where we deal with the decision making 

under uncertainty the most important features of the decision 

rules are the expected payoff and the risk connected with the 

rule. In the classical theory of optimal stopping the expected 

payoff is defined naturally and it is the criterion index for the 

optimality of a stopping rule, see (3) and (4). As we have seen, 

compare (14), even in the cases where the expected payoff 

connected with the OSR can be expressed in terms of ele-

mentary functions the formulae can be very long and really 

sophisticated. In  [9] one can also find some examples of 

BTPs for which the formulae even in their simplest form need 

a few standard pages to be written down.  

An even more difficult task is to investigate the relation 

between a given risk characteristic and the design parameters 

of the decision problem. The theory of optimal stopping 

hardly provides us with any formal results devoted to any risk 

measures connected with the OSR. However, the general 

decision theory propose taking into account many risk con-

cepts and related risk characteristics. From theoretical and 

practical point of view two basic types of risk can be distin-

guished, see e.g. [13],[18],[19]: 

• the risk connected with the variability of the results 

around a specific value of the payoff, 

• the risk connected with the possibility of occurrence 

of undesired results. 

 In the first case the risk is treated as both, a possibility of 

getting less as well as a chance to get more than the specific 

value of the payoff we are interested in. Usually in this setup 

we use the variance or standard deviation to measure the 

variability of the possible payoffs around the expected payoff. 

In the second case we consider the risk as the probability of a 

failure. In the sequel of the paper we adopt both concepts of 

risk. Namely, we consider here risk characteristics formally 

defined as follows.  

Let Z be a random payoff connected with the optimal 

stopping rule τ*, i.e. Z=W(Yτ∗). Let σZ denote the standard 

deviation of the optimal payoff Z. In our studies the following 

risk measures connected with rule τ* will be taken into ac-

count:  

• the ratio SV of the standard deviation of the random 

payoff to the expected payoff, i.e. SV=σZ /VN(0), 

• the probability PrF that the decision maker will cross 

the limit T, or equivalently in our problem, that the 

gain equals 0, i.e. PrF= Pr(Z=0).  

Our problem now is to obtain the model for the relation 

between the risk characteristics SV and PrF of the OSR and 

the design parameters of the BTP.  

It is easy to verify, that in the considered case both risk 

characteristics depend on T and λ only through their ratio 

K=T/λ. So, we can conclude, that the only design parameters 

which contain all significant information for  the model 

building are K and N. For any given pair of the parameters 

(K,N) the values of SV and PrF can be computed analytically, 

but the calculations are much more arduous then those per-

formed to obtain the value of the problem (in each case they 

require to compute N multiple integrals with dimensions 

growing from 1 to N) .  

Thus to obtain some general formulae we propose to es-

timate the necessary characteristics from a simulation sample 

and then to built a regression model for the relation we are 

interested in.  

III. MONTE CARLO SIMULATIONS AND REGRESSION MODELS 

Monte Carlo simulation has long served as an important 

tool in a wide variety of disciplines. Through computer si-

mulation, one can study the features of real-life decision 

problems and/or formal-theoretic models that are too difficult 

to examine analytically, [3],[11],[13], [14]. In this section we 

describe the Monte Carlo experiment designed to produce 

data containing the information about the relations we want to 

investigate and then we present the results of the regression 

analysis applied to the data.  

A. Monte Carlo Experiment  

The idea of the Monte Carlo simulation is to draw a sample 
m

iZ 1}{ , i.e. a realization of the stochastic process {Z1, Z2, . . 

.Zm} composed of independent and identically distributed 

random variables having the same distribution as the random 

phenomenon we want to study. Next, based on the sample, 

various characteristics of the unknown probability distribu-

tion can be estimated. Indeed, by the strong law of large 

numbers, for any Borel function f for which the expected 

value Ef(Z) exists, the average )(
1

1∑ == m
i im Zf

m
f will al-

most surely (a.s.) converge to Ef(Z). In particular, when the 

sample size m tends to infinity we have 

N
sam

i im VZEZ
m

Z = →= ∑ =
)(

1 ..

1
 

2..2

1

2 ))((
1

Z
sam

i Nim yVZ
m

S σ →−= ∑ =
 

and  

)Pr()(
1 ..

1 ],( aZZ
mm

M sam

i ia ≤→= ∑ = −∞1  

In the latter expression M denotes the number of the values 

in the Monte Carlo sample which are not greater than a.  

In our Monte Carlo simulations the random sample is 

composed of random variables having the same distribution 

as the optimal payoff Z=W(Yτ∗) which is generated according 

its definition with the help of the following procedure. 
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Set z=0;n=0; 

While z≤t* and n<N Do Step 1 and Step 2  

Step 1. Set z=z+REX(λ) 
Step 2. Set n=n+1 

If z<T Set z=B·z 

Else Set z=0 

Return z  

 

In the above procedure the function REX(λ) returns a 

pseudorandom number generated according to the exponen-

tial probability distribution having the density function given 

by (11), t* is given by (13), N is the upper bound for the 

number of possible steps given in the considered problem.  

B. Monte Carlo Estimation of the Value of the Problem 

In order to learn how accurate the Monte Carlo approxi-

mations are, we compare the theoretical values obtained for 

various setups of the BTP with the values estimated with the 

help of the Monte Carlo simulations. Table I shows the results 

obtained for the following design parameters: (T=50, Κ=10), 

(T=50, Κ=5), (T=150, Κ=10). The boundaries N for the 

number of steps are 6,8,10, and 12 in each case. The Monte 

Carlo sample size is m=10000. 

 

We see that the Monte Carlo estimates are very close to the 

true problem values in each case. It can be easily verified that 

the relative error of the estimates is less than 0.5%. We could 

make it even smaller if we increased the sample size m.  

Let the limit T=150 and the boundary for the number of 

steps N=10. We compute the values MC
NV  for values 

Ki=0.5+35i/300,  i=1,…,300. Fig. 1 shows both, the data 

obtained from the Monte Carlo experiment, as well as the 

graph of a the theoretical value of V10 as a function of the 

parameter K, computed according the formula (14). We see 

that the theoretical values and their approximations can hardly 

be distinguished. To measure the quality of the approxima-

tions we also compute the average relative error ARE of the 

Monte Carlo approximations. The formula for ARE is as 

follows: 

)(/)()(
1

101 1010 i

m

i ii

MC
KVKVKV

m
ARE ∑ =

−=  (15) 

where m, as previously, is the Monte Carlo sample size.  

The value of ARE obtained for our data is 0.00302 – it 

confirms that the Monte Carlo approximations are really 

good.  

Next, based on the Monte Carlo sample, we built a re-

gression model for the value V10 as a function of the parameter 

K . The estimated regression model, denoted by MCV10
, is given 

by the following formula: 

 





>+++

≤++++
=

gKKKK

gKKKKK
KV

MC

,/

,/
)(

2

8765

3

4

2

3210

10
ββββ

βββββ  (16) 

 

We obtain the following least squares (LS) estimates bi for the 

unknown coefficients βi, i=0,…,8: 

b0=-8.50, b1=14.59, b2=-0447, b3= 125.15, b4= 68.70, 

b5=-1.27, b6=0.0082, b7= -0.000022 , b8= -0.000022, 

g = 16.4065 

 

The graph of the estimated model for the value MCV10
looks 

the same as a the graph of the function V10 presented in the 

Fig. 1 so we omit its presentation in this text.  

 

 
To compare the functions V10 and MCV10

 more precisely one 

can compute an average  relative error IRE for Kœ [a,b] as an 

integral 

dxxVxVxV
ab

VVIRE
b

a

MCMC
)(/)()(

1
),( 1010101010 ∫ −

−
=  (17) 

The error computed for the interval [1, 35] equals 0.00323 

which confirms that we have obtained really good approxi-

mation of the theoretical function V10. One can also notice that 

the formula (16) obtained via our Monte Carlo studies is much 

simpler that the theoretical one, see (14). What is more, such 

formulae can be obtained directly for any given number N 

whereas the relation (14)  must be computed with the help of 

the recursive equation (10), which appears to be very time 

consuming.   

In the next part of the paper we adopt this approach to build 

models for the risk characteristics of the optimal stopping 

rule.  

C. Monte Carlo Estimation of the Risk Characteristics  

As we have already pointed out, the only design parameters 

both considered risk characteristics depend on are the boun-

dary for the number of steps N and the ratio K=T/λ. Now, to 

illustrate the usage of the proposed approach in a case where 

the boundary N is known, we consider in details a problem 

with  N=10. For such a problem we want to build a model 

describing the relation between the risk characteristics and the 

parameter K.  

For 1000 values of the parameter Κ changing uniformly in 

the interval [1, 20] we estimate the risk characteristics SV, and 

10 20 30

40

80

120

V10

K
 

Fig. 1. Graph of a the value V10 as a function of K when T=150 (continuous 

line) and the Monte Carlo approximation of the values obtained for Kœ

[1,35] (dots). The theoretical values and their approximations are almost 

the same – they can hardly be distinguished in the figure. The average 

relative error of the Monte Carlo approximations equals 0.0030.  

TABLE I 

COMPARISON OF THE THEORETICAL PROBLEM VALUES NV  AND THEIR 

MONTE CARLO ESTIMATES MC
NV  

N 
Τ=50, K=10,   Τ=50, K=5  Τ=150, K=10 

VN MC
NV  VN MC

NV  VN MC
NV  

6 27.83 27.96 31.38 31.35 83.49 83.18 

8 33.45 33.61 32.00 32.10 100.38 100.50 

10 36.40 36.39 32.08 32.07 109.19 108.99 

12 37.57 37.62 32.08 32.17 112.67 112.43 
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PrF. For this purpose we use the Monte Carlo estimators 

described in Section 3.A assuming m=10000. In this simula-

tions for each number K the limit T was chosen uniformly at 

random from the interval [50, 200]. Figures 2 and 3 present 

the results.  

 

 
The simulation results show that the smallest values of the 

characteristic SV are achieved for the values of K which are a 

bit greater than  K*=9.611 for which the expected payoff 

achieves its maximum, see Fig.1 and 2. One can also notice 

that for greater values of K the risk characteristic SV is almost 

unchanged. The greatest values of the characteristic SV are 

achieved for small values of K and this can be easily intui-

tively explained. As we know, the parameter K equals the 

average number of steps needed to cover the distance T. Thus 

small values of the parameter imply relatively high probabil-

ity that the process will cross the border T even after the first 

step and that implies large variation of the payoff. At the same 

time for such values of K the expected payoff connected with 

the OSR is small, see Fig.1. 

Fig. 3 illustrates the dependence between the probability of 

failure PrF and the parameter  Κ. It shows that statistically the 

probability is a decreasing function of  Κ . Based on the si-

mulations it can be also estimated that the probability of 

failure for the Κ* equals 7.2%. Thus if one wants to assure 

smaller probability of failure then, if possible, value greater 

than K* should be chosen for K. On the other hand in such a 

case the expected payoff will be less than the maximal one, 

compare Fig. 1 and 3.  

   

 

It is worth emphasizing that the Monte Carlo simulations 

provide us with quite a  precise knowledge about the inves-

tigated relations, and the knowledge could be very difficult to 

obtain with the help of any formal analytical tools. 

D. Regression Model for the Ratio SV 

Now we build the regression models of the relationship 

between the risk characteristic SV and the parameter K. After 

preliminary studies we assume the following form of the 

regression function: 







>++

≤+++
=

gKKK

gKKKK
KSV

,/

,/
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654

2
3210

βββ

ββββ  (18) 

Based on the Monte Carlo data presented in Fig. 2 we ob-

tain the following LS estimates bi for the unknown coeffi-

cients βi, i=0,…,6: 

 

b0=0.7039, b1=0.5049, b2= - 0.1195, b3= 0.0109, b4= 0.1367, 

b5=1.5445, b6=0.0038, g = 4.4038 

 

Fig 4. presents the graph of the estimated regression model for 

the characteristic SV. 

 

 
 

To check the usefulness of the model we generate another 

1000 data points and compute the average absolute error of 

prediction. The error equals to 0.0035. The average relative 

absolute error equals 0.63% . Both these measures confirm 

practical usefulness of the regression model.  

E. Regression Model for the Probability of Failure.  

For the probability of failure we choose the logistic re-

gression model having the following structure: 

))((Exp1

))((Exp
)(

KPF

KPF
KPrF

+
=  (19) 

where  
2

3210 /)( KKKKPF ββββ +++=  
The LS estimates of the coefficients are the following: 

 

b0= -1.2932, b1=1.4272, b2=-0.05456, b3= -0.0101  

 

The graph of the function PrF is presented in Fig. 5. The 

average prediction error in this case (computed on the base of 

1000 new data points) is 0.0081 and the relative prediction 

error amounts to 3.02%. We see that the regression model 

performs really well - such small errors in estimation of the 

5 10 15
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0.2

0.3

PrF

K  
Fig. 3.  Monte Carlo estimates for the characteristic PrF when  Kœ[1,20], 

N=10 and m=10000. Parameter T was chosen at random from the interval 

[50,200]  
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Fig. 4. Dependence between SV and Κ when  N=10, the estimated regression 

model. The average prediction error computed for this model on the base of 

1000 new data points equals 0.0035, the relative prediction error amounts 

to 0.63% 
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Fig. 2. Monte Carlo estimates for the characteristic SV when  Kœ[1,20], 

N=10 and m=10000. The values of the parameter T are chosen at ran-

dom from the interval [50,200]  
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probability are usually  practically irrelevant.   

 

 

F. Models Relating Risk Characteristics to both Design 

Parameters  

In previous sections we have developed the regression 

models for the risk measures in the case where the boundary 

for the possible number of steps N was given, namely N=10. It 

is obvious that the same approach can be utilized to obtain 

similarly good models in case of any given value of N. On the 

other hand it can be important for some optimization and/or 

control tasks connected with the blackjack type stopping 

problems to know the relation between the risk characteristics 

and both design parameters; K and N. However, there are not 

even any theoretical expressions relating N and the value of 

the problem VN. Thus the only way to cope with this problem 

is to make use of the Monte Carlo sample and build an ap-

propriate regression model. Below we present the results 

obtained on the base of 3000 data points. In these simulations 

the parameter K was uniformly drawn at random from the 

interval [2,..,20]. Taking into account that the probability 

distribution of the steps Xi, i=1,2..., is an exponential one with 

λ=T/K, see (11), we can conclude that if N<K/3 then the 

probability PrF=P(Yτ∗ > T) is close to 0, whilst to study the 

values of the characteristic SV it is practically enough to 

perform theoretical studies of  the moments of the Erlang 

distribution of the state YN.  On the other hand, when N >3K 

then the probability that YΝ > T is close to 1 and the parameter 

N practically is not really a boundary for the possible number 

of steps, because the process will almost surely stop earlier. 

Thus in this case the parameter N practically does not influ-

ence the risk characteristics. Consequently in our simulations 

the parameter N was a natural number drawn uniformly at 

random from the interval [max(2,K/3) ,..., 3K].   

Based on the Monte Carlo sample we obtain the following 

general regression model for the characteristic SV : 
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 (20)  

with the following LS estimates bi for the unknown coeffi-

cients βi, i=0,…,5: 

 

b0=0.316247 , b1= -0.00850239, b2=0.010147,  

b3= -0.0981012, b4= 0.0130596, b5= 0.997077  

 

The model for the risk characteristic PrF is now proposed 

in the following logit form: 
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The LS estimates bi obtained for the regression coeffi-

cients βi, i=0,…,6, in this case are as follows: 

 

b0= -0.417676 , b1= -0.0645557, b2= -0.580249,  

b3= -0.147975, b4= 0.911603, b5= -0.0464804,  

b6= 0.00786099,  

 

To check usefulness of the two above models, we generate 

3000 new data points and compute the average errors and 

relative errors of prediction. For the model GSV given by (20) 

they are equal to 0.0132 and 0.0302, respectively. For the 

logit model (21) the errors amount to 0.00381 and 0.0628. So, 

the values of the errors again indicate very good performance 

of the models.  

Obviously, as a special case, one may obtain from (20) 

another expression for the relation between SV and K in case 

where N=10 and compare it with the model for SV given by 

(18). It is interesting to observe that the relative difference 

between the two functions, measured by IRE given by (17), is 

very small and computed for the interval [3,18] equals 3.56%. 

Analogously measured relative difference between the model 

(19) and the one obtained from equation (21) in the case 

where N=10 amounts to 9.83%. However, the relations (18) 

and (19) are a bit more accurate because they were dedicated 

especially for the BTP with N=10, while the relations (20) and 

(21) are much more general.  

IV. FINAL REMARKS 

 Studying the risk characteristics of the decision rules is an 

important part of decision making. However results con-

nected with the risk analysis can hardly  be found in the op-

timal stopping literature because of the very complex nature 

of the formal-theoretical relations between the design para-

meters of the optimal stopping problem and the risk charac-

teristics of the OSR. Thus in this paper we propose to make 

use of the Monte Carlo simulations to investigate the rela-

tions. However, the Monte Carlo experiments – as all com-

puter simulations – are subject to similar weakness; the results 

may depend on specific experiment design. Thus we propose 

here to generate the Monte Carlo sample for a wide range of 

the design parameters values and next to make use of the 

regression analysis to obtain analytical expressions modeling 

the relations which we want to study. Following the approach 

we develop models for the blackjack type optimal stopping 

problems with linear payoff and exponential step. The models 

allow the decision maker to study the risk characteristics of 

the OSR for a wide range of the design parameters. Estimated 

prediction errors appear to be very small, which indicates that 

the approach results in the analytical models which are very 

good approximations of the true relationship.  

5 10 15
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0.2
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PrF

K  
Fig. 5. Dependence between PrF and Κ when  N=10, the estimated re-

gression model. The average prediction error computed for this model on 

the base of 1000 new data points equals 0.0081, the relative prediction 

error amounts to 3.02% 
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