
 

  
Abstract— Due to a number of existing limiting factors in 

synchronous circuit design, the semiconductor industry gives 
renewed interest to the application of asynchronous technology. 
NCL (NULL Conventional Logic) is a Delay-Insensitive (DI) 
clockless paradigm convenient for implementing asynchronous 
circuits. Efficient analysis methods and tools are proposed to 
specify and verify such DI systems. Based on DISP (Delay 
Insensitive sequential Process) specification, this paper 
exemplifies application of formal methods by applying Process 
Analysis Toolkit (PAT) to model and verify behavior of NCL 
circuits. A few useful constructs, such as Boolean logic gates, 
binary half adder and pipeline ring, are successfully modeled 
and verified by using PAT. The flexibility and simplicity of 
modeling, simulation and verification show the usefulness and 
applicability of PAT for NCL circuit design and verification. 
 

Index Terms—NCL circuits, CSP#, specification, integrated 
circuits. 
 

I. INTRODUCTION 

YNCHRONOUS and clocked architectures have 
dominated digital design for many years. With the 

development of manufacturing technology, tens of billions of 
transistors can be integrated on to a single chip. At the same 
time, however, concerns have been raised due to many 
limiting factors of the synchronous design, including 
increasing clock frequency, decreasing chip size, and 
increasing power consumption. It seems that the clock is 
getting harder and harder to manage and the increasing 
difficulties of synchronous design have renewed the interest 
in asynchronous digital design, which is thought to be a 
potential solution for many inherent defects of clocked 
system.  

NULL Conventional Logic (NCL) integrates the 
expression of data transformation and the expression of 
control into a single symbolically determined expression [1]. 
It is one of the promising methods that can design and 
implement of asynchronous circuits. Unlike Boolean logic, 
NCL circuits perform complete function independent of the  
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wire delays. The signal values in NCL are directly used for 
representing the data arrival, and they monotonically transit 
between ‘complete data’ and ‘all NULL (no data)’. NCL 
paradigm is attractive since it has the merit of asynchronous 
circuits with considerably less design cost and risk. 

Many language based approaches have already been 
proposed for asynchronous circuit synthesis. In [2], several 
basic Delay Insensitive Sequential Process (DISP) [3] 
constructs have been successfully mapped to NCL and that 
shows a step towards an alternative synthesis path for NCL 
circuits. However, these DISP constructs lack of formal 
verification support.  

Communicating Sequential Programs (CSP#) (presented 
in the toolkit PAT [5]) is a programming language that can be 
used for both modeling and verifying the behavior of variety 
of concurrent systems. This paper seeks the way of mapping 
NCL circuits to CSP# constructs, which allows the use of the 
Process Analysis Toolkit (PAT) [5] to model and verify the 
behavior of NCL circuits through CSP# constructs. The 
operator of CSP# are based on the classic CSP process 
algebra [4] 

This paper has been organized in the following way. The 
next section gives an overview of NCL circuits. Section III 
lays out the DISP language syntax, and presents how to 
convert DISP into CSP#. The methodology of verification in 
PAT is then described in the last part of Section III. Through 
several case studies, Section IV presents the synthesis, 
characterization and verification of several NCL circuit 
models using PAT. Finally, we draw conclusions in Section 
V.  

II.  OVERVIEW OF NCL 

Since Boolean functions determine the output values based 
on only the input value, and since the speed of different signal 
paths is varied, a series of intermediate result transitions may 
be delivered ahead of valid stable transitions. It is hard to 
express the boundaries of instantiation and resolution by 
traditional time-dependent and symbolic-value-dependent 
Boolean logic. 

 

 
In order to make Boolean logic symbolically complete, 

additional logical expression NULL are added to the 
traditional Boolean truth table as shown in TABLE I. True (T) 
and False (F) are data values while NULL is not. A data can 
be asserted data value only if there is ‘complete data’ present 
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TABLE I 
BOOLEAN TRUTH TABLES WITH NULL  VALUE 

 

 T F N   T F N   F 
T T F N  T T T N  T F 
F F F N  F T F N  F T 
N N N N  N N N N  N N 
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Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

 
______________________________________________________________________________________ 



 

at the input. Similarly, NULL value will be asserted to the 
output only when there is ‘all NULL’ at the input. The 
completeness of input criteria is a significant feature of DI 
circuits. Consider the combinational expression in Fig. 1., 
circles denote the logic operators and A, B, C and D are the 
logical boundaries for the presentation of a signal. The 
symbols crossing D cannot be valid until all of the symbols 
crossing C are complete data, and so on.  

A logic that includes a NULL value and recognizes 
completeness relationships in the primitive logic operators 
will be referred to as a NCL [1]. NCL circuits have no time 
relationships and are insensitive to the propagation time of 
symbols among their components. 

 

 

 
 
2NCL[1] is a kind of NCL logic that obtains only one data 

value, which indicates that the signal path can transit between 
“DATA” and “NULL” without intermediate values. Multiple 
mutually exclusive values are normally expressed by 
multiple signal paths. In a binary system, a dual-rail signal D, 
which is transmitted by two mutually exclusive wires (D0 and 
D1), is used to express True and False. As seen in TABLE II, 
Boolean logic 0 and 1 are equivalent to the Data0 (D0=0, 
D1=1) and Data1 (D0=1, D0=0) respectively. NULL state 
comes only when both the inputs receive logic 0 and the state 
D0=1, D1=1 is not permitted. 

The basic logic elements of 2NCL are threshold gates. 
THmn gate, shown in Fig. 2, is a primary type of threshold 
gates. It has n input terminals with threshold m, where 1≤m
≤n, i.e. it becomes activated if at least m of n inputs are 
active. 

Since 2NCL circuits follow the input-completeness 
criterion [1], the output will be asserted only if all the inputs 
are asserted DATA and the output will not transit from 
DATA to NULL until all inputs have transited from DATA to 
NULL. Weighted threshold gate is another widely used type. 
When wR (1≤wR<m) denotes the weight of inputR (1≤
R<n), a threshold gate can be represented as 
THmnWw1w2…wR, where w1, w2, …  wR are integer 
weights of input1, input2, … inputR respectively and they 
should be larger than 1. Fig.3 shows a TH33w2 threshold 
gate that has 3 inputs with 3 thresholds. The weight of input 
A is 2, which implies the output cannot be asserted until A is 

asserted along with input B, C or both. Then the gate can be 
represented by a logical equation Z=AB+AC.  

 

 

 
 
An asynchronous cycle path normally consists of the 

completeness detection path, the acknowledge path and the 
data path which may include asynchronous combinational 
circuits. Fig. 4 shows a structure for the basic NCL pipeline. 
Asynchronous combinational circuits are involved between 
two NCL registers, which control the request and 
acknowledge signals. The input request signal (Ki) is from 
the completion detection path of the next cycle. The output 
acknowledge signal (Ko), however, will not be generated by 
the current acknowledge path until the current computation 
cycle is complete. If the previous cycle does not receive the 
acknowledge signal, the data will be blocked and the 
subsequent process cannot continue. 

 

 

III.  LANGUAGE BASED SYNTHESIS  

A. DISP based synthesis 

The term Delay Insensitive (DI) is generally understood to 
mean performing correct circuit operation regardless of the 
wire delays. DI-Algebra is an algebra used for describing the 
processes that communicate in terms of DI, and it has been 
applied in the design, as well as decomposition and 
verification of DI circuits [10, 11, 12, 16, 17]. 

 

 
 
DISP, however, provides a much more simple way to 

specify the asynchronous circuits and is supported by 
Computer Aided Design (CAD) tools like di2pn [13] and 
Petrify [5] for specification and verification. DISP is similar 
to the handshaking behavior but obtains uniform treatment to 
signals. Behaviors of 2NCL circuits are DI and thus they can 
be expressed by processes in DISP. The concrete syntax of 
DISP is defined as follows: 

 

proc :: =  stop | skip | error | burst | select choice end | 
forever do proc end | proc ; proc  | proc par proc   

 
Fig. 1. Presentation boundaries for a combinational expression. 
  

TABLE II 
DUAL -RAIL ENCODING 

Logic value 
Encoding 

D0 D1 
Data1 0 1 
Data0 1 0 
Null 0 0 

Invalid 1 1 
 

 
Fig. 2.  A THmn NCL threshold gate. 
  

 
Fig. 3.  A TH33w2 threshold gate: Z=AB+AC. 

 
Fig. 4.  Basic NCL pipeline. 

 
Fig.5.  A 3-of-3 C-element. 
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choice ::= burst [then proc] [alt choice] 
burst ::= siglist/siglist 

 
The entity siglist is a list of signal names. The simplest 

process is a burst (input/output burst), where all signals in the 
output burst will not happen until all the signals in the input 
burst are absorbed. The burst can be straightforwardly 
translated to the burst behavior of a THmn threshold gate. For 
instance, C-element [6] is a kind of THmn gates whose 
threshold number is equivalent to the number of input 
terminals. By using burst construct and an infinite repetition, 
which is usually represented by forever-do-end construct, a 
C-element3 (as seen in Fig. 5) can be mapped easily as 
follows: 

 
C-element3 = forever do a1, a2, a3/c end 
 
(a1, a2, a3) are inputs signals while c is output signal. 

Output c will be generated only after a1, a2 and a3 become 
valid. The select-end process delimits a process from a 
choice, which is restricted to a number of guarded processes. 
Together with infinite repetition, a single select-end process 
is applied to describe the behavior of a TH1k (k≥1) 2NCL 
gate as seen in Fig. 6. Its DISP specification is expressed as 
follows: 

 
TH1k = forever do select a1/c alt a2/c alt … alt ak/c end 

end 
 

 
 
Processes can also be composed either sequentially or 

concurrently. Fig. 7 shows a block and internal diagrams for 
Sequencer element. The second burst c/d cannot be processed 
until the first burst a/b is completed. In the following DISP 
expression, sequential behavior is stated by a semicolon. 

 
Sequencer = forever do a/b; c/d end 
 

 
 
The process proc par proc is used to express the parallel 

composition of two processes. The behavior of a C-element3 
can be decomposed into two parallel processes as given in the 
following expression: 

 
C-element3=forever do a1, a2, a3/c end 
=forever do a1,a2/d end par forever do d,a3/c 
 

 
It is worth pointing out that a DISP program always uses 

signals in a consistent way, either for input from the 
environment or for output to the environment, or for local 
communication in a parallel composition [3]. A case in point 
is the decomposed expression of C-element3, which is 
described by a/b par b/c rather than a/b;b/c. Furthermore, 
sharing input or output signals is not permitted in the parallel 
composition. 

B. Mapping between DISP and CSP# 

Though DISP can be applied to specify the 2NCL 
asynchronous circuits in a simple manner, as far as we are 
aware, there is a lack of tools for DISP verification.  

CSP# is a modeling language, which integrates high-level 
modeling operators with low-level procedural codes, for the 
purpose of efficient mechanical system verification [10]. 
Since most of the CSP# syntax can match with the syntax of 
DISP, it is easy to convert DISP to CSP#. For a detail of 
mapping between DISP and CSP# at the semantical level will 
be subjected to future work. The target CSP# codes can be 
conveniently modeled and verified by PAT. 

The following is BNF [11] description of the CSP# 
expressions. 

 
  P ::= Stop | Skip | e{prog} -> P  
           | P; Q |P [] Q |  
           | [b]P | P || Q | P ||| Q | 
 
P and Q are processes. e is an event name and the 

sequential program prog is optional. b states a Boolean 
expression here. 

Stop is a deadlock process that does absolutely nothing. 
Compared to Stop, Skip processes a special terminating event 
first, and then behaves exactly the same as Stop. Event 
prefixing e->P performs event e first and then behaves as 
process P.  

The expression of sequential composition in DISP is the 
same as that in CSP#: the process (P; Q) starts P first and Q 
starts only when P has been terminated. A general choice can 
be stated by []. For instance, P [] Q describes either P or Q 
may be processed. The symbol || is used to denote parallel 
composition, which synchronizes common events in the 
alphabets of P and Q. Interleaving, however, runs all 
processes independently. In a guarded process [b]P, P will 
not be executed until condition b is satisfied. Recursion in 
CSP# can be expressed by process referencing. The 
following process gives a simple example of mutual 
recursion.   

 
P() = a -> Q(); 
Q() = b -> P(); 
System() = P() || Q(); 

 
As seen in TABLE III, basic 2NCL behavior described in 

the previous section can be easily translated at the syntactical 
level to the equivalent CSP# expression. 

 
Fig. 6.  A TH1k threshold gate. 
  

 
Fig. 7.  A TH1k threshold gate. 
  

 
Fig. 8.  Fragmented C-element3. 
  

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

 
______________________________________________________________________________________ 



 

 

C. Modeling and verification tool 

PAT is a generic and extensible framework for supporting 
composing, simulating and reasoning of concurrent, real-time 
systems and other possible domains [14].  It implements a 
number of different model checking techniques catering for 
different properties such as deadlock freeness, 
divergence-freeness, reachability, and complete Linear 
Temporal Logic (LTL) [15] properties. Furthermore, PAT 
supports customized semantics and stage reduction 
techniques; and has a friendly graphic user interface. The 
main modeling language supported in PAT is CSP# process 
algebra which has high level modeling operators, parallel 
composition, interleaving, channels, etc. 

Assertion-based verification is a methodology that has 
been dormant for many years and is now widely applied in 
hardware verification. Besides plenty of modeling features, a 
number of useful assertions are supported in PAT. Assertions 
assist to capture the design intent. They monitor behaviors 
during simulation, detect and report errors. By means of 
assertions, verification can start in earlier design stage, bugs 
can be detected and resolved easily, and design engineers can 
incorporate their intent into programs to minimize integration 
issues. 

Given P() as a process, the basic assertions used are 
described as follows: 

#assert P() deadlockfree: performs Depth-First-Search or 
Breath-First-Search algorithm to detect the states with no 
further transitions except successfully terminated states. 

#assert P() divergencefree: checks if there is a process 
performing transitions forever without useful events. 

#assert P() deterministic: asks if there is no two out-going 
transitions with the same events leading to different states. 

#assert P() nonterminating: Depth-First-Search or 
Breath-First-Search algorithm is applied to detect  the state 
with no further move, including successfully terminated 
states. 

IV.  CASE STUDIES 

A. 2NCL expression mappings for basic Boolean logic gates  

Though Boolean function cannot avoid the expressional 
shortcomings, it is a convenient expression to specify the 
output results of an electronic system by Boolean functions 
first and then map these functions to 2NCL expressions. Thus 
it is necessary to seek a way that can effectively transfer 
Boolean functions to its corresponding 2NCL combinational 
expressions.  

 
As explained in Section II, there must be two signal paths to 

exclusively express the meaning of True and False in a 2NCL 
binary system and therefore NULL function should be 
expressed in addition to desired data function. Take an OR 
gate as an example. As shown in TABLE IV, the Boolean 
function of OR gate is Z=A+B, where Z, A and B can be either 
logical 1 or logical 0. The conventional OR gate implemented 
using Boolean logic will deliver logical 1 at the output Z if one 
or both inputs of the gate are asserted logical 1. 2NCL 
combinational expression, however, presents logical 1 and 0 
by a dual-rail signal Z and has to be defined by two individual 
equations.  

Since the generic equation of Z1 is AB+AC+AD+BC+BD, 
its 2NCL expression can be mapped to a TH34w22 gate. 
Similarly, the Z1 equation, whose generic expression is AB, 
can be mapped to a TH22 gate conveniently. In terms of the 
language based synthesis technology discussed in section III, 
the behaviors of a 2NCL OR gate can be expressed by a series 
of selected constructs in DISP. CSP# expressions are easier to 
use. Input and output behavior can be defined as process by a 
number of simple events. Then these processes can be 

TABLE III 
DISP AND CSP# EXPRESSION FOR BASIC PROCESS 

Process DISP CSP# 

C-element3 forever do 
a1, a2, a3/c 

P1() = a1 ->c ->Skip; 
P2() = a2 ->c ->Skip; 
P3() = a3 ->c ->Skip; 
P4() = P1()||P2()||P3(); 
F() = P4();F(); 

TH1k 
threshold gate 

forever do 
select  
a1/c alt  
a2/c alt  
…  
alt ak/c  
end 
end  

P1() = a1 -> c -> Skip; 
P2() = a2 -> c -> Skip; 
P3() = a3 -> c -> Skip; 
… 
Pk() = ak ->c -> Skip; 
P4()=P1()[]P2()[]…[]Pk(); 
F() = P4();F(); 

Sequencer 
forever do 
a/b; c/d 
end  

P1() = a -> b -> Skip; 
P2() = c -> d -> Skip; 
P3() = P1();P2(); 
F() = P3();F(); 

Fragmented 
C-element3 

forever do 
a1,a2/d 
end  
par  
forever do 
d,a3/c 

P1()=a2->a1->d->Skip; 
P2()=a1->a2->d->Skip; 
P3()=P1()[]P2(); 
P4()=d->a3->f->Skip; 
P5()=a3->d->f->Skip; 
P6()=P4()[]P5(); 
F1()=P3();(F2()[]F1()); 
F2()=P6();(F1()[]F2()); 
system()=F1()||F2(); 

 

TABLE IV 
EXPRESSION MAPPINGS FOR BASIC BOOLEAN LOGIC GATES 

 OR AND XOR 
Boolean 

Functions 
Z = A + B Z = A·B Z = A·B + C·D 

2NCL 
Expressio

n 

Z1=A1A0+B1B0+ 
A1B0+A0B1+A1B1 
Z0=A0B0 

Z1=A1B1 
Z0=A1A0+B1B0+ 

A1B0+B1A0+A0B0 

Z1=A0B1+A1B0 
Z0=A0B0+A1B1 

2NCL 
Schematic 

Views 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

DISP  
 

forever do 
select  
A0,B0/Z0 
alt 
A1,A0/Z1  
alt B1,B0/Z1  
alt A1,B0/Z1  
alt B1,A0/Z1  
alt A1,B1/Z1  
end 
end 

forever do 
select  
A1,B1/Z1 
alt A1,A0/Z0 
alt B1,B0/Z0  
alt A1,B0/Z0  
alt B1,A0/Z0  
alt A0,B0/Z0  
end 
end 

forever do 
select 
A0,B1/Z1 
alt A1,B0/Z1 
alt 
A0,B0/Z0 
alt A1,B1/Z0 
end 
end 

CSP# 

P1()=A0->Z1->Skip; 
P2()=B0->Z1->Skip; 
P3()=A1->Z1->Skip; 
P4()=B1->Z1->Skip; 
P5()=A0->Z0->Skip; 
P6()=B0->Z0->Skip; 
 
z1()=(P3()||P1())[](P4()
||P2())[](P3()||P2())[](P
4()||P1())[](P3()||P4()); 
z0()=P5()||P6(); 
F() =  (z1()[]z0());F(); 

P1()=A1->Z1->Skip; 
P2()=B1->Z1->Skip; 
P3()=A1->Z0->Skip; 
P4()=B1->Z0->Skip; 
P5()=A0->Z0->Skip; 
P6()=B0->Z0->Skip; 
 
z0()=(P3()||P5())[](P4
()||P6())[](P3()||P6())[
](P4()||P5())[](P5()||P
6()); 
z1()=P1()||P2(); 
F() =  (z1()[]z0());F(); 

P1()=A0->Z1->Skip; 
P2()=B0->Z1->Skip; 
P3()=A1->Z1->Skip; 
P4()=B1->Z1->Skip; 
P5()=A1->Z0->Skip; 
P6()=B1->Z0->Skip; 
P7()=A0->Z0->Skip; 
P8()=B0->Z0->Skip; 
 
z0()=(P7()||P6())[](P8
()||P5()); 
z1()=(P1()||P2())[](P3
()||P4()); 
F() =  (z1()[]z0());F(); 
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organized either sequentially or in parallel manner. 
PAT was applied to analyze the phases for such an OR gate 

model. In Fig. 9(a), a simulation run for the OR gate expressed 
as a transition graph is shown. Basic circuit properties were 
also verified. Verification results show that OR gate is 
deadlock-free, divergence-free, nonterminating and 
deterministic. 

 

 

2NCL AND and XOR gates can be implemented in a 
similar way. The Boolean function and 2NCL expressions can 
be seen in TABLE IV. Fig. 9 (b) and (c) show the simulation 
results. 

 

 
Since PAT well supports stage reduction, it is not hard to 

connect modules by redefining inputs and outputs even if 
duplicate event stages exist in expressions. Fig. 10 shows two 
modules, where basic events and their relationship are defined 
in the box. The two modules running in parallel can be 
connected by means of sequential composition. Furthermore, 
the outputs of the first module should be defined as the inputs 
of the subsequent module. The example CSP# code is shown 
as follows. 

 
P1()=input0->…->out0; 
P2()=input1->…->out1; 
F1()=P1()…P2(); 
P3()=out0->…->output0; 
P4()=out1->…->output1; 
F2()=P3()…P3(); 
system()=(F1()||F2());system(); 

B.  2NCL binary half adder design 

A half adder is a combinational logical circuit that can 
perform an addition operation between two binary digits. The 
result is either 0, 1 or 2 and therefore two bit output terminals 
(SUM and CARRY) are required to represent the value. Their 
Boolean function expressions and Karnaugh map are given in 
TABLE VI and TABLE V respectively.  

 

 

 

 
Since 2NCL applies dual-rail signals for representing 

circuit logic, there are two equations for the sum and two 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 9.  (a) A simulation run of a 2NCL OR gate as transition graph   
           (simulated by PAT).  

  (b) A simulation run of a 2NCL AND gate as transition graph   
(simulated by PAT).  
  (c) A simulation run of a 2NCL XOR gate as transition graph 
(simulated by PAT).  

 
Fig. 10.  Connection between modules. 

TABLE V 
KARNAUGH -MAP FOR A BINARY HALF-ADDER 

 

SUM Y0 Y1  CARRY Y0 Y1 
X0 Z0 Z1  X0 C0 C0 
X1 Z1 Z0  X1 C0 C1 

 TABLE VI 
A BINARY 2NCL HALF-ADDER 

Boolean 
Functions 

Z = X xor Y 
C = X and Y 

2NCL 
Expression 

Z0 = X0Y0+X1Y1 
Z1 = X1Y0+X0Y1=X1Y0+X0Y1+X0X1+Y0Y1  
= (X0+Y0)X1+(X0+Y0)Y1 
C0 = X0Y0+X0Y1+X1Y0=X0Y0+X0Y1+X0Y0+X1Y0  
 = X0+Y0 
C1 = X1Y1 

2NCL 
Schematic 

Views 

 

 
 

 TABLE VII 
DISP AND CSP# EXPRESSIONS FOR A BINARY HALF-ADDER 

DSIP CSP# 

forever do 
select 
select 
X1,Y1/Z0 
alt X0,Y0/Z0 
end 
alt 
select 
C0,X1/Z1 
alt 
C0,Y1/Z1 
end 
end 
end 
par 
forever do 
select 
X1,Y1/C1 
alt 
select 
X0/C0 
alt 
Y0/C0 
end 
end 
end 

P1()=X1->Y1->C1->Z->Skip; 
P2()=Y1->X1->C1->Z->Skip; 
P3()=P1()[]P2();//C1 
P4()=X0->Y0->C0->Z->Skip; 
P5()=Y0->X0->C0->Z->Skip; 
P6()=X1->Y0->C0->Z->Skip; 
P7()=Y0->X1->C0->Z->Skip; 
P8()=X0->Y1->C0->Z->Skip; 
P9()=Y1->X0->C0->Z->Skip; 
P10()=P4()[]P5()[]P6()[]P7()[]P8()[]P9(); 
//C0 
P11()=Y0->X1->Z1->Z->Skip; 
P12()=X1->Y0->Z1->Z->Skip; 
P13()=X0->Y1->Z1->Z->Skip; 
P14()=Y1->X0->Z1->Z->Skip; 
P15()=P11()[]P12()[]P13()[]P14(); 
//Z1 
P16()=X1->Y1->Z0->Z->Skip; 
P17()=Y1->X1->Z0->Z->Skip; 
P18()=X0->Y0->Z0->Z->Skip; 
P19()=Y0->X0->Z0->Z->Skip; 
P20()=P16()[]P18()[]P19(); 
//Z0 
F1()=(P3()[]P10());(F1()[]F2()); 
F2()=(P15()[]P20());(F2()[]F1()); 
system()=F1()||F2(); 
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equations for the carry. With the aim of simplifying 2NCL 
circuits, mutually exclusive signals can be inserted to the 
2NCL expressions. For example, the original logic expression 
of Z1 is X1Y0+X0Y1, where a TH22 and a TH23w2 gates are 
required to deliver the correct result.  In case that X0X1 and 
Y0Y1 are inserted, the logic expression can be mapped to a 
single TH34w2 gate. According to the dual-rail encoding, the 
situation where X0 and X1 will not be asserted at the same time 
and thus the operator will not respond to any combinations of 
X without Y. The schematic view of the optimized 2NCL 
logic can be seen in TABLE VI. TABLE VII provides the 
corresponding DISP and CSP# expressions for the binary half 
adder. A dummy state Z indicates the completeness of the 
process because the transition graph is complicated and hard 
to read. Since the logic with mutually exclusive expressions is 
redundant, only the relevant behavior for the half adder is 
specified.  

 
The simulation (see Fig. 11) and verification results (refer 

to deadlock-free, divergence-free, nonterminating and 
deterministic) show the correctness of the 2NCL half adder 
construct. 

C. 2NCL asynchronous register with completion detection 
circuits 

Pipeline is widely applied in a variety of digital systems. 
Asynchronous registers, as well as completion detection 
circuits, are basic components of 2NCL pipeline. Fig. 12 
shows a 2-bit dual-rail encoded 2NCL register with 
completion detection. Ki and Ko are handshaking signals. 
When the subsequent cycle finishes computation, the register 
will be informed by a Ki signal to store the data from a0, a1, 
b0 and b1. As soon as the output D_a0, D_a1, D_b0, D_b1 
receives the data, the completion detection circuits will 
generate a Ko signal to acknowledge the completeness of this 
cycle. As seen in Fig. 12, the register is implemented by 
TH22 gates, which has the same function as Boolean AND 
gates. The 2-bit output results are: 

 
D_a0= A0 · K i 
D_a1= A1 · K i  
D_b0= B0 · K i 
D_b1= B1 · K i  

 
The completion detection circuits are implemented by one 

TH22 gate and two TH12 gates, and their function can be 
expressed by the following equations: 

 

Ko =  ¬ (D_a0 + D_a1) · ¬ (D_b0 + D_b1) 
where ¬ denotes the signal inversion. 
 

In order to make processes convenient for expressing, the 
logic equation Ko can be re-expressed as ¬(D_a0 
+D_a1+D_b0+D_b1) according to the DeMorgan’s Law.   

TABLE VIII lists the DISP and CSP# expression for this 
register construct while Fig. 13 shows a simulation run of the 
register as transition graph (simulated by PAT). 

 

 

 

 

Fig. 11.  A simulation run of a 2NCL binary half adder as transition graph 
(simulated by PAT).  

 
Fig. 12.  Schematic view of a 2-bit 2NCL register and completion
detection circuits. 

TABLE VIII 
K-MAP FOR A 2-BIT 2NCL REGISTER AND COMPLETION DETECTION 

CIRCUITS. 

DISP CSP# 
forever do 
select 
a0,Ki/Da0 
alt a1,Ki/Da1 
alt b0,Ki/Db0 
alt b1,Ki/Db1 
end  
end 
par 
forever do 
select 
Da0/inv 
alt Da1/inv 
alt Db0/inv 
alt Db1/inv 
end 
end 
par 
forever do 
inv/Ko 
end 

P1()=a0->Da0->Skip; 
P2()=a1->Da1->Skip; 
P3()=b0->Db0->Skip; 
P4()=b1->Db1->Skip; 
P5()=Ki->Da0->Skip; 
P6()=Ki->Da1->Skip; 
P7()=Ki->Db0->Skip; 
P8()=Ki->Db1->Skip; 
P9()=(P1()||P5())[](P2()||P6())[](P3()||P7())[](P4(
)||P8()); 
 
P10()=Da0->inv->Ko->Skip; 
P11()=Da1->inv->Ko->Skip; 
P12()=Db0->inv->Ko->Skip; 
P13()=Db1->inv->Ko->Skip; 
P14()=(P10()[]P11()[]P12()[]P13()); 
 
F()=(P9()||P14());F(); 

 

 
 

Fig. 13.  A simulation runs of a 2-bit 2NCL register and completion 
detection circuits as transition graph (simulated by PAT). 
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D. 2NCL pipeline ring 

A complex structure normally contains several basic 
pipeline structures and a pipeline structure is composed of a 
few of cycles. The term pipeline ring comes to be used to 
refer to the pipeline whose outputs are connected to from a 
continuous ring of cycles. Fig. 14 shows a simple ring with 
three processes. Process I begins by sending a signal R to B. 
As soon as Process B receives signal R, Process B will begin 
and will then inform Process A to start after it is completed. 
In a similar way, signal F will be sent by Process A to initiate 
Process I again. The three processes I, B and A can be 
expressed as follows: 

 
Process I: F↑, R↑, F↓, R↓ 
Process B: S↑, F↑, S↓, F↓ 
Process A: R↑, S↑, R↓, S↓ 
 

Where up arrow (↑) indicates active and down arrow (↓) 
indicates passive. By defining a series of active and passive 
events, the behavior of the simple ring can be expressed in 
CSP# easily as follows. 
   
P1()=Fa->Ra->Ff->Rf->Skip; 
F1()=P1();(F1()[]F2()); 
P2()=Sa->Fa->Sf->Ff->Skip; 
F2()=P2();(F2()[]F3()); 
P3()=Ra->Sa->Rf->Sf->Skip; 
F3()=P3();(F2()[]F1()); 
system()=(F1()||F2()||F3()); system(); 

 
 

 

Fig. 15 shows the dependency graph for the three process 
ring. The event Fa denotes that the signal F is active while Ff 
denotes that the signal F is passive, and so forth. The 
verification has proven that the construct is deadlock free.   

A 2NCL pipeline ring usually consists of 2NCL registers, 
completion detect circuits and combinational circuits. A 
4-cycle 2NCL pipeline ring can be seen in Fig. 16, where R 
refers to register, F refers to combinational function block for 
a single stage and D refers to completion detection 
component.  The half adder described in Section IV.B can be 
used as a combinational function block. The pipeline consists 
of 4 functional blocks (e.g. R1, D1 and F1 form Block 1 in 
Fig. 16).  The behavior of each block is described as below: 

 
Block 1: F1↑, R2↑, D2↓, R1↓, F1↓, R2↓, D2↑, R1↑, F1↑ 
Block 2: F2↑, R3↑, D3↓, R2↓, F2↓, R3↓, D3↑, R4↑, F4↑ 

Block 3: F3↑, R4↑, D4↓, R3↓, F3↓, R4↓, D4↑, R3↑, F3↑ 
Block 4: F4↑, R1↑, D1↓, R4↓, F4↓, R1↓, D1↑, R4↑, F4↑ 

 
The corresponding CSP# expression is as follows and its 
dependency graph given by PAT is shown in Fig.17. 
 
P1()=D2f->R1f->F1f->R2f->D2r->R1r->F1r->R2r->Skip; 
F1()=P1();(F1()[]F2()); 
P2()=F2r->R3r->D3f->R2f->F2f->R3f->D3r->R2r->Skip; 
F2()=P2();(F2()[]F3()); 
P3()=F3r->R4r->D4f->R3f->F3f->R4f->D4r->R3r->Skip; 
F3()=P3();(F3()[]F4()); 
P4()=F4r->R1r->D1f->R4f->F4f->R1f->D1r->R4r->Skip; 
F4()=P4();(F4()[]F1()); 
system()=(F1()||F2()||F3()||F4());system(); 
 

 

 
 

V. CONCLUSION 

We have shown that our formal models developed for 
fundamental NCL/2NCL circuits, including logic gates, 
combinational circuits and pipeline structures, can be 
generally simulated and verified using PAT. All these inspire 
us to keep working on this direction to verify more complex 
formal NCL electronic systems.  

However, the formal models of NCL/2NCL circuits 
presented in this paper are simple and the mappings between 

 
 

Fig. 14.  A simple ring with three processes.  

 

 
 
Fig. 15.   A simulation run of a simple ring as transition graph (simulated 
by PAT).   

 

 
Fig. 16.  A 2NCL pipeline ring.  

 

 
Fig. 17.  Dependency graph of the 2NCL pipeline ring (given by PAT).   
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DISP and CSP# are currently limited at the syntactical level 
only. So, we aim at developing more formal models of NCL 
circuits including complex systems (e.g. MIPS-based 
systems-on-a-chip) as well as defining formal translation 
between DISP and CSP#. 
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