

Abstract— Due to a number of existing limiting factors in

synchronous circuit design, the semiconductor industry gives
renewed interest to the application of asynchronous technology.
NCL (NULL Conventional Logic) is a Delay-Insensitive (DI)
clockless paradigm convenient for implementing asynchronous
circuits. Efficient analysis methods and tools are proposed to
specify and verify such DI systems. Based on DISP (Delay
Insensitive sequential Process) specification, this paper
exemplifies application of formal methods by applying Process
Analysis Toolkit (PAT) to model and verify behavior of NCL
circuits. A few useful constructs, such as Boolean logic gates,
binary half adder and pipeline ring, are successfully modeled
and verified by using PAT. The flexibility and simplicity of
modeling, simulation and verification show the usefulness and
applicability of PAT for NCL circuit design and verification.

Index Terms—NCL circuits, CSP#, specification, integrated
circuits.

I. INTRODUCTION

YNCHRONOUS and clocked architectures have
dominated digital design for many years. With the

development of manufacturing technology, tens of billions of
transistors can be integrated on to a single chip. At the same
time, however, concerns have been raised due to many
limiting factors of the synchronous design, including
increasing clock frequency, decreasing chip size, and
increasing power consumption. It seems that the clock is
getting harder and harder to manage and the increasing
difficulties of synchronous design have renewed the interest
in asynchronous digital design, which is thought to be a
potential solution for many inherent defects of clocked
system.

NULL Conventional Logic (NCL) integrates the
expression of data transformation and the expression of
control into a single symbolically determined expression [1].
It is one of the promising methods that can design and
implement of asynchronous circuits. Unlike Boolean logic,
NCL circuits perform complete function independent of the

Manuscript received June XX, 20XX; revised July XX, 20XX.
J. Ma is with the department of Computer Science, University of

Liverpool, UK (e-mail:jieming@liverpool.ac.uk).
T. Krilavičius is with the Baltic Institute of Advanced Technology,

Vilnius, Lithuania and Informatics faculty, Vytautas Magnus University,
Kaunas, Lithuania (e-mail:t.krilavicius@gmail.com).

H. K. Kapoor is with the Department of Computer Science and
Engineering, Indian Institute of Technology Guwahati, Assam, India
(e-mail:hemangee@iitg.ernet.in).

K.L. Man, N. Zhang, E.G. Lim, and S.U. Guan are with Xi’an
Jiaotong-Liverpool University, Suzhou, P.R.China. (e-mail:
{ka.man;nan.zhang;enggee.lim;steven.guan}@xjtlu.edu.cn).

T.T. Jeong is with Myongji University, Korea
(e-mail:ttjeong@mju.ac.kr).

J.K. Seon is with LS Industrial Systems, Korea (e-mail: jkseon@lsis.biz).

wire delays. The signal values in NCL are directly used for
representing the data arrival, and they monotonically transit
between ‘complete data’ and ‘all NULL (no data)’. NCL
paradigm is attractive since it has the merit of asynchronous
circuits with considerably less design cost and risk.

Many language based approaches have already been
proposed for asynchronous circuit synthesis. In [2], several
basic Delay Insensitive Sequential Process (DISP) [3]
constructs have been successfully mapped to NCL and that
shows a step towards an alternative synthesis path for NCL
circuits. However, these DISP constructs lack of formal
verification support.

Communicating Sequential Programs (CSP#) (presented
in the toolkit PAT [5]) is a programming language that can be
used for both modeling and verifying the behavior of variety
of concurrent systems. This paper seeks the way of mapping
NCL circuits to CSP# constructs, which allows the use of the
Process Analysis Toolkit (PAT) [5] to model and verify the
behavior of NCL circuits through CSP# constructs. The
operator of CSP# are based on the classic CSP process
algebra [4]

This paper has been organized in the following way. The
next section gives an overview of NCL circuits. Section III
lays out the DISP language syntax, and presents how to
convert DISP into CSP#. The methodology of verification in
PAT is then described in the last part of Section III. Through
several case studies, Section IV presents the synthesis,
characterization and verification of several NCL circuit
models using PAT. Finally, we draw conclusions in Section
V.

II. OVERVIEW OF NCL

Since Boolean functions determine the output values based
on only the input value, and since the speed of different signal
paths is varied, a series of intermediate result transitions may
be delivered ahead of valid stable transitions. It is hard to
express the boundaries of instantiation and resolution by
traditional time-dependent and symbolic-value-dependent
Boolean logic.

In order to make Boolean logic symbolically complete,

additional logical expression NULL are added to the
traditional Boolean truth table as shown in TABLE I. True (T)
and False (F) are data values while NULL is not. A data can
be asserted data value only if there is ‘complete data’ present

Specification and Analysis of NCL Circuits

J. Ma, H.K. Kapoor, T. Krilavičius, K.L. Man, N. Zhang, E.G. Lim, T.T. Jeong, S.U. Guan and J.K. Seon

S

TABLE I
BOOLEAN TRUTH TABLES WITH NULL VALUE

 T F N T F N F
T T F N T T T N T F
F F F N F T F N F T
N N N N N N N N N N

AND OR NOT

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

at the input. Similarly, NULL value will be asserted to the
output only when there is ‘all NULL’ at the input. The
completeness of input criteria is a significant feature of DI
circuits. Consider the combinational expression in Fig. 1.,
circles denote the logic operators and A, B, C and D are the
logical boundaries for the presentation of a signal. The
symbols crossing D cannot be valid until all of the symbols
crossing C are complete data, and so on.

A logic that includes a NULL value and recognizes
completeness relationships in the primitive logic operators
will be referred to as a NCL [1]. NCL circuits have no time
relationships and are insensitive to the propagation time of
symbols among their components.

2NCL[1] is a kind of NCL logic that obtains only one data

value, which indicates that the signal path can transit between
“DATA” and “NULL” without intermediate values. Multiple
mutually exclusive values are normally expressed by
multiple signal paths. In a binary system, a dual-rail signal D,
which is transmitted by two mutually exclusive wires (D0 and
D1), is used to express True and False. As seen in TABLE II,
Boolean logic 0 and 1 are equivalent to the Data0 (D0=0,
D1=1) and Data1 (D0=1, D0=0) respectively. NULL state
comes only when both the inputs receive logic 0 and the state
D0=1, D1=1 is not permitted.

The basic logic elements of 2NCL are threshold gates.
THmn gate, shown in Fig. 2, is a primary type of threshold
gates. It has n input terminals with threshold m, where 1≤m
≤n, i.e. it becomes activated if at least m of n inputs are
active.

Since 2NCL circuits follow the input-completeness
criterion [1], the output will be asserted only if all the inputs
are asserted DATA and the output will not transit from
DATA to NULL until all inputs have transited from DATA to
NULL. Weighted threshold gate is another widely used type.
When wR (1≤wR<m) denotes the weight of inputR (1≤
R<n), a threshold gate can be represented as
THmnWw1w2…wR, where w1, w2, … wR are integer
weights of input1, input2, … inputR respectively and they
should be larger than 1. Fig.3 shows a TH33w2 threshold
gate that has 3 inputs with 3 thresholds. The weight of input
A is 2, which implies the output cannot be asserted until A is

asserted along with input B, C or both. Then the gate can be
represented by a logical equation Z=AB+AC.

An asynchronous cycle path normally consists of the

completeness detection path, the acknowledge path and the
data path which may include asynchronous combinational
circuits. Fig. 4 shows a structure for the basic NCL pipeline.
Asynchronous combinational circuits are involved between
two NCL registers, which control the request and
acknowledge signals. The input request signal (Ki) is from
the completion detection path of the next cycle. The output
acknowledge signal (Ko), however, will not be generated by
the current acknowledge path until the current computation
cycle is complete. If the previous cycle does not receive the
acknowledge signal, the data will be blocked and the
subsequent process cannot continue.

III. LANGUAGE BASED SYNTHESIS

A. DISP based synthesis

The term Delay Insensitive (DI) is generally understood to
mean performing correct circuit operation regardless of the
wire delays. DI-Algebra is an algebra used for describing the
processes that communicate in terms of DI, and it has been
applied in the design, as well as decomposition and
verification of DI circuits [10, 11, 12, 16, 17].

DISP, however, provides a much more simple way to

specify the asynchronous circuits and is supported by
Computer Aided Design (CAD) tools like di2pn [13] and
Petrify [5] for specification and verification. DISP is similar
to the handshaking behavior but obtains uniform treatment to
signals. Behaviors of 2NCL circuits are DI and thus they can
be expressed by processes in DISP. The concrete syntax of
DISP is defined as follows:

proc :: = stop | skip | error | burst | select choice end |
forever do proc end | proc ; proc | proc par proc

Fig. 1. Presentation boundaries for a combinational expression.

TABLE II
DUAL -RAIL ENCODING

Logic value
Encoding

D0 D1
Data1 0 1
Data0 1 0
Null 0 0

Invalid 1 1

Fig. 2. A THmn NCL threshold gate.

Fig. 3. A TH33w2 threshold gate: Z=AB+AC.

Fig. 4. Basic NCL pipeline.

Fig.5. A 3-of-3 C-element.

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

choice ::= burst [then proc] [alt choice]
burst ::= siglist/siglist

The entity siglist is a list of signal names. The simplest

process is a burst (input/output burst), where all signals in the
output burst will not happen until all the signals in the input
burst are absorbed. The burst can be straightforwardly
translated to the burst behavior of a THmn threshold gate. For
instance, C-element [6] is a kind of THmn gates whose
threshold number is equivalent to the number of input
terminals. By using burst construct and an infinite repetition,
which is usually represented by forever-do-end construct, a
C-element3 (as seen in Fig. 5) can be mapped easily as
follows:

C-element3 = forever do a1, a2, a3/c end

(a1, a2, a3) are inputs signals while c is output signal.

Output c will be generated only after a1, a2 and a3 become
valid. The select-end process delimits a process from a
choice, which is restricted to a number of guarded processes.
Together with infinite repetition, a single select-end process
is applied to describe the behavior of a TH1k (k≥1) 2NCL
gate as seen in Fig. 6. Its DISP specification is expressed as
follows:

TH1k = forever do select a1/c alt a2/c alt … alt ak/c end

end

Processes can also be composed either sequentially or

concurrently. Fig. 7 shows a block and internal diagrams for
Sequencer element. The second burst c/d cannot be processed
until the first burst a/b is completed. In the following DISP
expression, sequential behavior is stated by a semicolon.

Sequencer = forever do a/b; c/d end

The process proc par proc is used to express the parallel

composition of two processes. The behavior of a C-element3
can be decomposed into two parallel processes as given in the
following expression:

C-element3=forever do a1, a2, a3/c end
=forever do a1,a2/d end par forever do d,a3/c

It is worth pointing out that a DISP program always uses

signals in a consistent way, either for input from the
environment or for output to the environment, or for local
communication in a parallel composition [3]. A case in point
is the decomposed expression of C-element3, which is
described by a/b par b/c rather than a/b;b/c. Furthermore,
sharing input or output signals is not permitted in the parallel
composition.

B. Mapping between DISP and CSP#

Though DISP can be applied to specify the 2NCL
asynchronous circuits in a simple manner, as far as we are
aware, there is a lack of tools for DISP verification.

CSP# is a modeling language, which integrates high-level
modeling operators with low-level procedural codes, for the
purpose of efficient mechanical system verification [10].
Since most of the CSP# syntax can match with the syntax of
DISP, it is easy to convert DISP to CSP#. For a detail of
mapping between DISP and CSP# at the semantical level will
be subjected to future work. The target CSP# codes can be
conveniently modeled and verified by PAT.

The following is BNF [11] description of the CSP#
expressions.

 P ::= Stop | Skip | e{prog} -> P
 | P; Q |P [] Q |
 | [b]P | P || Q | P ||| Q |

P and Q are processes. e is an event name and the

sequential program prog is optional. b states a Boolean
expression here.

Stop is a deadlock process that does absolutely nothing.
Compared to Stop, Skip processes a special terminating event
first, and then behaves exactly the same as Stop. Event
prefixing e->P performs event e first and then behaves as
process P.

The expression of sequential composition in DISP is the
same as that in CSP#: the process (P; Q) starts P first and Q
starts only when P has been terminated. A general choice can
be stated by []. For instance, P [] Q describes either P or Q
may be processed. The symbol || is used to denote parallel
composition, which synchronizes common events in the
alphabets of P and Q. Interleaving, however, runs all
processes independently. In a guarded process [b]P, P will
not be executed until condition b is satisfied. Recursion in
CSP# can be expressed by process referencing. The
following process gives a simple example of mutual
recursion.

P() = a -> Q();
Q() = b -> P();
System() = P() || Q();

As seen in TABLE III, basic 2NCL behavior described in

the previous section can be easily translated at the syntactical
level to the equivalent CSP# expression.

Fig. 6. A TH1k threshold gate.

Fig. 7. A TH1k threshold gate.

Fig. 8. Fragmented C-element3.

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

C. Modeling and verification tool

PAT is a generic and extensible framework for supporting
composing, simulating and reasoning of concurrent, real-time
systems and other possible domains [14]. It implements a
number of different model checking techniques catering for
different properties such as deadlock freeness,
divergence-freeness, reachability, and complete Linear
Temporal Logic (LTL) [15] properties. Furthermore, PAT
supports customized semantics and stage reduction
techniques; and has a friendly graphic user interface. The
main modeling language supported in PAT is CSP# process
algebra which has high level modeling operators, parallel
composition, interleaving, channels, etc.

Assertion-based verification is a methodology that has
been dormant for many years and is now widely applied in
hardware verification. Besides plenty of modeling features, a
number of useful assertions are supported in PAT. Assertions
assist to capture the design intent. They monitor behaviors
during simulation, detect and report errors. By means of
assertions, verification can start in earlier design stage, bugs
can be detected and resolved easily, and design engineers can
incorporate their intent into programs to minimize integration
issues.

Given P() as a process, the basic assertions used are
described as follows:

#assert P() deadlockfree: performs Depth-First-Search or
Breath-First-Search algorithm to detect the states with no
further transitions except successfully terminated states.

#assert P() divergencefree: checks if there is a process
performing transitions forever without useful events.

#assert P() deterministic: asks if there is no two out-going
transitions with the same events leading to different states.

#assert P() nonterminating: Depth-First-Search or
Breath-First-Search algorithm is applied to detect the state
with no further move, including successfully terminated
states.

IV. CASE STUDIES

A. 2NCL expression mappings for basic Boolean logic gates

Though Boolean function cannot avoid the expressional
shortcomings, it is a convenient expression to specify the
output results of an electronic system by Boolean functions
first and then map these functions to 2NCL expressions. Thus
it is necessary to seek a way that can effectively transfer
Boolean functions to its corresponding 2NCL combinational
expressions.

As explained in Section II, there must be two signal paths to

exclusively express the meaning of True and False in a 2NCL
binary system and therefore NULL function should be
expressed in addition to desired data function. Take an OR
gate as an example. As shown in TABLE IV, the Boolean
function of OR gate is Z=A+B, where Z, A and B can be either
logical 1 or logical 0. The conventional OR gate implemented
using Boolean logic will deliver logical 1 at the output Z if one
or both inputs of the gate are asserted logical 1. 2NCL
combinational expression, however, presents logical 1 and 0
by a dual-rail signal Z and has to be defined by two individual
equations.

Since the generic equation of Z1 is AB+AC+AD+BC+BD,
its 2NCL expression can be mapped to a TH34w22 gate.
Similarly, the Z1 equation, whose generic expression is AB,
can be mapped to a TH22 gate conveniently. In terms of the
language based synthesis technology discussed in section III,
the behaviors of a 2NCL OR gate can be expressed by a series
of selected constructs in DISP. CSP# expressions are easier to
use. Input and output behavior can be defined as process by a
number of simple events. Then these processes can be

TABLE III
DISP AND CSP# EXPRESSION FOR BASIC PROCESS

Process DISP CSP#

C-element3 forever do
a1, a2, a3/c

P1() = a1 ->c ->Skip;
P2() = a2 ->c ->Skip;
P3() = a3 ->c ->Skip;
P4() = P1()||P2()||P3();
F() = P4();F();

TH1k
threshold gate

forever do
select
a1/c alt
a2/c alt
…
alt ak/c
end
end

P1() = a1 -> c -> Skip;
P2() = a2 -> c -> Skip;
P3() = a3 -> c -> Skip;
…
Pk() = ak ->c -> Skip;
P4()=P1()[]P2()[]…[]Pk();
F() = P4();F();

Sequencer
forever do
a/b; c/d
end

P1() = a -> b -> Skip;
P2() = c -> d -> Skip;
P3() = P1();P2();
F() = P3();F();

Fragmented
C-element3

forever do
a1,a2/d
end
par
forever do
d,a3/c

P1()=a2->a1->d->Skip;
P2()=a1->a2->d->Skip;
P3()=P1()[]P2();
P4()=d->a3->f->Skip;
P5()=a3->d->f->Skip;
P6()=P4()[]P5();
F1()=P3();(F2()[]F1());
F2()=P6();(F1()[]F2());
system()=F1()||F2();

TABLE IV
EXPRESSION MAPPINGS FOR BASIC BOOLEAN LOGIC GATES

 OR AND XOR
Boolean

Functions
Z = A + B Z = A·B Z = A·B + C·D

2NCL
Expressio

n

Z1=A1A0+B1B0+
A1B0+A0B1+A1B1
Z0=A0B0

Z1=A1B1
Z0=A1A0+B1B0+

A1B0+B1A0+A0B0

Z1=A0B1+A1B0
Z0=A0B0+A1B1

2NCL
Schematic

Views

DISP

forever do
select
A0,B0/Z0
alt
A1,A0/Z1
alt B1,B0/Z1
alt A1,B0/Z1
alt B1,A0/Z1
alt A1,B1/Z1
end
end

forever do
select
A1,B1/Z1
alt A1,A0/Z0
alt B1,B0/Z0
alt A1,B0/Z0
alt B1,A0/Z0
alt A0,B0/Z0
end
end

forever do
select
A0,B1/Z1
alt A1,B0/Z1
alt
A0,B0/Z0
alt A1,B1/Z0
end
end

CSP#

P1()=A0->Z1->Skip;
P2()=B0->Z1->Skip;
P3()=A1->Z1->Skip;
P4()=B1->Z1->Skip;
P5()=A0->Z0->Skip;
P6()=B0->Z0->Skip;

z1()=(P3()||P1())[](P4()
||P2())[](P3()||P2())[](P
4()||P1())[](P3()||P4());
z0()=P5()||P6();
F() = (z1()[]z0());F();

P1()=A1->Z1->Skip;
P2()=B1->Z1->Skip;
P3()=A1->Z0->Skip;
P4()=B1->Z0->Skip;
P5()=A0->Z0->Skip;
P6()=B0->Z0->Skip;

z0()=(P3()||P5())[](P4
()||P6())[](P3()||P6())[
](P4()||P5())[](P5()||P
6());
z1()=P1()||P2();
F() = (z1()[]z0());F();

P1()=A0->Z1->Skip;
P2()=B0->Z1->Skip;
P3()=A1->Z1->Skip;
P4()=B1->Z1->Skip;
P5()=A1->Z0->Skip;
P6()=B1->Z0->Skip;
P7()=A0->Z0->Skip;
P8()=B0->Z0->Skip;

z0()=(P7()||P6())[](P8
()||P5());
z1()=(P1()||P2())[](P3
()||P4());
F() = (z1()[]z0());F();

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

organized either sequentially or in parallel manner.
PAT was applied to analyze the phases for such an OR gate

model. In Fig. 9(a), a simulation run for the OR gate expressed
as a transition graph is shown. Basic circuit properties were
also verified. Verification results show that OR gate is
deadlock-free, divergence-free, nonterminating and
deterministic.

2NCL AND and XOR gates can be implemented in a
similar way. The Boolean function and 2NCL expressions can
be seen in TABLE IV. Fig. 9 (b) and (c) show the simulation
results.

Since PAT well supports stage reduction, it is not hard to

connect modules by redefining inputs and outputs even if
duplicate event stages exist in expressions. Fig. 10 shows two
modules, where basic events and their relationship are defined
in the box. The two modules running in parallel can be
connected by means of sequential composition. Furthermore,
the outputs of the first module should be defined as the inputs
of the subsequent module. The example CSP# code is shown
as follows.

P1()=input0->…->out0;
P2()=input1->…->out1;
F1()=P1()…P2();
P3()=out0->…->output0;
P4()=out1->…->output1;
F2()=P3()…P3();
system()=(F1()||F2());system();

B. 2NCL binary half adder design

A half adder is a combinational logical circuit that can
perform an addition operation between two binary digits. The
result is either 0, 1 or 2 and therefore two bit output terminals
(SUM and CARRY) are required to represent the value. Their
Boolean function expressions and Karnaugh map are given in
TABLE VI and TABLE V respectively.

Since 2NCL applies dual-rail signals for representing

circuit logic, there are two equations for the sum and two

(a)

(b)

(c)

Fig. 9. (a) A simulation run of a 2NCL OR gate as transition graph
 (simulated by PAT).

 (b) A simulation run of a 2NCL AND gate as transition graph
(simulated by PAT).
 (c) A simulation run of a 2NCL XOR gate as transition graph
(simulated by PAT).

Fig. 10. Connection between modules.

TABLE V
KARNAUGH -MAP FOR A BINARY HALF-ADDER

SUM Y0 Y1 CARRY Y0 Y1
X0 Z0 Z1 X0 C0 C0
X1 Z1 Z0 X1 C0 C1

 TABLE VI
A BINARY 2NCL HALF-ADDER

Boolean
Functions

Z = X xor Y
C = X and Y

2NCL
Expression

Z0 = X0Y0+X1Y1
Z1 = X1Y0+X0Y1=X1Y0+X0Y1+X0X1+Y0Y1
= (X0+Y0)X1+(X0+Y0)Y1
C0 = X0Y0+X0Y1+X1Y0=X0Y0+X0Y1+X0Y0+X1Y0
 = X0+Y0
C1 = X1Y1

2NCL
Schematic

Views

 TABLE VII
DISP AND CSP# EXPRESSIONS FOR A BINARY HALF-ADDER

DSIP CSP#

forever do
select
select
X1,Y1/Z0
alt X0,Y0/Z0
end
alt
select
C0,X1/Z1
alt
C0,Y1/Z1
end
end
end
par
forever do
select
X1,Y1/C1
alt
select
X0/C0
alt
Y0/C0
end
end
end

P1()=X1->Y1->C1->Z->Skip;
P2()=Y1->X1->C1->Z->Skip;
P3()=P1()[]P2();//C1
P4()=X0->Y0->C0->Z->Skip;
P5()=Y0->X0->C0->Z->Skip;
P6()=X1->Y0->C0->Z->Skip;
P7()=Y0->X1->C0->Z->Skip;
P8()=X0->Y1->C0->Z->Skip;
P9()=Y1->X0->C0->Z->Skip;
P10()=P4()[]P5()[]P6()[]P7()[]P8()[]P9();
//C0
P11()=Y0->X1->Z1->Z->Skip;
P12()=X1->Y0->Z1->Z->Skip;
P13()=X0->Y1->Z1->Z->Skip;
P14()=Y1->X0->Z1->Z->Skip;
P15()=P11()[]P12()[]P13()[]P14();
//Z1
P16()=X1->Y1->Z0->Z->Skip;
P17()=Y1->X1->Z0->Z->Skip;
P18()=X0->Y0->Z0->Z->Skip;
P19()=Y0->X0->Z0->Z->Skip;
P20()=P16()[]P18()[]P19();
//Z0
F1()=(P3()[]P10());(F1()[]F2());
F2()=(P15()[]P20());(F2()[]F1());
system()=F1()||F2();

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

equations for the carry. With the aim of simplifying 2NCL
circuits, mutually exclusive signals can be inserted to the
2NCL expressions. For example, the original logic expression
of Z1 is X1Y0+X0Y1, where a TH22 and a TH23w2 gates are
required to deliver the correct result. In case that X0X1 and
Y0Y1 are inserted, the logic expression can be mapped to a
single TH34w2 gate. According to the dual-rail encoding, the
situation where X0 and X1 will not be asserted at the same time
and thus the operator will not respond to any combinations of
X without Y. The schematic view of the optimized 2NCL
logic can be seen in TABLE VI. TABLE VII provides the
corresponding DISP and CSP# expressions for the binary half
adder. A dummy state Z indicates the completeness of the
process because the transition graph is complicated and hard
to read. Since the logic with mutually exclusive expressions is
redundant, only the relevant behavior for the half adder is
specified.

The simulation (see Fig. 11) and verification results (refer

to deadlock-free, divergence-free, nonterminating and
deterministic) show the correctness of the 2NCL half adder
construct.

C. 2NCL asynchronous register with completion detection
circuits

Pipeline is widely applied in a variety of digital systems.
Asynchronous registers, as well as completion detection
circuits, are basic components of 2NCL pipeline. Fig. 12
shows a 2-bit dual-rail encoded 2NCL register with
completion detection. Ki and Ko are handshaking signals.
When the subsequent cycle finishes computation, the register
will be informed by a Ki signal to store the data from a0, a1,
b0 and b1. As soon as the output D_a0, D_a1, D_b0, D_b1
receives the data, the completion detection circuits will
generate a Ko signal to acknowledge the completeness of this
cycle. As seen in Fig. 12, the register is implemented by
TH22 gates, which has the same function as Boolean AND
gates. The 2-bit output results are:

D_a0= A0 · K i
D_a1= A1 · K i
D_b0= B0 · K i
D_b1= B1 · K i

The completion detection circuits are implemented by one

TH22 gate and two TH12 gates, and their function can be
expressed by the following equations:

Ko = ¬ (D_a0 + D_a1) · ¬ (D_b0 + D_b1)
where ¬ denotes the signal inversion.

In order to make processes convenient for expressing, the
logic equation Ko can be re-expressed as ¬(D_a0
+D_a1+D_b0+D_b1) according to the DeMorgan’s Law.

TABLE VIII lists the DISP and CSP# expression for this
register construct while Fig. 13 shows a simulation run of the
register as transition graph (simulated by PAT).

Fig. 11. A simulation run of a 2NCL binary half adder as transition graph
(simulated by PAT).

Fig. 12. Schematic view of a 2-bit 2NCL register and completion
detection circuits.

TABLE VIII
K-MAP FOR A 2-BIT 2NCL REGISTER AND COMPLETION DETECTION

CIRCUITS.

DISP CSP#
forever do
select
a0,Ki/Da0
alt a1,Ki/Da1
alt b0,Ki/Db0
alt b1,Ki/Db1
end
end
par
forever do
select
Da0/inv
alt Da1/inv
alt Db0/inv
alt Db1/inv
end
end
par
forever do
inv/Ko
end

P1()=a0->Da0->Skip;
P2()=a1->Da1->Skip;
P3()=b0->Db0->Skip;
P4()=b1->Db1->Skip;
P5()=Ki->Da0->Skip;
P6()=Ki->Da1->Skip;
P7()=Ki->Db0->Skip;
P8()=Ki->Db1->Skip;
P9()=(P1()||P5())[](P2()||P6())[](P3()||P7())[](P4(
)||P8());

P10()=Da0->inv->Ko->Skip;
P11()=Da1->inv->Ko->Skip;
P12()=Db0->inv->Ko->Skip;
P13()=Db1->inv->Ko->Skip;
P14()=(P10()[]P11()[]P12()[]P13());

F()=(P9()||P14());F();

Fig. 13. A simulation runs of a 2-bit 2NCL register and completion
detection circuits as transition graph (simulated by PAT).

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

D. 2NCL pipeline ring

A complex structure normally contains several basic
pipeline structures and a pipeline structure is composed of a
few of cycles. The term pipeline ring comes to be used to
refer to the pipeline whose outputs are connected to from a
continuous ring of cycles. Fig. 14 shows a simple ring with
three processes. Process I begins by sending a signal R to B.
As soon as Process B receives signal R, Process B will begin
and will then inform Process A to start after it is completed.
In a similar way, signal F will be sent by Process A to initiate
Process I again. The three processes I, B and A can be
expressed as follows:

Process I: F↑, R↑, F↓, R↓
Process B: S↑, F↑, S↓, F↓
Process A: R↑, S↑, R↓, S↓

Where up arrow (↑) indicates active and down arrow (↓)
indicates passive. By defining a series of active and passive
events, the behavior of the simple ring can be expressed in
CSP# easily as follows.

P1()=Fa->Ra->Ff->Rf->Skip;
F1()=P1();(F1()[]F2());
P2()=Sa->Fa->Sf->Ff->Skip;
F2()=P2();(F2()[]F3());
P3()=Ra->Sa->Rf->Sf->Skip;
F3()=P3();(F2()[]F1());
system()=(F1()||F2()||F3()); system();

Fig. 15 shows the dependency graph for the three process
ring. The event Fa denotes that the signal F is active while Ff
denotes that the signal F is passive, and so forth. The
verification has proven that the construct is deadlock free.

A 2NCL pipeline ring usually consists of 2NCL registers,
completion detect circuits and combinational circuits. A
4-cycle 2NCL pipeline ring can be seen in Fig. 16, where R
refers to register, F refers to combinational function block for
a single stage and D refers to completion detection
component. The half adder described in Section IV.B can be
used as a combinational function block. The pipeline consists
of 4 functional blocks (e.g. R1, D1 and F1 form Block 1 in
Fig. 16). The behavior of each block is described as below:

Block 1: F1↑, R2↑, D2↓, R1↓, F1↓, R2↓, D2↑, R1↑, F1↑
Block 2: F2↑, R3↑, D3↓, R2↓, F2↓, R3↓, D3↑, R4↑, F4↑

Block 3: F3↑, R4↑, D4↓, R3↓, F3↓, R4↓, D4↑, R3↑, F3↑
Block 4: F4↑, R1↑, D1↓, R4↓, F4↓, R1↓, D1↑, R4↑, F4↑

The corresponding CSP# expression is as follows and its
dependency graph given by PAT is shown in Fig.17.

P1()=D2f->R1f->F1f->R2f->D2r->R1r->F1r->R2r->Skip;
F1()=P1();(F1()[]F2());
P2()=F2r->R3r->D3f->R2f->F2f->R3f->D3r->R2r->Skip;
F2()=P2();(F2()[]F3());
P3()=F3r->R4r->D4f->R3f->F3f->R4f->D4r->R3r->Skip;
F3()=P3();(F3()[]F4());
P4()=F4r->R1r->D1f->R4f->F4f->R1f->D1r->R4r->Skip;
F4()=P4();(F4()[]F1());
system()=(F1()||F2()||F3()||F4());system();

V. CONCLUSION

We have shown that our formal models developed for
fundamental NCL/2NCL circuits, including logic gates,
combinational circuits and pipeline structures, can be
generally simulated and verified using PAT. All these inspire
us to keep working on this direction to verify more complex
formal NCL electronic systems.

However, the formal models of NCL/2NCL circuits
presented in this paper are simple and the mappings between

Fig. 14. A simple ring with three processes.

Fig. 15. A simulation run of a simple ring as transition graph (simulated
by PAT).

Fig. 16. A 2NCL pipeline ring.

Fig. 17. Dependency graph of the 2NCL pipeline ring (given by PAT).

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

DISP and CSP# are currently limited at the syntactical level
only. So, we aim at developing more formal models of NCL
circuits including complex systems (e.g. MIPS-based
systems-on-a-chip) as well as defining formal translation
between DISP and CSP#.

REFERENCES

[1] K. M. Fant, S. A. Brandt, “Null convention logic. A complete and

consistent logic for asynchronous digital circuit synthesis,” in Proc. of
the International Conference on Application Specific Systems,
Architectures, Chicago, 1996, pp. 261–273.

[2] H. K. Kapoor, A. Asthana, T. Krilavicius, W. Zeng, J. Ma and K. L.
Man, “Towards a Language Based Synthesis of NCL Circuits,” in Proc.
of the 2011 International MultiConference of Engineers and Computer
Scientists, IMECS 2011, 16-18 March, 2011, Hong Kong
pp.1033-1038.

[3] M. B. Josephs, D. P. Furey, “A programming approach to the design of
asynchronous logic blocks,” in Proc. of Concurrency and Hardware
Design, Advances in Petri Nets, vol. 2549, London, 2002, pp.34-60.

[4] C. Hoare, “Communicating sequential processes,” in Comm. ACM
1978, pp. 21- 8.

[5] PAT. (2009). “PAT: Process Analysis Toolkit.” Available at:
http://www.comp.nus.edu.sg/~pat/.

[6] K. M. Fant, “Logically Determined Design – Clockless System Design
with Null Conventional Logic,” New Jerey: John Wiley & Sons, Inc,
2005.

[7] J. Sun, Y. Liu, J. S. Dong, C. Chen, “Integrating Specification and
Programs for System Modeling and Verification,” in: Proc. of the
Third IEEE International Symposium on Theoretical Aspects of
Software Engineering, Wanshington, DC, 2009, pp. 127-135.

[8] T. Verhoeff, “Encyclopedia of delay-insensitive systems (EDIS),”
Dept. of Math.and C.S., Eindhoven Univ. of Technology. Available:
http://edis.win.tue.nl/edis.html.

[9] G. E. Sobelman, K. M. Fant, “CMOS Circuit Design of Threshold
Gates with Hysteresis,” in Proc. of the 1998 IEEE International
Symposium on Circuits and Systems, Monterey, CA, 1998, pp. 61-65.

[10] W. C. Mallon, “Theories and Tools for the Design of Delay-Insensitive
Communicating Processes,” PhD thesis, Dept. of C.S., Univ. of
Groningen, The Netherlands, January 2000

[11] M. B. Josephs, J. T. Udding, “Delay-Insensitive Circuits: An Algebraic,
Approach to their Design,” in Proc. of CONCUR’90, 1990, pp.
342–366.

[12] M. B. Josephs, P. G. Lucassen, J. T. Udding, T. Verhoeff, “Formal
Design of an Asynchronous DSP Counterflow Pipeline: A Case Study
in Handshake Algebra,” in Proc. of International Symposium on
Advanced Research in Asynchronous Circuits and Systems
(ASYNC’94), Salt Lake City, UT, 1994, pp. 206–215.

[13] M. B. Josephs, D. P. Furey, “A Programming Approach to the Design
of Asynchronous Logic Blocks,” in Proc. Concurrency and Hardware
Design, 2002, pp.34-60.

[14] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A.
Yakovlev, “Petrify: A Tool for Manipulating Concurrent
Specifications and Synthesis of Asynchronous Controllers,” IEICE
Transactions on Information and Systems, vol. 3(E80-D), pp. 315–325,
1997.

[15] G. J. Holzmann, “The SPIN Model Checker: Primer and Reference
Manual”, Boston: Addison Wesley Professional, 2003.

[16] M. B. Josephs and H. K. Kapoor, “Controllable Delay-Insensitive
Processes,” in Fundamenta Informaticae, vol.78, No.1, pp. 101-130,
2007.

[17] H. K. Kapoor, M. B. Josephs, D. P. Furey, “Verification and
Implementation of Delay-Insensitive Processes in Restrictive
Environments,” in Fundamenta Informaticae, vol.70, No.1-2,
pp.21-48, 2006.

Jieming Ma (M’11) received Bachelor of Engineering degree from Nantong
University, P.R. China, in 2007. He then received Master of Science from the
University of Bristol, UK, in 2010. Currently, he is a PhD student in the
department of Computer Science at the University of Liverpool, UK. His
research interests include logic design, VLSI, and Low power design
methodologies for integrated circuits and System-on-a-Chip (SoC).

Hemangee K. Kapoor received Bachelor of Engineering degree (computer
engineering) from College of Engineering, Pune, India, in 1998; Masters of
Technology (computer science and engineering) from Indian Institute of
Technology Bombay, India, in 2000; and Ph.D. degree (computer science)
from London South Bank University, London, UK, in 2004.
Presently she is Assistant Professor at the Department of Computer Science
and Engineering at the Indian Institute of Technology Guwahati, Assam,
India. Her current research interests include formal methods, process calculi,
asynchronous systems, system-on-chip interconnects, network-on-chip
design and computer architecture. Dr. Kapoor is a member of the IEEE.

Engineering Letters, 19:3, EL_19_3_09

(Advance online publication: 24 August 2011)

__

