
 

 
Abstract— In this work, three nonlinear heat transfer 

problems namely, steady state heat conduction in a rod, 
unsteady cooling of a lumped system and steady state heat 
transfer from a rectangular fin into the free space by the 
radiation mechanism, have been solved analytically. Earlier 
these three problems were solved by various researchers by 
using homotopy perturbation, homotopy analysis and optimal 
homotopy analysis methods and the approximate series 
solutions were obtained. Here, we have obtained exact 
analytical solutions of these three problems in terms of a 
simple algebraic function, a Lambert W function and the 
Gauss’s hypergeometric function, respectively. These exact 
solutions agree very well with those obtained by the numerical 
schemes and are better than the recent approximate solutions. 
Moreover, these can also serve as the yardsticks for future 
testing of the approximate solutions. 

 
Index Terms— Heat transfer, Conduction, Convection, 

Radiation 
 

I. INTRODUCTION 
HIS research work mainly stresses on finding the exact 
analytical solution of three nonlinear heat transfer 

problems which have nonlinear temperature dependent 
terms. The first problem represents the steady state heat 
conduction process in a metallic rod and is described by a 
nonlinear BVP (boundary value problem) in a second order 
ODE (ordinary differential equation). Recently, Rajabi et 
al. [1] have solved this problem by using a well known 
approximate method i.e. HPM (homotopy perturbation 
method), whereas Sajid and Hayat [2] and Domairry and 
Nadim [3] have solved the same problem by using HPM 
and another very popular approximate scheme i.e. HAM 
(homotopy analysis method). These workers have obtained 
the results in the form of a finite. The second problem, 
considered by Ganji [4] using HPM, by Abbasbandy [5] 
using HAM and by Marinca and Herișanu [6] using OHAM 
(optimal HAM), depicts the unsteady heat convection from 
a lumped system. 
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The related governing equation of this problem is 

expressed by a nonlinear initial value problem (IVP) in a 
first order ODE. The solutions were found in series form. 
The third problem describes the steady state radiative heat 
transfer from a rectangular fin into the free space and the 
model equation is give by a nonlinear BVP in a second 
order ODE. This problem has also been recently considered 
by Ganji [4], Abbasbandy [5] and Marinca and Herișanu [6] 
by using HPM, HAM and OHAM, respectively, and the 
solution were found in terms of the truncated series.   

One should note that the series solutions have 
changeable degree of accuracy and radius of convergence, 
and are strongly dependent on the number of terms in the 
series as well as on the parameters’ values. Because of this, 
there remains a region outside which the series solutions 
start deviating and their regular use becomes limited. 
Nonetheless, in such cases efforts are made either to obtain 
the exact analytical solutions or to solve the problem with 
the help of some suitable numerical technique. Fortunately, 
we have shown that all the above three mentioned problems 
are exactly solvable in terms of algebraic function, Lambert 
W function [7] and hypergeometric function, respectively. 
These solutions have been obtained by using simple 
mathematical manipulations e.g. assuming an implicit form 
of the solution or by reducing the equation into a simpler 
form by adding and subtracting certain terms, as elaborated 
in the following sections. Thus found analytical solutions 
are fairly helpful since:  
(i)   Better insight of the actual physical process is easily 

gained. 
(ii) These can straightforwardly be utilized in finding the 

precise temperature profiles and temperature gradients 
for a whole range of parameters' values disparate to 
their approximate series counterparts which have 
convergence related issues for the entire range of 
parameters' values especially for the extreme values of 
parameters.   

(iii) One can also be deploy them to validate the accuracy 
of other approximate solutions. 

Physical description of the mentioned processes, 
derivation of respective model equations and the methods to 
find the exact solutions are discussed below.  

II. PROBLEM 1: HEAT CONDUCTION IN A METALLIC ROD 
This problem mainly portrays the steady conductive heat 

transfer in a metallic rod and practically arises in 
estimating the thermal conductivity of metals e.g. heat flow 
meters [8, 9]. In this problem, the two ends of the rod are 
kept at different but fixed temperatures and heat transfer 
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takes place from higher temperature to the lower by the 
mechanism of conduction. In this conduction problem, we 
assume that the thermal conductivity varies linearly with 
temperature and there is no heat loss to the surrounding 
from the round surface of the rod. 

We consider a rod of length, L and uniform cross 
sectional area, cA  with its end maintained at two different 
temperatures i.e. ( 0) aT x T   and ( ) bT x L T  . For 
these stated assumptions, the steady state energy balance 
over the rod gives in the following dimensional equation 
and the associated BCs (boundary conditions): 

( ) 0c
d dTA k T
dx dx

   
 

                     (1a) 

BCI:  aT T  at 0x                        (1b) 
BCII: bT T  at x L              (1c) 

Where ( ) 1 a
a

b a

T Tk T k
T T


 

   
 is the temperature 

dependent thermal conductivity of the rod. With the 
introduction of the following dimensionless variables, the 
governing equation and the associated BCs i.e. (1a)-(1c), 
transform into the following equations i.e. (2a)-(2c): 

x
L

  , a

b a

T T
T T







 

   21 '' ' 0                      (2a) 
BCI:  (0) 0                  (2b)                                                       
BCII: (1) 1                      (2c)
 Where '  & ''  represents the first and second order 
derivatives of   with respect to  , respectively. Following 
two different approaches can be adopted to obtain the exact 
solution of the above equation, as demonstrated below: 

A. Approach I 
A careful inspection of (2a) shows that it can 

conveniently be expressed in the following form: 
  1 ' ' 0                    (3) 

Integrating the above equation two times with respect to 
 , one obtains the following quadratic equation in  : 

2

1 22
C C  

 
   

 
                  (4) 

Where  1 1 2C    and  2 0C   are the constants of 

integration and have been found from the associated BCs 
i.e. (2b) & (2c). Substituting these values in (4) and solving 
for  , one finds the following two explicit solutions; two 
solutions appear because of the nonlinear nature of the 
equation. 

21 1 2  



   

             (5a) 

21 1 2  



   

                      (5b) 

Since, second solution does not satisfy the BCs and is 
unrealistic it is, therefore, rejected. If one expands (5a) 
around 0   using Taylor series the following 
approximate series is obtained.  

   2 2 3 21 1 ...
2 2

              

If one compares it with the approximate HPM solution 
[(47)] of Rajabi et al. [1] and approximate HAM solution of 
Domairry and Nadim [3] for the convergence control 
parameter 1h    (used therein), an accurate compliance is 
observed. 

However, we could not compare the results obtained by 
exact solution with the results of Sajid and Hayat [2] since 
no such solution term was provided. However, in this case 
the results were judged against those of Sajid and Hayat [2] 
by tabulating the values of temperature gradients at 0   
and 1   (see Table 1). A close conformity is observed 
between these values.  

The results obtained by the current solution i.e. (5a) have 
also been successfully verified against those obtained by 
(47) of Rajabi et al. [1] and those obtained by numerical 
methods, as shown in Fig. 1.  In this figure it is clearly 
visible that the approximate temperature profile obtained by 
Rajabi et. al. [1] deviates appreciably even for moderate 
values of   and becomes redundant for larger values of  . 
Although not shown, the same characteristics can also be 
ascribed to the HAM solution of Domairry and Nadim [3] 
for the convergence control parameter 1h   . On the 
contrary, no deviation is observed in the present solution, 
even for higher values of  . One notes from Fig. 1 that as 
  varies from 0 to  , the temperature of the rod tends to 
reach the higher temperature ( 1  ) and thus ascertain the 
fact that with the increase in thermal conductivity the 
temperature of the rod also rises.  

 
B. Approach II 

In this approach we assume that the derivative '  is a 
function of   only i.e. ' ( )p  , in other words, the 
solution of (2a) exhibits an implicit form i.e. ( )f   . 

Consequently, 
 2

1''
2

d p

d



 , where p (still unknown) is a 

function  of  , only. It is useful to mention that this 
approach is quite helpful whenever the independent 
variable    is absent in the concerned equation. Replacing  
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Fig. 1 Dimensionless temperature profiles along the length of the rod  

(problem 1), solid lines: exact solution; filled circle: numerical solution 
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'  & ''  in (2a) by the above respective definitions, one 
obtains: 

 
 2

21 2 0
d p

p
d

 


                   (6) 

Now, substituting 2p y  and after little alterations the 
above equation reduces to the following first order linear 
ODE: 
 1 ' 2 0y y                   (7) 

Solving the above first order linear ODE by integrating 
factor method one finds: 

 
1

21
C

y





                  (8) 

Or 

   
1

1
Cdp

d



 

 


              (9) 

Where 1C  is a constant of integration. Integrating the 
above (9) once more, one finds the expression for    [note 
that the equation below is similar, in form, to the (4)]: 

2

1 22
C C  

 
   

 
                        (10) 

2C  is another constant of integration and  2

1 1 2C    

and  2 0C  are evaluated from the associated BCs, like in 
the first approach. Substituting the values of these constants 
in (10) and solving for  , one arrives at the following two 
solutions which are exactly same as those given in (5a) & 
(5b).  

21 1 2  



   

                      (11a) 

21 1 2  



   

                     (11b) 

Second solution does not satisfy the BCs so discarded. 
Rest of the discussion remains same as presented in 
Approach I.  

 

III. PROBLEM 2: COOLING OF A LUMPED SYSTEM  
This problem represents the temporary cooling of a 

lumped system the specific heat of which varies linearly 
with temperature. In real world, this problem arises in the 
cooling of heated stirred vessels and cooling of electronic 
components with high thermal conductivity etc [8]. HPM, 
HAM and OHAM solutions of this problem have been 
found by Ganji [4], Abbasbandy [5] and Marinca and 
Herișanu [6], respectively and the solutions were obtained 

in the form of series. The problem is stated as: at the outset 
of the experiment, a system with density  , volume V  and 
heat transfer area A , is exposed to a surrounding at 
different temperature ( aT ) and heat is transferred from the 
system to the surrounding by convection. The leading 
model equation is derived by applying the unsteady energy 
balance over the system and is described by the following 
nonlinear IVP (initial value problem) in first order ODE: 

( ) ( ) 0a
dTVc T hA T T
dt

                                  (12a) 

IC: (0) bT T                                   (12b) 

Where ( ) 1 a
a

b a

T Tc T c
T T


 

   
 is the heat capacity of 

the system showing linear dependency on temperature and 
h  is the constant heat transfer coefficient. With the 
assistance of the following dimensionless quantities, (12a) 
& (12b) attain the dimensionless form given by (13a) & 
(13b), respectively. 

a

hAt
Vc




 , a

b a

T T
T T







 

 1 ' 0                             (13a) 
IC: (0) 1                                                              (13b) 

A simple rearrangement of the above (13a) yields: 
' ' 1



                               (14) 

Integrating (14) with respect to   results in: 
1[ ]Log C                               (15) 

Where 1C  is the constant of integration and using IC, it 
is found to be 1C  . Substituting back the so found value 
of 1C  in (15), provides the following exact analytical 
solution. 

[ ]Log                                (16) 
Due to the above implicit form of  , it has to be found 

for each and every   by solving (16) with the help of some 
suitable iterative numerical scheme. This feature limits the 
repeated use of the above formula. Keeping this in view, we 
now develop, from (16), the explicit solution form. A 
constant term [ ]Log   is added and subtracted in (16) and 
after performing a little modification, (17) is obtained. 

 Log e Log                              (17) 

Equation (17) can be further expressed as: 
   e e                               (18) 

The L.H.S. of (18) can be replaced by the Lambert W 
function (implemented as ProductLog function in some 
mathematical softwares e.g. Mathematica). A Lambert W 
function is basically the inverse function of yx ye  i.e. y= 
Lambert(x) and is symbolized by ( )y W x . In general, the 
domain and range of the function is the set of complex 
values however, for [0, )x   Lambert W function yields 

single real values. For 1( , )x e
  , Lambert W function 

does not evaluate to any real value whereas, for 
1[ ,0)x e

  it computes two real values. Now, with this 

TABLE I 
COMPARISON OF DIMENSIONLESS TEMPERATURE 

GRADIENT AT BOTH THE ENDS OF THE ROD (PROBLEM 1) 

S. 
No. β 

θ'(1) θ'(0) 

Numerical 
solution 

Sajid & 
Hayat [2] 

Exact 
solution 

(5a) 

Numerical 
solution 

Exact 
solution 

(5a) 
1 0.5 0.833333 0.833333 0.833333 1.250000 1.250000 
2 2 0.666667 0.666667 0.666667 2.000000 2.000000 
3 5 0.583333 0.583333 0.583333 3.500000 3.500000 
4 25 27/52 - 27/52 27/2 27/2 
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function available, the transient dimensionless temperature 
profile is given by: 

1 ProductLog e  


                           (19) 

Expanding   around 0   by using Taylor series, 
yields the following expansion which harmonizes with the 
(18) of Ganji [4] and (9) of Abbasbandy [5] for 1h   . 

   
2

2 2 34 3 ...
2

e e e e e e                   

Fig. 2 compares that the transient temperature profiles 
obtained by the present (19), HPM solution obtained by 
Ganji [4] and those obtained by numerical scheme. It is 
clear that the present solution match very well with the 
numerical solution whereas, the solutions obtained by Ganji 
[4] show considerable discrepancies except for 0   
where the (13a) becomes linear. Fig. 2 also supports the 
fact that with the increase in  , the specific heat increases 
which in turn causes the decrease in temperature gradient.  

Extending the comparison, the initial rates of 
temperature change, given by the following (20), have also 
been found using (19) and plotted in Fig. 3 along with those 
obtained by Abbasbandy [5].  

1'(0)
1








                            (20) 

Accuracy is evident by the overlapping profiles. Similar 
comparisons with the OHAM solution of Marinca and 
Herișanu [6] have been avoided due to their more involved 
solution expression. However, it can be shown that our 
present solution, being exact in form, is superior to the 
approximate solution of Marinca and Herișanu [6].  

 

 

IV. PROBLEM 3: STEADY STATE RADIATIVE HEAT 
TRANSFER FROM A RECTANGULAR FIN 

This problem represents the steady state heat transfer 
from a rectangular fin to the free space by the radiation 
mechanism. Such situations appear in the cooling of the 
heated parts of the space vehicles. This problem, too, has 
been tackled by Ganji [4], Abbasbandy [5] and Marinca and 
Herișanu [6] with the help of HPM, HAM and OHAM, 
respectively and the solutions were obtained in the form of 
series. We consider a rectangular fin having cross sectional 
area cA , perimeter P , length L  and the constant thermal 
conductivity and emissivity as k  and  , respectively. The 
fin base is maintained at a higher temperature bT  and the 
fin is transmitting the heat energy into the space by the 
mode of radiation. It is assumed that the steady state is 
prevailing and the negligible heat transfer takes place from 
fin end [10]. Keeping these assumptions in view, the 
governing model equation is derived by applying the steady 
energy balance over the fin element and is described by the 
following nonlinear BVP in second order ODE: 

4 4( )c s
d dTA k P T T
dx dx

     
 

                   (21a) 

BCI:  bT T  at x L  (at fin base)                (21b) 

BCII: 0dT
dx

  at 0x   (at fin end)                 (21c) 

It is worthwhile to note that the space temperature can 
very well be replaced by the absolute zero temperature i.e. 

0sT   [4-6]. Taking this fact into account and defining the 
following dimensionless variables, the above equations are 
conveniently expressed into the dimensionless form given 
by (22a) - (22c).   

b

T
T

  ,  x
L

  , 
3 2

b

c

PT L
kA





  

And the (21a) - (21c) become 
2

4
2

d
d





                            (22a) 

BCI:  1   at 1   (at fin base)                 (22b) 

BCII: 0d
d


  at 0   (at fin end)                 (22c) 

To solve the above BVP, the same approach has been 
followed as adopted previously for the solution of problem 

1, and here also, it is assumed that the derivative d
d



 is a 

function of   only i.e. ( )d p
d




  where p is yet to be 

found. This assumption leads to 
 2

1''
2

d p

d



 . Replacing  

''  in (22a) by this relation, one obtains: 

 2
42

d p

d



                             (23) 

Now, replacing 2p  with y , the (23) attains the 
following first order linear ODE: 

42dy
d



                              (24) 
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Fig. 3. Initial rate of change of dimensionless temperature vs.   (problem 2), 
solid lines: exact solution; filled circle: numerical solution 
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Fig. 2. Transient profile of the dimensionless temperature (problem 2), solid 
lines: exact solution; filled circle: numerical solution 
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Integrating the above equation, one finds  
5

1
2
5

y C                                (25) 

1C  is constant of integration and can be evaluated with 

the help of BCII i.e. (22c) and is found to be 5
1 0

2
5

C   ; 

where 0  is the unknown dimensionless temperature at the 
fin base. Substituting this value of 1C  in (25), one gets  

 
2

5 5
0

2
5

dy
d


  


 
   
 

                         (26) 

A minor rearrangement of the above equation yields 

 5 5
0

2
5

d d


  



                              (27) 

Integrating the above equation between the limits 
prescribed by the BCs I & II, following definite integral is 
found. 

 0 5 5 0
0

2
5

d d




 
  




                             (28) 

The integration of the above equation gives the following 
result. 

 
5 5

2 15 55 5
0 00

5 1 1 61 , , ,
5 2 52

HG F 
   

 
  

  
 

3/ 2
0

6
5 1 5

72
10

i  
 

     
    

                (29) 

The unknown 0  is computed by solving the following 
nonlinear equation which has been obtained by forcing (29) 
to satisfy the unutilized BCI i.e. 1   at 1  . 

  2 15 55
0 00

5 1 1 1 6 11 , , ,
5 2 52 1

HG F
  

 
  

  
 

3 / 2
0

6
5 1 5 1

72
10

i 
 

     
    

                          (30) 

Where [ ]z  and 2 1[ , , , ]HG F a b c z  are the well known 
Gamma and the Gauss' Hypergeometric functions, 
respectively and are defined as follows [11]: 

1

0

[ ] z tz t e dt


     

1
1 1

2 1
0

[ ][ , , , ] (1 ) (1 )
[ ] [ ]

b c b acHG F a b c z t t tz dt
b c b

   
  
     

Ganji [4], Abbasbandy [5] and Marinca and Herișanu [6] 
have solved this problem by using HPM, HAM and OHAM, 
respectively and solutions are obtained in terms of the 
series. For comparison purposes, the two terms HPM and 
HAM solutions of Ganji [4] and Abbasbandy [5] are 
reproduced below, however, because of complexity in the 
expression of Marinca and Herișanu [6], it has not been 
considered here. 

2 4 2
21 6 51

2 6Ganji
x x x  

     
     

   
         (31) 

2 21 11 (1 )
2 2Abbasbandy

x xh h h  
    

      
   

      

4 2
2 2 6 5

6
x xh

  
  

 
               (32) 

Figs. 4 & 5, plot the dimensionless temperature profiles 
obtained by the above approximate series solutions, the 
accurate numerical scheme as well as those obtained by the 
presently obtained exact solution i.e. (29) & (30). It can be 
noted that in Fig. 5 the same value of the parameter   have 
been taken as those considered in [4] and [5] i.e. 0.7  . It 
can be seen in Fig. 4 that the profile obtained by Ganji [4] 
deviates to some extent with the numerical solution whereas 
the profile obtained by the exact analytical solution depicts 
an excellent matching with its numerical counterpart.  

 

 

 
 

Similarly, in Fig. 5, the two terms HPM solution of Ganji 
[4] yields divergent results whereas, the two term HAM 
solution of Abbasbandy [5] show minor deviations with the 
numerically obtained accurate profile. However, the five 
term HAM solution obtained by Abbasbandy [5] matches 
well with the numerical solution. In contrast to this, the 
exact analytical solution i.e. (29) & (30) are in complete 
agreement with the numerical solution. It can be verified 
that the deviations in the series solutions of Ganji [4] and 
Abbasbandy [5], will increase with the increase in the value 
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Fig. 5. Dimensionless temperature profiles along the length of the fin 
(problem 3), solid lines: exact solution; filled circle: numerical solution 
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Fig. 4. Dimensionless temperature profiles along the length of the fin 
(problem 3), solid lines: exact solution; filled circle: numerical solution 
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of  , however, this is not true for the currently derived 
exact solution. The true profiles signify the sharp decrease 
in temperature with the increase in the parameter  . This 
observation is in compliance with the physics of the 
problem. 

V. CONCLUSION 
In this work, the three nonlinear heat transfer problems 

of practical interests have been solved in an exact manner 
and the solutions are found in terms of elementary algebraic 
and transcendental functions. These problems represent 
steady state heat conduction in a solid rod, the unsteady 
cooling of a lumped parameter system and the steady state 
radiative heat transfer from a rectangular fin to the space, 
respectively. The corresponding exact solutions have been 
obtained in terms of a simple algebraic function, Lambert 
W function and Gauss’s hypergeometric function, 
respectively. These analytical solutions match well with 
their numerical counterparts and are found to be finer than 
the earlier obtained approximate solutions. From these 
exact solutions one can get a better picture of the physical 
process unlike their approximate alternatives; moreover, 
these can be pretty useful in judging the accuracy of other 
approximate solutions and are valid for all parameter 
ranges.  
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NOMENCLATURE 
A    [m2]   heat transfer area  

cA    [m2]   cross-sectional area  

, ,a b c   [-]    constants 

ac    [J/kg.K]  specific heat at temperature aT   

( )c T    [J/kg.K]  specific heat at temperature T   

1C , 2C   [-]    constants of integration  

h     [J/s.m2.K] heat transfer coefficient  

ak    [J/s.m.K]  thermal conductivity at temperature aT   

( )k T   [J/s.m.K]  thermal conductivity at temperature T   

L     [m]   length of rod  
p    [-]    function of   
t     [s]    time  
T    [K]   temperature   

sT    [K]   radiation sink temperature   
u     [-]    dummy variable 
V    [m3]   volume  
x     [m]   distance variable   
y     [-]    function of   
z     [-]    dummy variable 

   
Greek letters 
    [-]    dimensionless parameter for ( )k T  and ( )c T  
     [-]    emissivity 
     [-]    conduction radiation parameter 
     [-]    dimensionless temperature 
    [kg/m3]  density  

    [W/m2.K4] Stephan-Boltzmann constant (=5.669×10-8) 
     [-]    dimensionless time 
     [-]    dimensionless distance 
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