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Abstract – This paper presents the study of the axial dual-
spin spacecraft dynamics. These spacecraft are usually called 
gyrostats. The gyrostat is composed of two rigid bodies: an 
asymmetric platform and an axisymmetric rotor aligned with 
the platform principal axis. The dynamics of gyrostats without 
external torque is considered. The dynamics is described by 
using ordinary differential equations with Andoyer-Deprit 
canonical variables. For undisturbed motion, when the 
internal torque is equal to zero and the moments of inertia of 
the gyrostat are constant, the stationary solutions are found, 
and their stability is studied. Also we obtain general exact 
analytical solutions in terms of elliptic functions. These results 
can be interpreted as the development of the classical Euler 
case for a solid with additional degree of freedom - the relative 
rotation of bodies. Results of the study can be useful for the 
analysis of dual-spin spacecraft dynamics and for studying the 
chaotic behavior of the spacecraft. 

Index Terms – Axial gyrostat, Andoyer-Deprit variables, 
solutions in terms of elliptic functions  

I. INTRODUCTION 

Artificial satellites can contain one or more spinning 
rotors to provide gyroscopic stability of a desired orientation 
of the vehicle. Dual-spin spacecraft use the spin of a rotor to 
maintain pointing accuracy of an antenna platform or a solar 
sail. Some types of satellites, on the other hand, use small 
but rapidly spinning momentum wheels to control the 
attitude of a large platform. In this paper we consider 
rotational motion of axial dual-spin spacecrafts without 
external. 

The dynamics of a rotating body is a classic topic of study 
in mechanics. In the eighteenth and nineteenth centuries, 
several aspects of the motion of a rotating rigid body were 
studied by such famous mathematicians as Euler, Cauchy, 
Jacobi, Poinsot, Lagrange and Kovalevskaya. However, the 
study of the dynamics of rotating bodies is still very 
important for numerous applications such as the dynamics 
of satellite-gyrostat, spacecraft, robotics and the like. For 
example, Rumyantsev [1] developed Lyapunov's ideas 
arising from the theory of stability of the equilibrium figure 
of a rotating liquid contained within a gyrostat. The 
Lyapunov-Rumyantsev theorem is widely used in the design 
of artificial satellites and liquid-filled projectiles .  Andoyer-
Deprit canonical variables  are used in Hamiltonian structure 
of an asymmetric gyrostat in the gravitational field[2]. 
Kinsey et al. [3] focused upon the capture dynamics of the 
precession phase lock, a phenomenon that could prevent 
despin of a dual-spin spacecraft by developing a control 
strategy that employed closed-loop feedback control of the 
motor torque when the system was near resonance.  
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Hall [4] proposed a procedure based upon the global 
analysis of the rotational dynamics. Hall and Rand [5] 
considered spinup dynamics of classical axial gyrostat 
composed of an asymmetric platform and an axisymmetric 
rotor. They obtained averaged equations of motion for 
slowly varying relative rotation of the bodies (disturbed 
motion) and analytical solutions in terms of Jacobi’s elliptic 
functions for the projections of angular momentum in the 
case of constant relative rotation (undisturbed motion). 
Anchev [6] derived necessary conditions of stability of 
permanent rotations of a heavy gyrostat with arbitrary mass 
distribution and determined the regions of stability on the 
conical locus formed by the permanent axes. Spinup 
problems for axisymmetric gyrostats have been investigated 
by Kane [7]. Elipe [8] investigated a free gyrostat with three 
flywheels rotating about the three principal axes of inertia 
and without any external forces or torques. El-Sabaa [9] 
used Hamiltonian function of the problem of gyrostat is 
written in terms of Deprit's transform to obtain periodic 
solutions and the condition for their stability. Recently, 
many authors have studied different problems of gyrostats in 
various situations, most of them related to the dynamics of 
artificial satellites. Some of these authors have received 
analytical solutions of the equations of motion of free 
gyrostats [10] or under the influence of a central field [11]. 
Cochran et al. [10] extended the previous results for axial 
gyrostats, obtaining solutions for the Euler angles in terms 
of elliptic integrals. Cavas and Vigueras [11] got solutions 
for Euler angles in terms of functions of the time. El-Gohary 
[12-14] studied the control moments sufficient to ensure 
asymptotic stability of the equilibrium position and 
rotational motion of a gyrostat, using the Liapunov function. 
The problem of optimal stabilization of the rotational 
motion of a symmetrical rigid body with the help of internal  
rotors is studied by El-Gohary [15]. The control of the 
angular motion of a rigid body by means of the rotors is 
studied in Ref. [16]. Tsogas and Kalvouridis and 
Mavraganis [17] investigated the dynamics of a gyrostat 
satellite acted upon by the Newtonian forces of N coplanar 
big bodies, N-1 of which are arranged at equal distances on 
the periphery of a circle, while the Nth body is located at the 
mass center of the system; they derived the gyrostat’s 
equations of motion and its equilibrium states as well as 
their stability. Kalvouridis [18] studied the dynamics of a 
small gyrostat satellite acted upon by the Newtonian forces 
of two big bodies of equal masses which rotate around their 
center of mass. Balsas and Jimenez and Vera [19] studied 
two body roto-translatory problems where the rotation of 
one of them influences strongly in the orbital motion of the 
system using the canonical action-angle variables. Neishtadt 
and Pivovarov [20] considered the evolution of the rotation 
of a gyrostat satellite with slow rotor spinup and worked out 
formulas for the probabilities which arise due to separatrix 
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crossing. Aslanov [21] obtained explicit analytical time 
dependences of the Andoyer–Deprit variables corresponding 
to heteroclinic orbits for all the phase portrait forms of 
undisturbed motion of axial gyrostats. Although previous 
works provide insight into the behavior of the axial 
gyrostats, equations of motion have not been reduced to the 
system with one degree of freedom and were not found 
exact analytical solutions for the Andoyer-Deprit canonical 
variables for the undisturbed motion. Therefore, this paper 
presents the study of non-linear dynamic behavior of the 
classical axial gyrostats with zero external torque in the 
undisturbed. The ratio of the moments of inertia determines 
the type of gyrostat [Hall]: oblate, prolate and intermediate. 
The boundary types of the gyrostats (oblate-intermediate 
and prolate-intermediate) and closely set them cases remain 
poorly explored. We consider all types of the gyrostats.  

This paper is organized as follows. In Section 1, the aim 
of this paper is formulated. In Section 2, the motion of the 
axial gyrostats as two rigid bodies connected by a rigid shaft 
is considered. The gyrostats dynamics is described by 
ordinary differential equations in the Andoyer-Deprit 
canonical variables. Section 3 gives the stationary position 
and their stability. In Section 4, a bifurcation diagram and 
phase portraits are constructed for gyrostats of all types. The 
main features of the phase space of the unperturbed system 
are defined. In Section 5, the general exact analytical 
solutions for the undisturbed motion of three types of the 
gyrostats are found in terms of Jacobi’s elliptic functions 
and elementary functions.  

 
II. EQUATIONS OF MOTION 

 
The gyrostat (P+R) consists of the balanced rotor (R), 

axisymmetric rigid body and the unbalanced platform (P) as 
shown in Figure 1. The motion differential equations for the 
angular momentum variables of a rigid axial gyrostat with 
zero external torque may be written as [22]  
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where ie are principal axes of P R  ( 1,2,3i  ), 

 1a S Sh I const     is  a angular momentum of R  

about 1e , 1 1 1 S Sh I I    is a angular momentum of  

P R  about 1e , i i ih I   are angular momentums of  

P R  about ie  ( 2,3i  ), iI  are moments of inertia of 

P R  about ie  ( 1, 2,3i  ), 1P SI I I   is a moment of 

inertia of P  about 1e , SI  is moment of inertia of R  about 

1e , t  is time, i  are angular velocities of  P  about ie  

( 1, 2,3i  ), S  is a angular velocity of  R  about 1e  relative 

to P . 
Since external moments, angular momentum are 

conserved, the first integral of the motion is  

 2 2 2
1 2 3G h h h const     (4) 

This first integral allows us to reduce the number of 
equations (1)-(3) by one. However it gives complicated 
equations of the motion. The equations of motion can be 
simplified by using the canonical Andoyer-Deprit variables 
[23,24]: , , , , ,l g h L G H . In our case the first integral (4) is 

included directly in the Andoyer-Deprit variables. Using the 
change of variables  

 2 2 2 2
1 2 3, sin , cosh L h G L l h G L l      (5) 

we obtain the equations of motion in terms of Andoyer–
Deprit variables  

  1 1
( )cos 2

2a
P

l L h L a b b a l
I

        
 , (6) 

  2 21
( ) sin 2

2 P

L b a G L l
I

    (7) 

where /x dx dt , 2/Pa I I , 3/Pb I I . The body axes 

have been chosen so that 2 3I I ( or equivalently b a ).  

 
FIGURE 1. The axial gyrostat 

 
The transformation of equations (6) – (7) to dimensionless 
form is obtained by scaling two momentum, time and axial 
torque as follows 

 
L

s
G

 , ah
d

G
 ,

p

G
t

I
    (8) 

Derivatives with respect to  are denoted by a derivative 
sign: /x dx d  . Carrying out change of variables (8) 
leads to the equivalent set of canonical equations 

   ( )cos 2
2

H s
l s d a b b a l

s
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where H  is a Hamiltonian 

 
   

2

2

1
, ( ) cos 2

4
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s
H l s a b b a l

s
sd h const


      
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 (11) 

Solving the expression (11) with respect to the cos 2l  we 
obtain an equation of the phase trajectory 
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l

s b a

     


 
 (12) 

 
III. STATIONARY SOLUTIONS 

 
We define stationary solutions of equations (9) and (10). 

Equating to zero these equations leads to four stationary 
solutions. The first and second stationary solutions are 
described by, respectively 

  * *cos 2 1,
1

d
l s

b
 


, (13) 

  * *cos 2 1,
1

d
l s

a
  


 (14)  

The third and fourth stationary solutions correspond to the 
cases when axis of rotation gyrostat 1e  coincides with the 

angular momentum, or takes the opposite direction 

  * *

2 2
cos 2 , 1

a b d
l s

b a

  
 


 (15) 

  * *

2 2
cos 2 , 1

a b d
l s

b a

  
  


  (16) 

We will perform the standard procedure of linearization 
(9) and (10) in the vicinity of a stationary 
position * *,l l l s s s      , then a characteristic equation 

can be written as 

 

2 2

2

2 2

2

0

H H

s l s

H H

l sl





 


   
 

  
 

  (17) 

This characteristic equation for first stationary solution 
(13) becomes 

    2 21 1 0b a b s       

The equilibrium position (13) is obviously stable if 
 1b   3PI I  (18) 

and unstable if  
 1b   3PI I  (19) 

For the second stationary solution (14), the characteristic 
equation (17) can be written as 

   2 21 1 0b a a s       

then the second stationary solution (19) will be stable if 
 1a    2PI I  (20) 

and unstable for 
 1a    2PI I  (21) 

Thus, the equilibrium position * ,l n n   is stable, if 

the moment of inertia of the platform PI  greater than the 

smaller moments of inertia of gyrostat 2I  and unstable, if 

PI  less than 2I . The equilibrium position 

* / 2 ,l n n     is stable if the moment of inertia of the 

platform is less than the larger of the transverse moments of 
inertia gyrostat and unstable if more than that moment of 
inertia. 

For the third and fourth stationary solutions (15) and (16), 
the characteristic equation (17) can be written as 

   22 21 cos 2 0b a l      

This equation has only real roots, so the third and fourth 
stationary solutions (15) and (16) are unstable. 
 

IV. BIFURCATION DIAGRAM 
 

Depending on the ratio of moments of inertia we 
distinguish between five types of gyrostats: 

1) Oblate Gyrostat: 2 3pI I I    1b a  ,  

2) Oblate-Intermediate Gyrostat: 
 2 3pI I I    1b a  , 

3) Intermediate Gyrostat: 2 3pI I I    1b a  , 

4) Prolate-Intermediate Gyrostat: 
 2 3pI I I   1b a  , 

5) Prolate Gyrostat: 2 3 pI I I    1 b a  .  

Gyrostats 1), 3) and 5) correspond to areas with the same 
numbers in Figure 2, gyrostat 2) corresponds to the 
border between areas 1 and 3 and type 4) – to the 
border between areas 3 and 5.  

 
FIGURE 2. The bifurcation diagram 

 
The coordinates critical points for all types of the 

gyrostats given in Table 1, where the subscripts “ c ” and 
“ s ” denote centers and saddles, respectively. The 
coordinates of the critical points correspond to stationary 
solutions obtained above (13)-(16). 

 
TABLE 1 

The critical points coordinate for various types of gyrostats 

Case Gyrostat type The critical points 
The 

additional 
conditions 

1a Oblate 

2 3pI I I 

 1b a   

0cl   

 / 1cs d b   

/ 2sl   

 / 1ss d a   

1
1

d

a



 

1b 
0cl   

1
1

d

a



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Case Gyrostat type The critical points 
The 

additional 
conditions 

 / 1cs d b   

2 2
cos 2 s

a b d
l

b a

  



sgnss d   

2 

Oblate- 
Intermediate 

2 3pI I I   

 1b a   

0cl   

 / 1cs d b   

2 2
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a b d
l

b a

  



sgnss d   

1

d

a



 

3a 

Intermediate 

2 3pI I I   

 1b a   

0cl   

 / 1cs d b   

2 2
cos 2 s

a b d
l

b a

  



 

sgnss d   

1
1

d

a



 

3b 

0cl   

 / 1cs d b   

2 2
cos 2 s

a b d
l

b a

  



 

sgnss d   1
1

d

a



 

1
1

d

b



 

/ 2cl   

 / 1cs d a   

2 2
cos 2 s

a b d
l

b a

  



sgnss d  

3c 

/ 2cl   

 / 1cs d a   

2 2
cos 2 s

a b d
l

b a

  



sgnss d  

1
1

d

b



 

4 

Prolate- 
Intermediate 

2 3pI I I   

 1b a   

/ 2cl   

 / 1cs d a   

2 2
cos 2 s

a b d
l

b a

  



sgnss d  

1

d

b



 

5a 

Prolate 

2 3 pI I I 

 1 b a   

/ 2cl   

 / 1cs d a   

2 2
cos 2 s

a b d
l

b a

  



sgnss d  

1
1

d

b



 

5b 

/ 2cl   

 / 1cs d a   

0sl   

 / 1ss d b   

1
1

d

b



 

 

First, consider cases 1a, 3b and 5b where the absolute 
value of momentum s  is less than unity ( 1s  ). Examples 

of phase trajectories for the Oblate Gyrostat (1a), the Prolate 
Gyrostat (5b) and the Intermediate Gyrostat (3b) are shown 
in ,s l  coordinates in Figure 3-5. In Figure 5, there are two 

types of separatrix for the Intermediate Gyrostat (3b), one of 
which contains saddles with ss=-sgn d and another saddle 
width ss=sgn d  (29). In the phase space bounded by these 
separatrixes, there is continuous motion with sequential 
change in the sign of the momentum s .  

 
FIGURE 3. Phase trajectories for the Oblate Gyrostat (1a): 

2
2 0.85I kg m , 2

3 0.65I kg m , 21.0pI kg m , 0.05d  , 

   0.093 0 , 0.283 / 2c c s ss l s l           

 
FIGURE 4. Phase trajectories for the Prolate Gyrostat 
(5b): 2

2 0.85I kg m , 2
3 0.65I kg m , 20.5pI kg m , 

0.05d  ,    0.2125 / 2 , 0.2167 0c s s cs l s l        

 
According to Table 1 the saddles are located on the 

horizontals 1s    in all other cases. In the case of 1b, 2 
and 3a – on the horizontal sgnss d  , and in the cases 

of 3c, 4 and 5a  – on the horizontal sgnss d . Examples of 

phase trajectories for the Oblate-Intermediate Gyrostat (2) 
and the Prolate-Intermediate Gyrostat (4) are shown in ,s l  

coordinates in Figure 6-7. 
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FIGURE 5. Phase trajectories for the Intermediate Gyrostat 

(3b): 2
2 0.85I kg m , 2

3 0.65I kg m , 0.05d  . 

Centers:    0.2167 0 , 0.85 / 2c s c cs l s l         . 

Saddles:    1.0 1.3953 , 1.0 0.9109s s s ss l s l          

 
FIGURE 6. Phase trajectories for the Oblate-Intermediate 

Gyrostat (2): 2 2
2 30.85 , 0.65 , 0.05pI I kg m I kg m d     

   0.1625 0 , 1 1.15588c c s ss l s l          

 
FIGURE 7.  Phase trajectories for the Prolate-Intermediate 

Gyrostat (4):  2
2 0.85I kg m , 2

3 0.65pI I kg m  , 

0.05d  , 20.8pI kg m , 

[ 0.2125cs  ,  / 2cl   1 0.4791 ]c cs l   

 
V. INTEGRATION BY QUADRATURE THE EQUTIONS 

OF UNDISTURBED MOTION 

 
A. Separation of variables 
In this paper we'll find the analytic solutions of cano-

nical equations (9) and (10) only for the case when the 
momentum 1s  . According to Table 1, this condition 

corresponds to the following types gyrostats: oblate (1a), 
prolate (5b) and intermediate (3b).  

By deleting the coordinate l from the equation (10) and 
making use of equation (12), we obtain the new form 

     
2 22 21

1 2 4 4
2

( )

s s b a a b s ds h a b

F s

               

 
(22) 

where 
 ( ) 4 ( ) ( )a bF s f s f s   (23) 

   21
( ) 1

2 2
f s s ds h

     ,  ,a b   (24) 

Separating the variables in the equation (35) and integrating 
it we obtain 

 
( )

ds
const

F s
      (25) 

In a general case, this integral is an elliptic integral. 
Transform the integral to the Legendre normal form [25] 
depends on the type and location of the roots of the fourth-
degree polynomial (23) as the product of two polynomials of 
second degree (24). We represent the roots of the quadratic 
equations 

( ) 0f s   ,a b   

as 

 1,2 1

d D
s









,   2 2 1D d h       (26) 

 
B. Analytical solutions for the oblate gyrostat  
The type of the roots (26) of the polynomial (23) depends 

on the h  constant. For different types of the motion of the 

oblate gyrostat  1b a   h  corresponds to the following 

condition 
 c L s Rh h h h    (27) 

where Lh  and Rh  are correspond to libration and rotation 

respectively. The constant h  in the center – ch   and in the 

saddle – sh  is 

 
21

2 1c

d
h b

b

 
   

, 
21

2 1s

d
h a

a

 
   

 (28) 

We have libration’s solution if an arbitrary constant Lh h  

satisfy condition (27), and then the phase trajectory belongs to 
the closed area (Fig. 3), which includes the center 

0 ,cl k k   ,  / 1cs d b  . The roots of the 

polynomial (31) with (34) are given by 
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Two real roots 1 2s s  and two complex conjugate roots 

3,4 s ks s is   take place because the integral (25) can be 

written as 
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The change of variable [9]  
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converts the integral (29) to the Legendre normal form  
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  ( 1 , 2  are acute angles),  
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2
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We proceed to study the rotation when Rh h  in the 

condition (27). The four real roots of the equation ( ) 0F s   

take place: two roots  2 1s s s  correspond to the upper 

phase trajectories and two roots  4 3s s s   the lower 

phase trajectories as shown in Fig. 3. 
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Since a bD D then the real roots are as follows 

 4 3 2 11 1s s s s       (31) 

In this case the integral (25) has the form 
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where index of the lower limit of the integral 2i   for the 
upper phase trajectories and 4i   for the lower phase 
trajectories. By the change of variables [25] the integral (32) 
can be reduced to the Legendre normal integral  

 
0 2 21 sin

d

k

 





  (33)  

Then the general solutions can be written for the upper 
area  2 1s s s   
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and for the low area  4 3s s s   
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where  ,sn k  is a elliptic sine  


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C. Analytical solutions for the prolate gyrostat  
For the prolate gyrostat the constant h  satisfies the 

following condition for different types of motion 
 0 c L s Rh h h h     (36) 

where  
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 (37) 

There is a libration, when arbitrary constant Lh h  

satisfies to condition (44). The roots (26) of polynomial (23) 
are written by 
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From this is clear that desired solutions coincide with the 
solutions (30). In the case of rotation of the prolate gyrostat 
there are four real roots (26) 
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The location of these real roots 

4 3 2 11 1s s s s       

coincide with the  location of the roots  (31). Therefore, in 
this case the general solutions are the solutions (34) and 
(35). 

 
D. Analytical solutions for the intermediate gyrostat 
The moments of inertia of the intermediate gyrostat 

determined by the following relation 3 2pI I I  , 

 1b a  . In this case we have two groups of libration 

areas, when the phase trajectories are closed: 0-areas, which 
includes centers,  

0 ,cl k k   ,  / 1cs d b   

and 1-areas containing centers  
/ 2 ,cl k k    ,  / 1cs d a   

These areas correspond to values of the arbitrary constant of 
the Hamiltonian 0Lh и 1Lh . As shown in Fig. 5 the phase 

portrait has a single area of rotations and opened 
trajectories, in which Rh h . The constant h  for the 
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different types of motion corresponds to the following 
condition: 

 1 1 1 0 0 00 c L s R s L ch h h h h h h        (38) 

where 0ch  and 0sh correspond respectively to the centers 

with 0 ,cl k k    and the saddles with sgnss d   

(row 3b in Table 1) 
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For the librations in the 0-areas ( 0Lh h ), which includes 

centers 0 ,cl k k   , we have the following roots of 

the polynomial (23) 
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For the 1-areas ( 1Lh h ), which includes centers 

/ 2 ,cl k k    , the roots of the polynomial (23) are 
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The numbering of the roots of (41)-(44) corresponds to the 
following sequence 

 4 3 2 11 1s s s s       (45) 

Physical motion is realized in the range  3 2,s s s . In 

this case the integral (25) becomes 
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where     /A C C B A B       .  

The elliptic integral (46) reduces to the Legendre normal 
form (33) with the following change of variables [9] 
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Then the general solutions can be written as  
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We consider the area of rotation (Fig. 5), bounded by 0- 
and 1-separatrices. Range of variation of arbitrary constant 

 1 0,R s sh h h or, according to (39) and (40) 

1 1
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Then the four roots (26) have the form  
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Physical motion is realized in the range  3 2,s s s . The 

location of the roots (48) and (49) corresponds to (45), 
therefore the solution (47) describes also the rotation of the  
intermediate gyrostat. 

 
VI. CONCLUSION 

 
We have shown that the equations of motion for the axial 

gyrostats can be reduced to two first-order ordinary 
differential equations for the Andoyer-Deprit canonical 
variables. The stationary solutions are found and studied 
their stability. Also we obtain the general exact analytical 
solutions in terms of elliptic functions. Note that an 
analytical description of the motion along the separatrix is 
easily obtained. It's enough to substitute    ,1 tanhsn u u  

in the founded solutions for the libration or the rotation. 
These results can be interpreted as the development of the 
classical Euler case for a solid, when added one degree of 
freedom - the relative rotation of bodies. Results of the study 
can be useful for the analysis of dual-spin spacecraft 
dynamics and for studying the chaotic behavior of the 
spacecraft. 
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