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 
Abstract—Virtual cellular manufacturing has attracted a lot of 
attention in recent years because traditional cellular 
manufacturing is inadequate under a highly dynamic 
manufacturing environment. In this paper, a new mathematical 
model is established for generating optimal production 
schedules for virtual cellular manufacturing systems operating 
under a multi-period manufacturing scenario. The objective is 
to minimize the total manufacturing cost over the entire 
planning horizon. A hybrid algorithm, based on the techniques 
of discrete particle swarm optimization and constraint 
programming is proposed to solve the complex production 
scheduling problem. Although particle swarm optimization 
performs competitively with other meta-heuristics for most 
optimization problems, the evolution process may be stagnated 
as time goes on if the swarm is going to be in equilibrium, 
especially for problems with hard constraitns. Constraint 
programming, on the other hand, is an effective technique for 
solving problems with hard constraints. However, the technique 
may be inefficient if the feasible search space is very large. 
Therefore, the aim of the proposed hybrid algorithm is to 
combine the complementary advantages of particle swarm 
optimization and constraint programming to improve its search 
performance. The effectiveness of the proposed methodology is 
illustrated by solving a set of randomly generated test problems. 

 
Index Terms—Backtracking, Constraint programming, 

Discrete particle swarm optimization, Virtual cellular 
manufacturing systems 
 

I. INTRODUCTION 

As global market becomes more and more competitive, 
manufacturing industries venture into a new phase, where 
both opportunities and chanllenges abound. Nowadays, 
manufacturing industries face relentless pressure manifested 
with a growing tendency of greater varieties of products with 
shorter manufacturing cycles and a highly dynamic 
manufacturing environment. Manufacturers thus should 
constantly adopt efficient manufacturing systems to respond 
to dynamic changes in customers’ demand in order to keep 
their market share. Group technology (GT), a strategy 
proposed for this reason, is a manufacturing philosophy in 
which the parts having similarities are grouped together to 

achieve higher level of integration between the design and 
manufacturing process of an industry. Cellular 
manufacturing (CM) and virtual cellular manufacturing 
(VCM) are two classical manufacturing layouts of this design 
and have attracted a lot of attention in recent years. 
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Cellular manufacturing has long been considered efficient 
in improving the productivity of batch production systems. In 
cellular manufacturing systems (CMSs), the parts that 
undergo similar manufacturing operations are grouped 
together to form a part family, and the workstations that 
produce those parts are physically grouped together to form a 
manufacturing cell for manufacturing these parts. Cellular 
manufacturing has the advantage in managing material flow 
easily due to the similarity of parts and proximity of the 
workstations. However, cellular manufacturing also has 
many drawbacks such as low machine utilization and 
unbalanced workload [1], because the machines are usually 
duplicated to restrict the manufacturing of parts in their 
respective manufacturing cells. The duplication of machines 
generates excessive production capacity in the manufacturing 
systems and increases the operational and maintenance costs. 

In order to overcome the deficiencies of cellular 
manufacturing, a new concept called virtual cellular 
manufacturing was proposed. The main difference between 
virtual cellular manufacturing and cellular manufacturing is 
that the workstations in a virtual manufacturing cell are not 
grouped physically on the production floor. [2] and [3] 
reported that the virtual manufacturing cell appears as data 
files in a virtual cell controller. When a job arrives, the 
controller will take over the control of the relevant 
workstations to form a virtual manufacturing cell. The 
controller will also oversee the manufacturing of the job until 
it is finished. At the same time, the workstations will not be 
locked up on the formation of a virtual manufacturing cell, 
but are free to be assigned to other manufacturing cells to 
produce other jobs as long as there are excess capacities. 
When the job has been completed, the virtual manufacturing 
cell terminates and the workstations will be released and 
beome available for other incoming jobs. A virtual cellular 
manufacturing system contains a number of virtual 
manufacturing cells which are dynamically created and 
controlled within it. Due to the sharing of workstations, it is 
expected that virtual cellular manufacturing has higher 
efficiency and flexibility than cellular manufacturing. 

Although the concept of virtual cellular manufacturing has 
many advantages in terms of workstation utilization and 
workload balancing, production scheduling for virtual 
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cellular manufacturing systems (VCMSs) has not received a 
lot of attention from the research community because of the 
complexity of the problem. Irani et al. [4] proposed a method 
based on graph theory and mathematical programming for 
forming virtual manufacturing cells. Baykasoglu [5] 
proposed a simulated annealing algorithm for developing a 
distributed layout for virtual cellular manufacturing cells. 
Mak et al. [6] developed a genetic methodology to generate 
effective production schedules for virtual cellular 
manufacturing systems operating under a single period 
scenario. In this paper, research will be extended into the 
multi-period situation. 

The remainder of this paper is organized as follows. 
Section II presents the mathematical model and section III  
the hybrid algorithm. Section IV analyses the computation 
results obtained from solving a set of randomly generated 
problems. Finally, the conclusions are given in section V. 

II. MATHEMATICAL MODEL 

In this section, a mathematical model is established to 
describe the characteristics of multi-period VCMSs for the 
purpose of generating optimal production schedules. In the 
model, there are W workstations ( 1  with certain 
production capacities. 

,2,...,w  )W

)P
The planning horizon contains P  

periods ( 1,p 

2,..., )

2,..., , each of which is further divided into 
a certain number of time slices with the same length 
( 1,s S . Some jobs are to be produced in each period 
and the objective is to minimize the total manufacturing 
cost over the entire planning horizon. To run the virtual 
cellular manufacturing systems well, three types of 
information [6] should be provided by the production 
schedule: (1) the types of workstations and other 
production resoueces that should be grouped to form virtual 
manufacturing cells; (2) the bottleneck workstations in each 
virtual manufacturing cell and the most appropriate rates to 
process the assigned jobs; (3) the times to create and 
terminate the virtual manufacturing cells. 

This research is conducted under following assumptions. 

1. Each type of job consists of a certain number of 
operations that must be manufactured according to the 
production route; 

2. All types of operations of the same job must be handled 
on the same workstation in each period; 

3. The processing time of each operation of a job is 
deterministic and known. Moreover, the processing time of 
an operation on any workstation that can handle it is the 
same; 

4. The production volume and due date of each job in each 
period is deterministic and known; 

5. The distance between any two workstations and the 
transportation cost of each job between any two 
workstations are deterministic and known; 

6. Each period within the planning horizon is divided into a 
number of time slices of equal length. In addition, no 
work-in-process is allowd. That is, the processing rate of 
each job must satisfy the condition such that the production 
output of an operation in a time slice must be equal to that 

of its preceding operation in the last time slice, and that of 
its succeeding operation in the next time slice; 

7. Each workstation can handle at most one operation at a 
time and ech operation cannot be interrupted once started in 
any time slice; 

8. Compared with the inventory-holding cost and the 
manufacturing cost, the subcontracting cost of each job is 
much higher; 

9. The transportation time of material and the machine 
setup time can ne negligible. 

The following parameters are used in the development of 
the mathematical model: 

,j pr       =the production route of job j  in period p  

,( )j pw r  =the workstation w used in production route ,j pr  

,j iO       =the operation i  of job j  

,j pDD   =the due date of job j in period p  

,j pV
      

=the volume of customer need of job j in period p  

jK
       

=the number of operations of job j  

1 2,w wd     =the distance between workstation 1w and 2w  

PL        =the length of a time slice 

, ,w s pMC  =the maximum capacity of workstation w in time 

slice s of period p  

,, , ( )j pj i w rpt =processing time for producing one unit of 

operation i  of job j on workstation ,( )j pw r
 

,( )j pD r      =the total distance of production route ,j pr  

In addition, j is the cost of moving one unit of job j per 

unit distance; w is the operating cost of workstation w per 

unit time; ,j p is the inventory-holding cost of job j in 

period p ; ,j p is the subcontracting cost of job j in 

period p . 

Decision variables: 

,, , ( ), ,j pj i w r s pPR  =processing rate of operation i  of job j on 

,( )j pw r in time slice s of period p  

,, , ( ), ,j pj i w r s pst  =the start time of operation i of job j on 

,( )j pw r in time slice s of period  p

,, , ( ), ,j pj i w r s pft  =the finish time of operation  of jobi j on 

,( )j pw r in time slice s of period  p

,, , ( ), ,j pj i w r s pX  =equal to 1 if operation i  of job j is launched 

by ,( )j pw r in time slice s of period ; otherwise, it is 0. p

,, , ( ), ,j pj i w r s pY   =equal to 1 if operation i  of job j is processed 

by ,( )j pw r in time slice s of period p ; otherwise, it is 0. 

The mathematical model thus has the following form [7]: 
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 where G is a large number. 
The objective of the mathematical model is to minimize 

the total manufacturing cost over the entire planning 
horizon, including material transportation cost, 
inventory-holding cost, subcontracting cost, and machine 
operating cost. Equations (1) and (2) denote the method of 
calculating inventory-holding volume and subcontract 
volume of each job in each period respectively. Equations 
(3) show the method of calculating the travelling distance 
of a production route. Constraints (4) ensure that when 
operation i  of job j has been finished, operation 1i  of 

job j must start immediately. Constraints (5) make sure that 

the processing rate of an operation in a time slice must be 
equal to that of its preceding operation in the last time slice, 
and that of its succeeding operation in the next time slice in 
each period. It shows that work-in-process is not allowed in 
the manufacturing system. Constraints (6) ensure that the 

starting times of all operations must be within the planning 
horizon and each job can only have a unique production 
route in each period. Constraints (7) require that in each 
period no operation can start before the time slice from 
which production is launched. Constraints (8) restrict the 
processing rate to be greater than or equal to zero. 
Constraints (9) denote the relationship between the 
processing rate and the production volume of each job in 
each period. Constraints (10) and (11) describe the 
constraints governing the starting time and the finishing time 
of each operation. Constraitns (12) make sure that all jobs 
assigned to a machine can be finished in each time slice of 
each period. Constraitns (13) indicate that there is no 
inventory of any job at the beginning of the planning horizon 
and constraints (14) indicate that these variables are binary. 

TABLE 1 A SAMPLE OF PRODUCTION OUTPUTS OF A JOB 

Serial number of operations 1 2 3 

Workstation No. 2 7 4 

1 5(5) 3(3) 0 

2 2(2) 5(8) 3(9) 

3 3(4) 2(5) 5(6) 

4 0 3(3) 2(7) 

 
 
Time slice 

No. 

5 0 0 3(6) 

 

To illustrate constraints (4) and (5) of the mathematical 
model, Table 1 provides an example of the production 
outputs of a job in a period. In this table, the value in the 
bracket is the maximum processing rate of an operation in a 
time slice. For example, the maximum processing rate of 
operation 1 in time slice 1 is 5. The maximum processing rate 
of operation 2 in time slice 2 is 8, and that of operation 3 in 
time slice 3 is 6. Thus, the feasible processing rate of 
operation 1 in time slice 1 (operation 2 in time slice 2 and 
operation 3 in time slice 3) is 5. This ensures that no 
work-in-process exists between operations of a job. After 
scheduling this job, workstation 2 still has a certain amount 
of remaining capacity in time slice 2, which allows it to be 
assigned to other manufacturing cells to produce other 
incoming jobs. 

III. HYBRID OPTIMIZATION ALGORITHM 

In order to find an efficient and effective production 
schedule, this paper develops a new hybrid algorithm based 
on the techniques of constraint programming (CP) and 
discrete particle swarm optimization (DPSO).  

A. Constraint programming 

Constraint programming [8] is an effective 
methodology for solving difficult combinatorial problems 
by representing them as constraint satisfaction problems 
(CSPs). A constraint satisfaction problem usually consists 
of a set of variables, a domain for each variable, and a set of 
constraints restricting the values that the variables can 
simultaneously take.  

There are mainly two important categories of 
constraints in production scheduling problems: precedence 
constraints and capacity constraints. A typical example of 
precedence constraints in the VCMS production scheduling 
problem is that an operation can start only after its 
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preceding operation has been finished. Capacity constraints 
usually refer to workstations and other production 
resources. An example in the production scheduling 
problem is that each machine must have enough capacity to 
produce the jobs assigned on it. 

 

 

Figure 1 The procedure of constraint programming 

Backtracking paradigm is a basic constraint propagation 
technique used to solve constraint satisfaction problems. 
The basic operation is to pick one variable at a time, and 
consider one value in its domain at a time, making sure that 
the newly picked label is compatible with the instantiated 
partial solution obtained so far. If the newly picked label 
violates certain constraints, then an alternative value, if it 
exists, is picked. If no value can be assigned to a variable 
without violating any constraint, it will backtrack to the 
most recently instantiated variable. This process continues 
until a feasible solution has been found or all possible 
combinations of labels have been tried and failed [8]. The 
procedure of constraint programming with backtracking 
propagation is presented in Figure 1. 

B. Discrete particle swarm optimization 

Particle swarm optimization (PSO), a population-based 
optimization approach inspired by the observations of bird 
flocking and fish schooling, was proposed by Kenndey and 
Eberhart in 1995 [9]. The basic idea of this approach is to 
locate the optimal or near optimal solution through 
cooperation and sharing of information among individuals in 
the swarm. The swarm is composed of a group of particles in 
a search space with two important characteristics, namely 
position and velocity. Each particle represents a potential 
solution, which flies through the hyperspace and has two 
essential reasoning capacibilits: the memory of its own best 
position and the knowledge of the global or its 
neighborhood’s best position. Particles within the swarm 
communicate information with each other and adjust their 
own position and velocity based on the information. At each 
step, the velocity of a particle and its new position will be 
updated respectively according to the following two 

equations. 

1 1 2 2( ) (i i i iV V c r P X c r G X     )i

i

                                  (15) 

i iX X V                                                                       (16) 

where iX  represents the position of particle i ,  iV represents 

the velocity of particle i ,  iP is the best previously visited 

position of particle i ,  G is the global best position,  ω is  the 
inertia weight that controls the impact of previous velocity on 
its current one, which is usually reduced dynamically to 

decrease the search area : ma

t
 x

max

t t
max min min( )  t    , in 

which max and min  denote the maximum value and the 

minimum value of the inertial weight respectively, and is 

the maximum number of iterations
maxt

. Generally, the value of 
the velocity is restricted in the range max mv v ax[ ,  to control 

excessive roaming of particles outside the search space. 
Usually, is set with value 4. 

]

maxv

Figure 2 shows the steps of particle swarm optimization. 

Initialize parameters

Initialize populations

Evaluate

Do {

        Find the personal best

        Find the global best

         Update velocity

         Update position

         Evaluate 

}While(Termination)
  

Figure 2 Particle swarm optimization procedure 

   In practice, many optimization problems such as 
production scheduling problem are set in discrete search 
space. To meet this demand, a discrete version of particle 
swarm optimization (DPSO)  was proposed by Kenndey and 
Eberhart in 1997 [10]. DPSO has two main differences from 
the original one. First, the particle is composed of binary 
variables. Second, the velocity must be transformed into the 
change of probability, which is the chance of the variable 
taking the value 1. Usually, the transformation is achieved 
through the following sigmoid function. 

1
( )

1 exp( )i
i

s V
V


 

                                                           (17) 

Where ( )is V denotes the probability of corresponding bit 

taking value 1. 

In this research, particle k at iteration t  can be presented 
as , where , 

denotes the job production sequence in period , and 

 denotes workstation assignment of jobs in period . 

The best solution found by particle k until iteration is 
denoted as P P  and the best solution found by 

the swarm until iteration t is denoted as . The 

velocity of particle k at iteration can be presented as 
, where , 

,1 , ,( ,..., ,...,t t t p
k k kX X X

,t p

,1 ,( ,...,t t
k k P

,1 , ,( ,..., ,..., )t t t p t P
k k k kV V V V

)t P
kX

)t P
k

, , ,( ,t p t p t p
k k kX S M

p

p

t

,1 ,( ,..., )t t t P
g g gP P P

, , ,( , )t p t p
k k kV VS VM

)
,t p

kS

kM



t p 
t
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,t p
kVS

,
, ,

t p
k j ds

denotes the velocity of job production sequence in 

period , and denotes the velocity of workerstation 

assignment of jobs in period . 

p

,t p
kS

,t p
kVM

, ,
,1( ,t p

k kS S

p

, )p
k NS

To facilitate understanding of the proposed methodology, 
a job production sequence in a period is used as an example 
to illustrate the construction of a particle. 
    In , ,and . 

is binary where it is equal to 1 if job
,...,t p t , , , ,

, , ,1 , ,2 , ,( , ,...,t p t p t p t p
k j k j k j k j NS s s s )

j is in the 

position of the production sequence; otherwise, it is equal 
to 0. For example, suppose the job production sequence in 
period 1 is (2, 3, 4, 1,) in a particle. 
Then and all other bits are equal to 

zero. 

thd

,1
,2,1

t
k

,t p
k

,1 ,1
,3 ,1,4s s s,1

,2 ,4,3
t t t
k k ks  

, ,
,1(t p t p

k kVS

,
, ,

t p
k j dvs

thd

1

,
, )t p

k



In VS , VS and . 

High value of means that job is more likely to be 

placed in the position in period , while low value 

indicates that it is better to place this job in another position. 
In each iteration, the velocity is updated according to 
equation (15), and then converted to the change of 
probability via following sigmoid function. 

,...,VS N ), , , ,
, , ,1 , ,2 , ,( , ,...,t p t p t p t p

k j k j k j k j NVS vs vs vs

j

p

, ,
,( t p

k j , ,
,

1

xp( t p
k j

)d   2,...,
1 e ) pd

1,s vs d N
vs


 

                      (18) 

where pN
, ,d

p

is the number of jobs in period , 

denotes the probability of placing job in the 

position of the production sequence in period . 

p

,( t p
k js vs

thd

) j

p

In the iteration process of discrete particle swarm 
optimization, each particle should be decoded into a complete 
production schedule. In the example of job production 
sequencing, the construction of a job production sequence in 
period  starts from a null sequence and then places an 

unscheduled job  in the  position from   to  

according to following probability [11]: 

j thd 1d  pN

'

, ,
,

, ,

,

)

( )

t p d
k j

t p d

k j
s

'



( ) j

,
, ( )t p

k dq j

,
,

t p
k dq

(

j U

s vs

s v



                                                    (19) 

where U is the set of of unscheduled jobs in period , and 

is the probability of placing job in the position. 

A complete job production sequence of a period has been 
constructed when each of the jobs in this period has been 
assigned to a position. 

p

j thd

C. The proposed hybrid algorithm 

Particle swarm optimization is an effective algorithm for 
solving many types of optimization problems. However, if 
the swarm is going to be in equibrium, the evolution process 
will be staganeted as time goes on [12]. Constraint 
programming is specialized for solving problems with hard 
constraints, but may be inefficient when the feasible search 
space is very large. Hence, a hybrid algorithm (CPSO) which 
combines their complementary advantages to improve the 
search process is proposed in this research. The procedure of 
the proposed hybrid algorithm is summarized briefly in 
Figure 3. 

Step 1. Initialization 

Step 1.1 Initialize parameters, particle size K ,  maxt

Step 1.2 Initialize particles’ positions  and velocities  randomly. t
kX t

kV

Step 1.3 Evaluate objective function value for each particle. Initialize  

and 

t
kP

t
gP  

Step 2. Perform iteration process 
while ( ) maxt t

Step 2.1  for 1k   to K  
           Update velocity of particle                  k

                     for 1p   to P  

                         Update job production sequence in period p of particle k

                          while job production sequence of period p  is not empty

                                  Pick the first job  in the production sequence j

                                  Update work station assignment of job  j

                                   Check consistency 

                                   while (not consistent) 

                                       Detect critical machine and add to violation set 

                                        if there is alternatives of the critical machine 

                                             change a new assignment  

                                             check consistency 

                                        else  

                                               randomly assign a suitable machine 

                                               set it consistent 

                                   end-while 

                                   calculate production output of job j  in period p  

                                   delete this job from the job production sequence 

                          end-while 

                     end-for 

                         Update  t
kP

              end-for 

Step 2.2 Update t
gP  

Step 2.3  Increment of iteration count  1t t 

end-while 

Step 3. Report the best solution of the swarm and corresponding objective 
function value 

Figure 3 The procedure of the hybrid algorithm 

In this research, the planning horizon consists of multi 
periods. Due to capacity limitations of various workstations, 
some jobs may not be finished before their due dates in 
some periods while some workstations may have excess 
capacities in some periods. Hence, it is necessary to make a 
trade-off among inventory-holding cost, subcontracting 
cost, and workstation utilization. A concept called extra 
capacity [13] is firstly introduced. The extra capacity of a 
job in a period is the number of units of the job that can be 
produced in excess in this period without affecting other 
scheduled jobs. When a job cannot be finished before its 
due date in a period and has extra capacity in previous 
periods, the extra capacity will be utilized to produce it and 
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the inventory is carried to that period. If there is still 
backlog of this job after utilizing the extra capacity, the 
amount will be subcontracted in order to meet customers’ 
demand. 

In practice, the subcontracting cost of a job is usually 
much higher than its inventory-holding cost and 
manufacturing cost. Hence, in the proposed algorithm, if a 
job cannot be finished before its due date even after 
utilizing the extra capacity of previous periods, it will be 
treated as inconsistency and the critical workstation will be 
detected to try a new assignment. In addition, the procedure 
in figure 3 indicates that constraint propagation in this 
research takes the form of single-level backtracking. When 
inconsistency occurs, the algorithm will detect the critical 
resource and check whether this critical resource has any 
alternatives. If the answer is positive, another workstation 
selected from the alternatives will be assigned to perform 
the operation; otherwise, the algorithm will not backtrack to 
the most recently scheduled job and just randomly assign a 
suitable workstation for it according to DPSO mechanism 
regardless of consistency, and then continue to schedule the 
next job until all jobs have been scheduled. 

D. Heuristic for production output 

However, the proposed hybrid algorithm does not take the 
production output into consideration explicitly. A heuristic 
will be adopted to determine the production outputs of each 
job in each time slice of each period [14]. Figure 4 shows the 
pseudo-code of the heuristic for determining the production 
outputs of the jobs in a period. 
 

while production sequence of this period is not empty do 

 Pick the first job j in the production sequence  

 Set s=1, RemQty=Vj,p 

 while RemQty>0 and p<=DDj,p-Kj+1 do 

  minPR= RemQty 

  for i=1 to Kj 

   Find maximum PRj,i,s+i-1 

   minPR=min(minPR, PRj,i,s+i-l) 

  end-for 

  if minPR>0 then 

   PRj,i,s+i-1= minPR, i 

   RemQty= RemQty- minPR 

   Update capacities of work stations 

  end-if 

  s=s+1 

 end-while 

Remove job j from production sequence. 

end-while 
Figure 4 The heuristic for determining production output of jobs 

As shown in the example of table 1, the maximum 
processing rate of an operation in a time slice (shown in 
brackets in table 1) must satisfy the constraints governing the 
remaining capacity of the assigned workstation in that time 
slice. The feasible production output (minPR) is the smallest 
value of the maximum feasible production outputs of all 

operations. This ensures that no work-in-process is allowed 
between operations. If minPR is positive, the remaining 
capacity of workstations and remaining production quantity 
(RemQty) are updated; otherwise, production of this job can 
not take place in time slice s  of period . This process 

repeats until the production outputs of all jobs in this period 
have been determined. 

p

IV. COMPUTATION RESULTS 

In this section, the performance of the proposed hybrid 
algorithm is analysed by comparing the results obtained 
from solving a set of randomly generated test problems with 
that of DPSO. 

A. Test Problem Set and Parameters 

The values of parameters used in the algorithm are as 
follows. Particle size is 100, maximum number of iterations 
is 100, maximum inertial weight is 0.8, minimum inertial 
weight is 0.2. 1c and 2c are both equal to 2, the velocity of 

particles is restricted in the range [-4, 4]. Each period 
contains 30 time slices, the length of which is 300 seconds. 
There are 3 or 4 operations required for producing each unit 
of a job. Each operation has a processing time randomly 
generated from [20, 40]. The number of units that should be 
produced (a job) in a period is randomly generated from [50, 
80].  Table 2 shows the scheme used to generate the test 
problems. In this table, ( , , , , )p n d s m

p

is used to denote the 

parameter combination, where is the number of periods, 

n is the number of jobs in each period, d denotes the due 
date, s denotes job subcontracting cost, and m denots the 
number of workstations. For example, scheme 1 means that 
there are 5 periods in the planning horizon, the number of 
jobs in a period is randomly generated from [5, 10], the due 
date of each job is randomly generates from [ , ]S S  , 

where 0.4 0.α β, 7  ,  the subcontracting cost of each job 

per unit is generated from [500, 1000], the number of 
workstations is 12. 

TABLE 2 PARAMETER SCHEME 

No. Parameter value 

1 (5, [5, 10], [0.4, 0.7], [500, 1000], 12) 

2 (5, [5, 10], [0.6, 0.9], [500, 1000], 12) 

3 (5, [5, 10], [0.4, 0.7], [1000, 2000], 12) 

4 (5, [5, 10], [0.6, 0.9], [1000, 2000], 12) 

5 (5, [5, 10], [0.4, 0.7], [500, 1000], 20) 

6 (5, [5, 10], [0.6, 0.9], [500, 1000], 20) 

7 (5, [5, 10], [0.4, 0.7], [1000, 2000], 20) 

8 (5, [5, 10], [0.6, 0.9], [1000, 2000], 20) 

9 (10, [5, 10], [0.4, 0.7], [500, 1000], 12) 

10 (10, [5, 10], [0.6, 0.9], [500, 1000], 12) 

11 (10, [5, 10], [0.4, 0.7], [1000, 2000], 12) 

12 (10, [5, 10], [0.6, 0.9], [1000, 2000], 12) 

13 (10, [10, 15], [0.4, 0.7], [500, 1000], 12) 

14 (10, [10, 15], [0.6, 0.9], [500, 1000], 12) 

15 (10, [10, 15], [0.4, 0.7], [1000, 2000], 12) 

16 (10, [10, 15], [0.6, 0.9], [1000, 2000], 12) 

B. Comparison with DPSO 

   In order to demonstrate the superiority of the proposed 
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hybrid algorithm over DPSO, five test problems are 
randomly generated under each scheme. The performances of 
the hybrid algorithm and DPSO are obtained by averaging 
the results of running the algorithms five times for each 
problem. Table 3 shows the performance comparison of the 
two algorithms after executing both algorithms for 100 
iterations. In this table, cost diff and time diff are calculated 
according to the following equations. 

 
cost of DPSO-cost of hybrid algorithm

cost diff=
cost of DPSO

                   (20) 

 
CPU time of hybrid algorithm-CPU time of DPSO

time diff=
CPU time of DPSO

 (21) 

 
TABLE 3 COMPARISON WITHIN THE SAME ITERATIONS 

DPSO HYBRID No. 

cost time cost time 

Cost diff Time diff

1 563218 70 531783 89 5.58% 27.14% 

2 529196 87 482444 111 8.83% 27.59% 

3 711755 108 578140 143 18.77% 32.41% 

4 652706 88 560282 114 14.15% 29.55% 

5 372065 79 345057 93 7.26% 17.72% 

6 501924 78 486018 88 3.17 12.82% 

7 714411 117 614808 140 13.94% 19.66% 

8 525589 83 503133 96 4.27% 15.66% 

9 1140888 204 1051389 247 7.84% 21.08% 

10 1176895 177 1100422 218 6.50% 23.16% 

11 1175947 182 1029194 219 12.48% 20.33% 

12 1046388 174 927337 206 11.38% 18.39% 

13 2724866 568 2460257 793 9.71% 39.61% 

14 2711063 510 2431879 709 10.30% 39.02% 

15 4435985 620 3646998 867 17.79% 39.84% 

16 3784960 629 2960653 890 21.78% 41.49% 

 
From Table 3, it is clear that the proposed hybrid algorithm 

can obtain much better schedule solutions at the expense of 
longer computational time. Furthrmore, the improvement on 
solution quality is more obvious when the problem size 
becomes larger, the due date becomes tighter, or the 
subcontract cost becomes higher.  

Taking scheme 1 for example, figure 5 shows the 
performances of the two algorithms in locating good 
solutions within the same number of iterations, and figure 6 
compares the computational times of the two algorithms, 
when the number of iterations is the same. 
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Figure 5 Comparison of cost with the same number of iteration  
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Figure 6 Comparison of computation time with same iterations 

      Since the hybrid algorithm needs longer computational 
time for the same number of iterations. It is necessary to 
compare the performance of these two algorithms with the 
same computational time. Table 4 lists the comparison results. 
In this table, psoT represents the computational time of DPSO 

running 100 iterations. 

TABLE 4 COMPARISON WITHIN THE SAME COMPUTATION TIME 

Cost diff  

No. 1/3  psoT 1/2  psoT 2/3  psoT psoT  

1 6.29% 6.29% 5.89% 5.58% 

2 9.46% 9.23% 9.26% 8.54% 

3 20.33% 19.68% 18.06% 18.63% 

4 13.65% 13.36% 13.53% 14.08% 

5 6.40% 6.26% 6.67% 7.26% 

6 3.09% 2.56% 3.10% 2.74% 

7 14.16% 14.46% 14.27% 13.94% 

8 4.53% 4.44% 3.79% 3.96% 

9 7.29% 7.44% 7.82% 7.83% 

10 6.17% 6.53% 6.70% 6.46% 

11 14.46% 13.56% 13.14% 12.47% 

12 12.48% 11.82% 11.95% 11.32% 

13 9.63% 9.64% 9.51% 9.70% 

14 10.13% 10.10% 10.32% 10.11% 

15 17.29% 16.99% 17.40% 17.62% 

16 21.88% 22.00% 21.80 21.72% 

 

It is clear that the proposed hybrid algorithm has better 
performance in locating good schedules within the same 
computational time. Also, the improvement becomes more 
obvious when the problem size becomes larger, the due date 
becomes tighter, or the subcontract cost becomes higher. 
Hence, the proposed hybrid algorithm is suitable for solving 
real industrial problems which usually have large problem 
size. 

V. CONCLUSIONS 

This paper focuses on solving the integrated production 
scheduling and cell formation problem for virtual cellular 
manufacturing systems operating under a multi-period 
manufacturing scenario. The objective is to minimize the 
total manufacturing cost within the entire planning horizon, 
including material transportation cost, machine operating 
cost, inventory-holding cost, and subcontracting cost. A new 
mathematical model has been established to describe the 
characteristics of a virtual cellular manufacturing system and 
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a hybrid algorithm which combines the advantages of the 
techniques of constraint programming and discrete particle 
swarm optimization has been developed to generate 
effectively the optimal production schedule and cell 
formation for the manufacturing system. Computational 
experiments using a set of randomly generated test problems 
demonstrates that the hybrid algorithm can generate better 
production schedules and cell formations with the same 
number of iterations or the same amount of computational 
times, especially when the size of the problem is large. 
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