

Integrated Multi-period Production Scheduling
and Cell Formation for Virtual Cellular

Manufacturing Systems

K.L. Mak, J. Ma and L.X. Cui


Abstract—Virtual cellular manufacturing has attracted a lot of
attention in recent years because traditional cellular
manufacturing is inadequate under a highly dynamic
manufacturing environment. In this paper, a new mathematical
model is established for generating optimal production
schedules for virtual cellular manufacturing systems operating
under a multi-period manufacturing scenario. The objective is
to minimize the total manufacturing cost over the entire
planning horizon. A hybrid algorithm, based on the techniques
of discrete particle swarm optimization and constraint
programming is proposed to solve the complex production
scheduling problem. Although particle swarm optimization
performs competitively with other meta-heuristics for most
optimization problems, the evolution process may be stagnated
as time goes on if the swarm is going to be in equilibrium,
especially for problems with hard constraitns. Constraint
programming, on the other hand, is an effective technique for
solving problems with hard constraints. However, the technique
may be inefficient if the feasible search space is very large.
Therefore, the aim of the proposed hybrid algorithm is to
combine the complementary advantages of particle swarm
optimization and constraint programming to improve its search
performance. The effectiveness of the proposed methodology is
illustrated by solving a set of randomly generated test problems.

Index Terms—Backtracking, Constraint programming,

Discrete particle swarm optimization, Virtual cellular
manufacturing systems

I. INTRODUCTION

As global market becomes more and more competitive,
manufacturing industries venture into a new phase, where
both opportunities and chanllenges abound. Nowadays,
manufacturing industries face relentless pressure manifested
with a growing tendency of greater varieties of products with
shorter manufacturing cycles and a highly dynamic
manufacturing environment. Manufacturers thus should
constantly adopt efficient manufacturing systems to respond
to dynamic changes in customers’ demand in order to keep
their market share. Group technology (GT), a strategy
proposed for this reason, is a manufacturing philosophy in
which the parts having similarities are grouped together to

achieve higher level of integration between the design and
manufacturing process of an industry. Cellular
manufacturing (CM) and virtual cellular manufacturing
(VCM) are two classical manufacturing layouts of this design
and have attracted a lot of attention in recent years.

K.L. Mak is Professor at the Dept. of Industrial and Manufacturing

Systems Engineering (IMSE), The University of Hong Kong, Hong Kong,
(e-mail: makkl@hkucc.hku.hk).

J. Ma is a PhD student at the Dept. of IMSE, HKU, Hong Kong, (e-mail:
majun_nankai@yahoo.cn).

L.X. Cui is a PhD student at the Dept. of IMSE, HKU, Hong Kong,
(e-mail: cui.lixin@hku.hk).

Cellular manufacturing has long been considered efficient
in improving the productivity of batch production systems. In
cellular manufacturing systems (CMSs), the parts that
undergo similar manufacturing operations are grouped
together to form a part family, and the workstations that
produce those parts are physically grouped together to form a
manufacturing cell for manufacturing these parts. Cellular
manufacturing has the advantage in managing material flow
easily due to the similarity of parts and proximity of the
workstations. However, cellular manufacturing also has
many drawbacks such as low machine utilization and
unbalanced workload [1], because the machines are usually
duplicated to restrict the manufacturing of parts in their
respective manufacturing cells. The duplication of machines
generates excessive production capacity in the manufacturing
systems and increases the operational and maintenance costs.

In order to overcome the deficiencies of cellular
manufacturing, a new concept called virtual cellular
manufacturing was proposed. The main difference between
virtual cellular manufacturing and cellular manufacturing is
that the workstations in a virtual manufacturing cell are not
grouped physically on the production floor. [2] and [3]
reported that the virtual manufacturing cell appears as data
files in a virtual cell controller. When a job arrives, the
controller will take over the control of the relevant
workstations to form a virtual manufacturing cell. The
controller will also oversee the manufacturing of the job until
it is finished. At the same time, the workstations will not be
locked up on the formation of a virtual manufacturing cell,
but are free to be assigned to other manufacturing cells to
produce other jobs as long as there are excess capacities.
When the job has been completed, the virtual manufacturing
cell terminates and the workstations will be released and
beome available for other incoming jobs. A virtual cellular
manufacturing system contains a number of virtual
manufacturing cells which are dynamically created and
controlled within it. Due to the sharing of workstations, it is
expected that virtual cellular manufacturing has higher
efficiency and flexibility than cellular manufacturing.

Although the concept of virtual cellular manufacturing has
many advantages in terms of workstation utilization and
workload balancing, production scheduling for virtual

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

cellular manufacturing systems (VCMSs) has not received a
lot of attention from the research community because of the
complexity of the problem. Irani et al. [4] proposed a method
based on graph theory and mathematical programming for
forming virtual manufacturing cells. Baykasoglu [5]
proposed a simulated annealing algorithm for developing a
distributed layout for virtual cellular manufacturing cells.
Mak et al. [6] developed a genetic methodology to generate
effective production schedules for virtual cellular
manufacturing systems operating under a single period
scenario. In this paper, research will be extended into the
multi-period situation.

The remainder of this paper is organized as follows.
Section II presents the mathematical model and section III
the hybrid algorithm. Section IV analyses the computation
results obtained from solving a set of randomly generated
problems. Finally, the conclusions are given in section V.

II. MATHEMATICAL MODEL

In this section, a mathematical model is established to
describe the characteristics of multi-period VCMSs for the
purpose of generating optimal production schedules. In the
model, there are W workstations (1 with certain
production capacities.

,2,...,w )W

)P
The planning horizon contains P

periods (1,p 

2,...,)

2,..., , each of which is further divided into
a certain number of time slices with the same length
(1,s S . Some jobs are to be produced in each period
and the objective is to minimize the total manufacturing
cost over the entire planning horizon. To run the virtual
cellular manufacturing systems well, three types of
information [6] should be provided by the production
schedule: (1) the types of workstations and other
production resoueces that should be grouped to form virtual
manufacturing cells; (2) the bottleneck workstations in each
virtual manufacturing cell and the most appropriate rates to
process the assigned jobs; (3) the times to create and
terminate the virtual manufacturing cells.

This research is conducted under following assumptions.

1. Each type of job consists of a certain number of
operations that must be manufactured according to the
production route;

2. All types of operations of the same job must be handled
on the same workstation in each period;

3. The processing time of each operation of a job is
deterministic and known. Moreover, the processing time of
an operation on any workstation that can handle it is the
same;

4. The production volume and due date of each job in each
period is deterministic and known;

5. The distance between any two workstations and the
transportation cost of each job between any two
workstations are deterministic and known;

6. Each period within the planning horizon is divided into a
number of time slices of equal length. In addition, no
work-in-process is allowd. That is, the processing rate of
each job must satisfy the condition such that the production
output of an operation in a time slice must be equal to that

of its preceding operation in the last time slice, and that of
its succeeding operation in the next time slice;

7. Each workstation can handle at most one operation at a
time and ech operation cannot be interrupted once started in
any time slice;

8. Compared with the inventory-holding cost and the
manufacturing cost, the subcontracting cost of each job is
much higher;

9. The transportation time of material and the machine
setup time can ne negligible.

The following parameters are used in the development of
the mathematical model:

,j pr =the production route of job j in period p

,()j pw r =the workstation w used in production route ,j pr

,j iO =the operation i of job j

,j pDD =the due date of job j in period p

,j pV

=the volume of customer need of job j in period p

jK

=the number of operations of job j

1 2,w wd =the distance between workstation 1w and 2w

PL =the length of a time slice

, ,w s pMC =the maximum capacity of workstation w in time

slice s of period p

,, , ()j pj i w rpt =processing time for producing one unit of

operation i of job j on workstation ,()j pw r

,()j pD r =the total distance of production route ,j pr

In addition, j is the cost of moving one unit of job j per

unit distance; w is the operating cost of workstation w per

unit time; ,j p is the inventory-holding cost of job j in

period p ; ,j p is the subcontracting cost of job j in

period p .

Decision variables:

,, , (), ,j pj i w r s pPR =processing rate of operation i of job j on

,()j pw r in time slice s of period p

,, , (), ,j pj i w r s pst =the start time of operation i of job j on

,()j pw r in time slice s of period p

,, , (), ,j pj i w r s pft =the finish time of operation of jobi j on

,()j pw r in time slice s of period p

,, , (), ,j pj i w r s pX =equal to 1 if operation i of job j is launched

by ,()j pw r in time slice s of period ; otherwise, it is 0. p

,, , (), ,j pj i w r s pY =equal to 1 if operation i of job j is processed

by ,()j pw r in time slice s of period p ; otherwise, it is 0.

The mathematical model thus has the following form [7]:

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

Minimize

, , ,

, , , , ,
1 1 1 1 1 1

, , (), , , , (), , , , ()
1 1 1 1 1

()

j

j p j p j p

P N N P N P

j p ,j j p j p j p j p j p
p j j p j p

KW P S N

w j i w r s p j i w r s p j i w r
w p s j i

V D r IV SV

Y PR pt

     

    

 



  

 

  



Where

,

,

,

, , , , (), , , 1
1 ()

max{ ,0} ,
j p

j j p

j p

DD

j p j p j K w r s p j p
s w r

SV V PR IV j p
 

     (1)

,

,

,

,

, ,

, , , (), , ,
1 ()

, , (), ,
1 ()

max{ ,0}

 ,

j p

j j p

j p

j j p

j p j p

DD

j p j K w r s p j p j p
s w r

S

j K w r s p
s DD w r

IV PR IV V

PR j p


 

  

 

 

 

 

1 ,



 (2)

1 2

1 2 ,

, ,
(,)

() ,
j p

j p w w
w w r

D r d j p
 

  (3)

Subject to

, ,, , (), 1, , 1, (), , , , , (), ,
j p j pj i w r s i p j i w r s i p j pX X j i w     r s p (4)

, ,, , (), 1, , 1, (), , , , , (), ,
j p j pj i w r s i p j i w r s i p j pPR PR j i w r s p    

 (5)

,

,

(1)

, , (), 1,
() 1 1

1 ,
jj

j p

j p

KS K

j i w r s i p
w r s i

X j p
 

 
  

    (6)

, ,

'
, , (), ', , , (), , ,(1) , , (), ,

j p j pj i w r s p j i w r s p j pY X G j i w r p   s s (7)

,

,

,

, , (), ,

, , (), , , ,
, , (), ,

0 1
 , (), ,

0 0
j p

j p

j p

j i w r s p

j i w r s p j i j p
j i w r s p

Y
PR O w r s p

Y

     
 (8)

,

,

,, , (), , ,
1 ()

 ,
j p

j p

S

j pj i w r s p j i
s w r

PR V O p
 

   (9)

,, , (), ,

, ,

(1) (1)

 , (), ,
j pj i w r s p

j i j p

st p S PL s

O w r s p

      



PL

,

,

 (10)

, , ,, , (), , , , (), , , , (), , , , ()

, ,

 , (), ,
j p j p j p j pj i w r s p j i w r s p j i w r s p j i w r

j i j p

ft st PR pt

O w r s p

 


 (11)

, , ,, , (), , , , (), , , , () , ,
1 1

,

 (), ,

j

j p j p j p

KN

j i w r s p j i w r s p j i w r w s p
j i

j p

Y PR pt MC

w r s p

 






 (12)

,0 0 jIV j  (13)

, ,, , (), , , , (), ,, , {0,1} , , ,
j p j pj i w r s p j i w r s pX Y j  i w s p (14)

 where G is a large number.
The objective of the mathematical model is to minimize

the total manufacturing cost over the entire planning
horizon, including material transportation cost,
inventory-holding cost, subcontracting cost, and machine
operating cost. Equations (1) and (2) denote the method of
calculating inventory-holding volume and subcontract
volume of each job in each period respectively. Equations
(3) show the method of calculating the travelling distance
of a production route. Constraints (4) ensure that when
operation i of job j has been finished, operation 1i  of

job j must start immediately. Constraints (5) make sure that

the processing rate of an operation in a time slice must be
equal to that of its preceding operation in the last time slice,
and that of its succeeding operation in the next time slice in
each period. It shows that work-in-process is not allowed in
the manufacturing system. Constraints (6) ensure that the

starting times of all operations must be within the planning
horizon and each job can only have a unique production
route in each period. Constraints (7) require that in each
period no operation can start before the time slice from
which production is launched. Constraints (8) restrict the
processing rate to be greater than or equal to zero.
Constraints (9) denote the relationship between the
processing rate and the production volume of each job in
each period. Constraints (10) and (11) describe the
constraints governing the starting time and the finishing time
of each operation. Constraitns (12) make sure that all jobs
assigned to a machine can be finished in each time slice of
each period. Constraitns (13) indicate that there is no
inventory of any job at the beginning of the planning horizon
and constraints (14) indicate that these variables are binary.

TABLE 1 A SAMPLE OF PRODUCTION OUTPUTS OF A JOB

Serial number of operations 1 2 3

Workstation No. 2 7 4

1 5(5) 3(3) 0

2 2(2) 5(8) 3(9)

3 3(4) 2(5) 5(6)

4 0 3(3) 2(7)

Time slice

No.

5 0 0 3(6)

To illustrate constraints (4) and (5) of the mathematical
model, Table 1 provides an example of the production
outputs of a job in a period. In this table, the value in the
bracket is the maximum processing rate of an operation in a
time slice. For example, the maximum processing rate of
operation 1 in time slice 1 is 5. The maximum processing rate
of operation 2 in time slice 2 is 8, and that of operation 3 in
time slice 3 is 6. Thus, the feasible processing rate of
operation 1 in time slice 1 (operation 2 in time slice 2 and
operation 3 in time slice 3) is 5. This ensures that no
work-in-process exists between operations of a job. After
scheduling this job, workstation 2 still has a certain amount
of remaining capacity in time slice 2, which allows it to be
assigned to other manufacturing cells to produce other
incoming jobs.

III. HYBRID OPTIMIZATION ALGORITHM

In order to find an efficient and effective production
schedule, this paper develops a new hybrid algorithm based
on the techniques of constraint programming (CP) and
discrete particle swarm optimization (DPSO).

A. Constraint programming

Constraint programming [8] is an effective
methodology for solving difficult combinatorial problems
by representing them as constraint satisfaction problems
(CSPs). A constraint satisfaction problem usually consists
of a set of variables, a domain for each variable, and a set of
constraints restricting the values that the variables can
simultaneously take.

There are mainly two important categories of
constraints in production scheduling problems: precedence
constraints and capacity constraints. A typical example of
precedence constraints in the VCMS production scheduling
problem is that an operation can start only after its

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

preceding operation has been finished. Capacity constraints
usually refer to workstations and other production
resources. An example in the production scheduling
problem is that each machine must have enough capacity to
produce the jobs assigned on it.

Figure 1 The procedure of constraint programming

Backtracking paradigm is a basic constraint propagation
technique used to solve constraint satisfaction problems.
The basic operation is to pick one variable at a time, and
consider one value in its domain at a time, making sure that
the newly picked label is compatible with the instantiated
partial solution obtained so far. If the newly picked label
violates certain constraints, then an alternative value, if it
exists, is picked. If no value can be assigned to a variable
without violating any constraint, it will backtrack to the
most recently instantiated variable. This process continues
until a feasible solution has been found or all possible
combinations of labels have been tried and failed [8]. The
procedure of constraint programming with backtracking
propagation is presented in Figure 1.

B. Discrete particle swarm optimization

Particle swarm optimization (PSO), a population-based
optimization approach inspired by the observations of bird
flocking and fish schooling, was proposed by Kenndey and
Eberhart in 1995 [9]. The basic idea of this approach is to
locate the optimal or near optimal solution through
cooperation and sharing of information among individuals in
the swarm. The swarm is composed of a group of particles in
a search space with two important characteristics, namely
position and velocity. Each particle represents a potential
solution, which flies through the hyperspace and has two
essential reasoning capacibilits: the memory of its own best
position and the knowledge of the global or its
neighborhood’s best position. Particles within the swarm
communicate information with each other and adjust their
own position and velocity based on the information. At each
step, the velocity of a particle and its new position will be
updated respectively according to the following two

equations.

1 1 2 2() (i i i iV V c r P X c r G X    )i

i

 (15)

i iX X V  (16)

where iX represents the position of particle i , iV represents

the velocity of particle i , iP is the best previously visited

position of particle i , G is the global best position, ω is the
inertia weight that controls the impact of previous velocity on
its current one, which is usually reduced dynamically to

decrease the search area : ma

t
 x

max

t t
max min min()  t    , in

which max and min denote the maximum value and the

minimum value of the inertial weight respectively, and is

the maximum number of iterations
maxt

. Generally, the value of
the velocity is restricted in the range max mv v ax[, to control

excessive roaming of particles outside the search space.
Usually, is set with value 4.

]

maxv

Figure 2 shows the steps of particle swarm optimization.

Initialize parameters

Initialize populations

Evaluate

Do {

 Find the personal best

 Find the global best

 Update velocity

 Update position

 Evaluate

}While(Termination)

Figure 2 Particle swarm optimization procedure

 In practice, many optimization problems such as
production scheduling problem are set in discrete search
space. To meet this demand, a discrete version of particle
swarm optimization (DPSO) was proposed by Kenndey and
Eberhart in 1997 [10]. DPSO has two main differences from
the original one. First, the particle is composed of binary
variables. Second, the velocity must be transformed into the
change of probability, which is the chance of the variable
taking the value 1. Usually, the transformation is achieved
through the following sigmoid function.

1
()

1 exp()i
i

s V
V


 

 (17)

Where ()is V denotes the probability of corresponding bit

taking value 1.

In this research, particle k at iteration t can be presented
as , where ,

denotes the job production sequence in period , and

 denotes workstation assignment of jobs in period .

The best solution found by particle k until iteration is
denoted as P P and the best solution found by

the swarm until iteration t is denoted as . The

velocity of particle k at iteration can be presented as
, where ,

,1 , ,(,..., ,...,t t t p
k k kX X X

,t p

,1 ,(,...,t t
k k P

,1 , ,(,..., ,...,)t t t p t P
k k k kV V V V

)t P
kX

)t P
k

, , ,(,t p t p t p
k k kX S M

p

p

t

,1 ,(,...,)t t t P
g g gP P P

, , ,(,)t p t p
k k kV VS VM

)
,t p

kS

kM



t p 
t

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

,t p
kVS

,
, ,

t p
k j ds

denotes the velocity of job production sequence in

period , and denotes the velocity of workerstation

assignment of jobs in period .

p

,t p
kS

,t p
kVM

, ,
,1(,t p

k kS S

p

,)p
k NS

To facilitate understanding of the proposed methodology,
a job production sequence in a period is used as an example
to illustrate the construction of a particle.
 In , ,and .

is binary where it is equal to 1 if job
,...,t p t , , , ,

, , ,1 , ,2 , ,(, ,...,t p t p t p t p
k j k j k j k j NS s s s)

j is in the

position of the production sequence; otherwise, it is equal
to 0. For example, suppose the job production sequence in
period 1 is (2, 3, 4, 1,) in a particle.
Then and all other bits are equal to

zero.

thd

,1
,2,1

t
k

,t p
k

,1 ,1
,3 ,1,4s s s,1

,2 ,4,3
t t t
k k ks  

, ,
,1(t p t p

k kVS

,
, ,

t p
k j dvs

thd

1

,
,)t p

k



In VS , VS and .

High value of means that job is more likely to be

placed in the position in period , while low value

indicates that it is better to place this job in another position.
In each iteration, the velocity is updated according to
equation (15), and then converted to the change of
probability via following sigmoid function.

,...,VS N), , , ,
, , ,1 , ,2 , ,(, ,...,t p t p t p t p

k j k j k j k j NVS vs vs vs

j

p

, ,
,(t p

k j , ,
,

1

xp(t p
k j

)d 2,...,
1 e) pd

1,s vs d N
vs


 

 (18)

where pN
, ,d

p

is the number of jobs in period ,

denotes the probability of placing job in the

position of the production sequence in period .

p

,(t p
k js vs

thd

) j

p

In the iteration process of discrete particle swarm
optimization, each particle should be decoded into a complete
production schedule. In the example of job production
sequencing, the construction of a job production sequence in
period starts from a null sequence and then places an

unscheduled job in the position from to

according to following probability [11]:

j thd 1d  pN

'

, ,
,

, ,

,

)

()

t p d
k j

t p d

k j
s

'



() j

,
, ()t p

k dq j

,
,

t p
k dq

(

j U

s vs

s v



 (19)

where U is the set of of unscheduled jobs in period , and

is the probability of placing job in the position.

A complete job production sequence of a period has been
constructed when each of the jobs in this period has been
assigned to a position.

p

j thd

C. The proposed hybrid algorithm

Particle swarm optimization is an effective algorithm for
solving many types of optimization problems. However, if
the swarm is going to be in equibrium, the evolution process
will be staganeted as time goes on [12]. Constraint
programming is specialized for solving problems with hard
constraints, but may be inefficient when the feasible search
space is very large. Hence, a hybrid algorithm (CPSO) which
combines their complementary advantages to improve the
search process is proposed in this research. The procedure of
the proposed hybrid algorithm is summarized briefly in
Figure 3.

Step 1. Initialization

Step 1.1 Initialize parameters, particle size K , maxt

Step 1.2 Initialize particles’ positions and velocities randomly. t
kX t

kV

Step 1.3 Evaluate objective function value for each particle. Initialize

and

t
kP

t
gP

Step 2. Perform iteration process
while () maxt t

Step 2.1 for 1k  to K
 Update velocity of particle k

 for 1p  to P

 Update job production sequence in period p of particle k

 while job production sequence of period p is not empty

 Pick the first job in the production sequence j

 Update work station assignment of job j

 Check consistency

 while (not consistent)

 Detect critical machine and add to violation set

 if there is alternatives of the critical machine

 change a new assignment

 check consistency

 else

 randomly assign a suitable machine

 set it consistent

 end-while

 calculate production output of job j in period p

 delete this job from the job production sequence

 end-while

 end-for

 Update t
kP

 end-for

Step 2.2 Update t
gP

Step 2.3 Increment of iteration count 1t t 

end-while

Step 3. Report the best solution of the swarm and corresponding objective
function value

Figure 3 The procedure of the hybrid algorithm

In this research, the planning horizon consists of multi
periods. Due to capacity limitations of various workstations,
some jobs may not be finished before their due dates in
some periods while some workstations may have excess
capacities in some periods. Hence, it is necessary to make a
trade-off among inventory-holding cost, subcontracting
cost, and workstation utilization. A concept called extra
capacity [13] is firstly introduced. The extra capacity of a
job in a period is the number of units of the job that can be
produced in excess in this period without affecting other
scheduled jobs. When a job cannot be finished before its
due date in a period and has extra capacity in previous
periods, the extra capacity will be utilized to produce it and

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

the inventory is carried to that period. If there is still
backlog of this job after utilizing the extra capacity, the
amount will be subcontracted in order to meet customers’
demand.

In practice, the subcontracting cost of a job is usually
much higher than its inventory-holding cost and
manufacturing cost. Hence, in the proposed algorithm, if a
job cannot be finished before its due date even after
utilizing the extra capacity of previous periods, it will be
treated as inconsistency and the critical workstation will be
detected to try a new assignment. In addition, the procedure
in figure 3 indicates that constraint propagation in this
research takes the form of single-level backtracking. When
inconsistency occurs, the algorithm will detect the critical
resource and check whether this critical resource has any
alternatives. If the answer is positive, another workstation
selected from the alternatives will be assigned to perform
the operation; otherwise, the algorithm will not backtrack to
the most recently scheduled job and just randomly assign a
suitable workstation for it according to DPSO mechanism
regardless of consistency, and then continue to schedule the
next job until all jobs have been scheduled.

D. Heuristic for production output

However, the proposed hybrid algorithm does not take the
production output into consideration explicitly. A heuristic
will be adopted to determine the production outputs of each
job in each time slice of each period [14]. Figure 4 shows the
pseudo-code of the heuristic for determining the production
outputs of the jobs in a period.

while production sequence of this period is not empty do

 Pick the first job j in the production sequence

 Set s=1, RemQty=Vj,p

 while RemQty>0 and p<=DDj,p-Kj+1 do

 minPR= RemQty

 for i=1 to Kj

 Find maximum PRj,i,s+i-1

 minPR=min(minPR, PRj,i,s+i-l)

 end-for

 if minPR>0 then

 PRj,i,s+i-1= minPR, i 

 RemQty= RemQty- minPR

 Update capacities of work stations

 end-if

 s=s+1

 end-while

Remove job j from production sequence.

end-while
Figure 4 The heuristic for determining production output of jobs

As shown in the example of table 1, the maximum
processing rate of an operation in a time slice (shown in
brackets in table 1) must satisfy the constraints governing the
remaining capacity of the assigned workstation in that time
slice. The feasible production output (minPR) is the smallest
value of the maximum feasible production outputs of all

operations. This ensures that no work-in-process is allowed
between operations. If minPR is positive, the remaining
capacity of workstations and remaining production quantity
(RemQty) are updated; otherwise, production of this job can
not take place in time slice s of period . This process

repeats until the production outputs of all jobs in this period
have been determined.

p

IV. COMPUTATION RESULTS

In this section, the performance of the proposed hybrid
algorithm is analysed by comparing the results obtained
from solving a set of randomly generated test problems with
that of DPSO.

A. Test Problem Set and Parameters

The values of parameters used in the algorithm are as
follows. Particle size is 100, maximum number of iterations
is 100, maximum inertial weight is 0.8, minimum inertial
weight is 0.2. 1c and 2c are both equal to 2, the velocity of

particles is restricted in the range [-4, 4]. Each period
contains 30 time slices, the length of which is 300 seconds.
There are 3 or 4 operations required for producing each unit
of a job. Each operation has a processing time randomly
generated from [20, 40]. The number of units that should be
produced (a job) in a period is randomly generated from [50,
80]. Table 2 shows the scheme used to generate the test
problems. In this table, (, , , ,)p n d s m

p

is used to denote the

parameter combination, where is the number of periods,

n is the number of jobs in each period, d denotes the due
date, s denotes job subcontracting cost, and m denots the
number of workstations. For example, scheme 1 means that
there are 5 periods in the planning horizon, the number of
jobs in a period is randomly generated from [5, 10], the due
date of each job is randomly generates from [,]S S  ,

where 0.4 0.α β, 7  , the subcontracting cost of each job

per unit is generated from [500, 1000], the number of
workstations is 12.

TABLE 2 PARAMETER SCHEME

No. Parameter value

1 (5, [5, 10], [0.4, 0.7], [500, 1000], 12)

2 (5, [5, 10], [0.6, 0.9], [500, 1000], 12)

3 (5, [5, 10], [0.4, 0.7], [1000, 2000], 12)

4 (5, [5, 10], [0.6, 0.9], [1000, 2000], 12)

5 (5, [5, 10], [0.4, 0.7], [500, 1000], 20)

6 (5, [5, 10], [0.6, 0.9], [500, 1000], 20)

7 (5, [5, 10], [0.4, 0.7], [1000, 2000], 20)

8 (5, [5, 10], [0.6, 0.9], [1000, 2000], 20)

9 (10, [5, 10], [0.4, 0.7], [500, 1000], 12)

10 (10, [5, 10], [0.6, 0.9], [500, 1000], 12)

11 (10, [5, 10], [0.4, 0.7], [1000, 2000], 12)

12 (10, [5, 10], [0.6, 0.9], [1000, 2000], 12)

13 (10, [10, 15], [0.4, 0.7], [500, 1000], 12)

14 (10, [10, 15], [0.6, 0.9], [500, 1000], 12)

15 (10, [10, 15], [0.4, 0.7], [1000, 2000], 12)

16 (10, [10, 15], [0.6, 0.9], [1000, 2000], 12)

B. Comparison with DPSO

 In order to demonstrate the superiority of the proposed

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

hybrid algorithm over DPSO, five test problems are
randomly generated under each scheme. The performances of
the hybrid algorithm and DPSO are obtained by averaging
the results of running the algorithms five times for each
problem. Table 3 shows the performance comparison of the
two algorithms after executing both algorithms for 100
iterations. In this table, cost diff and time diff are calculated
according to the following equations.

cost of DPSO-cost of hybrid algorithm

cost diff=
cost of DPSO

 (20)

CPU time of hybrid algorithm-CPU time of DPSO

time diff=
CPU time of DPSO

 (21)

TABLE 3 COMPARISON WITHIN THE SAME ITERATIONS

DPSO HYBRID No.

cost time cost time

Cost diff Time diff

1 563218 70 531783 89 5.58% 27.14%

2 529196 87 482444 111 8.83% 27.59%

3 711755 108 578140 143 18.77% 32.41%

4 652706 88 560282 114 14.15% 29.55%

5 372065 79 345057 93 7.26% 17.72%

6 501924 78 486018 88 3.17 12.82%

7 714411 117 614808 140 13.94% 19.66%

8 525589 83 503133 96 4.27% 15.66%

9 1140888 204 1051389 247 7.84% 21.08%

10 1176895 177 1100422 218 6.50% 23.16%

11 1175947 182 1029194 219 12.48% 20.33%

12 1046388 174 927337 206 11.38% 18.39%

13 2724866 568 2460257 793 9.71% 39.61%

14 2711063 510 2431879 709 10.30% 39.02%

15 4435985 620 3646998 867 17.79% 39.84%

16 3784960 629 2960653 890 21.78% 41.49%

From Table 3, it is clear that the proposed hybrid algorithm

can obtain much better schedule solutions at the expense of
longer computational time. Furthrmore, the improvement on
solution quality is more obvious when the problem size
becomes larger, the due date becomes tighter, or the
subcontract cost becomes higher.

Taking scheme 1 for example, figure 5 shows the
performances of the two algorithms in locating good
solutions within the same number of iterations, and figure 6
compares the computational times of the two algorithms,
when the number of iterations is the same.

500000
510000
520000
530000
540000
550000
560000
570000
580000
590000
600000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

iteration

ma
nu

fa
c
tu

ri
n
g

co
s
t

DPSO

CPSO

Figure 5 Comparison of cost with the same number of iteration

0
10
20
30
40
50
60
70
80
90
100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

iteration

co
mp

ut
a
ti

on
 t

i
me

DPSO time

CPSO time

Figure 6 Comparison of computation time with same iterations

 Since the hybrid algorithm needs longer computational
time for the same number of iterations. It is necessary to
compare the performance of these two algorithms with the
same computational time. Table 4 lists the comparison results.
In this table, psoT represents the computational time of DPSO

running 100 iterations.

TABLE 4 COMPARISON WITHIN THE SAME COMPUTATION TIME

Cost diff

No. 1/3 psoT 1/2 psoT 2/3 psoT psoT

1 6.29% 6.29% 5.89% 5.58%

2 9.46% 9.23% 9.26% 8.54%

3 20.33% 19.68% 18.06% 18.63%

4 13.65% 13.36% 13.53% 14.08%

5 6.40% 6.26% 6.67% 7.26%

6 3.09% 2.56% 3.10% 2.74%

7 14.16% 14.46% 14.27% 13.94%

8 4.53% 4.44% 3.79% 3.96%

9 7.29% 7.44% 7.82% 7.83%

10 6.17% 6.53% 6.70% 6.46%

11 14.46% 13.56% 13.14% 12.47%

12 12.48% 11.82% 11.95% 11.32%

13 9.63% 9.64% 9.51% 9.70%

14 10.13% 10.10% 10.32% 10.11%

15 17.29% 16.99% 17.40% 17.62%

16 21.88% 22.00% 21.80 21.72%

It is clear that the proposed hybrid algorithm has better
performance in locating good schedules within the same
computational time. Also, the improvement becomes more
obvious when the problem size becomes larger, the due date
becomes tighter, or the subcontract cost becomes higher.
Hence, the proposed hybrid algorithm is suitable for solving
real industrial problems which usually have large problem
size.

V. CONCLUSIONS

This paper focuses on solving the integrated production
scheduling and cell formation problem for virtual cellular
manufacturing systems operating under a multi-period
manufacturing scenario. The objective is to minimize the
total manufacturing cost within the entire planning horizon,
including material transportation cost, machine operating
cost, inventory-holding cost, and subcontracting cost. A new
mathematical model has been established to describe the
characteristics of a virtual cellular manufacturing system and

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

a hybrid algorithm which combines the advantages of the
techniques of constraint programming and discrete particle
swarm optimization has been developed to generate
effectively the optimal production schedule and cell
formation for the manufacturing system. Computational
experiments using a set of randomly generated test problems
demonstrates that the hybrid algorithm can generate better
production schedules and cell formations with the same
number of iterations or the same amount of computational
times, especially when the size of the problem is large.

ACKNOWLEDGEMENT

The work described in this paper was supported by a grant
from the research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. HKU 715409E).

REFERENCE

[1] U. Wemmerlov and N. Hyer, “Cellular manufacturing in the US
industry: a survey of users,” Int. J. Prod. Res, vol. 27, no. 9, pp.
1511-1530, 1989.

[2] J.R. Drolet, “Scheduling virtual cellular manufacturing systems,” PhD
Dissertation, Purdue University, West Lafayette, IN, 1989.

[3] V.R. Kannan and S. Ghosh, “Cellular manufacturing using virtual
cells”, Int. J. Op. Prod. Manage, vol. 16, no. 4, pp. 99-112, 1996.

[4] S.A. Irani, T.M. Cavalier, and P.H. Cohen., Virtual manufacturing cells:
Exploiting layout design and intercell flows for the machine-sharing
problem. Int. J. Prod. Res, vol. 31, no. 4, pp. 791-810, 1993.

[5] A. Baykasoglu., Capability-based distributed layout approach for
virtual manufacturing cells. Int. J. Prod. Res., vol. 41, no, 11, pp.
2597-2618, 2003.

[6] K.L. Mak, J.S.K. Lau and X.X. Wang, “A genetic scheduling
methodology for virtual cellular manufacturing systems: an industrial
application,” Int. J. Prod. Res, vol. 43, no. 12, pp. 2423-2450, 2005.

[7] K.L. Mak and J.Ma, “A Novel Hybrid Algorithm for Multi-Period
Production Scheduling of Jobs in Virtual Cellular Manufacturing
Systems,” Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2011, WCE
2011, 6-8 July, 2011, London, U.K., pp. 685-690.

[8] E.P.K. Tsang, Foundation of Constraint Satisfaction. Academic Press,
1993.

[9] J. Kenndey and R.C. Eberhart, “Particle swarm optimization,” IEEE
international conference on neural network, pp. 1942-1948, 1995.

[10] J. Kenndey and R.C. Eberhart, “A discrete binary version of the particle
swarm optimization,” The world multiconference on systems,
cybernetics and informatics, pp. 4104-4109, 1997.

[11] C.J. Liao, C.T. Tseng, and P. Luarn, “A discrete version of particle
swarm optimization for flowshop scheduling problems,” Computers
and Operations Research, vol 34, pp. 3099-3111, 2007.

[12] P.S. Shelokar, P. Siarry, V.K. Jayaraman, and B.D. Kulkarni., “Particle
swarm and ant colony algorithms hybridized for improved continuous
optimization”, Applied Mathematics and Computation, vol. 188, pp.
129-142, 2007.

[13] K.L. Mak, J. Ma, and W. Su, “Production scheduling for virtual
cellular manufacturing systems with workforce constraints using a
hybrid algorithm,” Proceeding of International Conference on
Natural Computation, vol. 8, pp. 4445-4449, 2010.

[14] K.L. Mak, J. Ma, and W. Su, “A constraint programming approach
for production scheduling of multi-period virtual cellular
manufacturing systems,” Proceeding of International Conference on
Natural Computation, vol. 8, pp. 4440-4444, 2010.

Engineering Letters, 19:4, EL_19_4_07

(Advance online publication: 12 November 2011)

__

	A. Constraint programming
	B. Discrete particle swarm optimization
	C. The proposed hybrid algorithm
	D. Heuristic for production output
	A. Test Problem Set and Parameters
	B. Comparison with DPSO
	Acknowledgement

