

Abstract—ECATNets are a category of algebraic Petri nets.

The main feature of ECATNets is, their sound and complete

semantics are based on rewriting logic. In this paper, we study

the application of reduction rules to ECATNets in order to cope

with state explosion problem. We adopted a reduction rule

defined for algebraic Petri nets by K. Schmidt in 1997. The

integration of ECATNets in the rewriting logic and its language

Maude is very promising in terms of implementation of this

reduction rule thanks to the concept of the reflectivity of

rewriting logic: the self-interpretation of this logic allows us the

modeling of an ECATNet and acting on it. We used Maude

system to implement and execute such reduction rule adapted

for ECATNets. We show how the representation of ECATNets

in Maude, helps us to simplify the development by disregarding

several details. Maude offers many functions to deal with the

meta-level which makes our implementation easy. We show also

in this paper how reduction rules help us to get reduced

ECATNets smaller than original ones and faster for analyzing

some properties.

Index Terms—Algebraic Petri Nets, Reduction Rules,

ECATNets, Rewriting Logic, Maude, Verification.

I. INTRODUCTION

CATNets are a category of algebraic Petri nets (APNs)

based on a safe combination of algebraic abstract types

and high level Petri nets [1]. The semantic of ECATNets is

defined in terms of rewriting logic [7], allowing us to build

models by formal reasoning. As Petri nets, ECATNets

provide a quickly understood formalism due to their simple

construction and graphical depiction. Moreover, ECATNets

have a strong theory and development tools based on

powerful logic with sound and complete semantic. The

integration of ECATNets in rewriting logic and its language

Maude [8] is very promising in terms of specification and

verification of their properties. Rewriting logic provides to

ECATNets a simple, intuitive, and practical textual version to

analyze systems, without loosing the formal semantic.

Analysis techniques supported by Petri nets in general, and

ECATNets in particular, are usually very expensive, and any

proposed reduction rule helping to cope with state explosion

problem is interesting. In [9], Schmidt has presented some

reduction rules for APNs bringing some solutions to cope

with this problem. For instance, the application of some

reduction rules can decrease the steps needed for creating

Manuscript received March 6, 2009; revised January 12, 2012.

N. Boudiaf is with the University of Oum El Bouaghi, Oum El Bouaghi

04000 Algeria (phone: (+213) 032 42 42 12; fax: (+213) 032 42 10 36;

e-mail: boudiafn@gmail.com).

K. Bensaber is with Eurofunk Kappacher GmbH Company,

Salzburg, Austria (e-mail: kbensaber@yahoo.de).

reachability graph or replacing an unbounded net by a

bounded one. Each reduction rule preserves a specific set of

APNs properties.

In his paper, Schmidt has presented in total nine reduction

rules. Compared to others, some of them have different

implementation's needs. In this sense, we have proposed in [2]

tools for adapting and implementing three reduction rules

defined by Schmidt to ECATNets which are: ‘places without

input transitions’, ‘parallel transitions’ and ‘equivalent

places’. These three reduction rules present similar

implementation's requirements. These rules are different from

those presented in [3]. In [3], we presented our

implementation of reduction rules: ‘transitions without input

places’, ‘parallel places’ and ‘loop transition’. As extension of

the work presented in [2] and [3], we describe in this paper

our adaptation of the reduction rule: ‘side condition places’ to

ECATNets. This reduction rule presents different and more

complicated implementation’s needs compared to those

described in the two previous papers. Moreover, Maude

based tool that implements this rule is described in this paper.

We will also informally describe the adaptation of the

reduction rule ‘free choice decisions’ to the ECATNet.

Through a simple example, we will show how both reduction

rules ‘side condition places’ and ‘free choice decisions’ help

us to get reduced nets smaller than original nets and easier for

analyzing some properties.

The integration of ECATNets in the rewriting logic and its

language Maude is very promising in terms of implementation

of these reduction rules thanks to the concept of the

reflectivity of rewriting logic: a module could be an input data

(parameter) to another module [4]. The input module is

described in the meta-level. This concept of reflectivity

allows us to describe an ECATNet as a module in meta-level

and this module becomes an input to our tool implementing

reduction rules. Moreover, Maude offers many services and

functions to deal with the meta-level which makes our

implementation easy.

The remainder of this paper is organized as follows: In

section 2, we give a brief definition of APNs and an overview

about reduction rule ‘side condition place’ for APNs defined

in [9]. Rewriting logic and Maude language is introduced

shortly in section 3. The section 4 is a general introduction of

ECATNets and their description in rewriting logic. In section

5, we present the meta-level computation concept in Maude.

We explain in this section some descent functions of Maude

used in the framework of this paper. The adaptation in

rewriting logic of the reduction rule to the ECATNets is

presented in section 6 and its implementation in Maude is

presented in section 7. An example of an ECATNet and its

Adapting and Implementing a Reduction Rule to

ECATNets by Using Rewriting Logic

N. Boudiaf, and K. Bensaber

E

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

description in Maude are given in the section 8. In this

section, we show also how we apply the reductions rules and

the developed tool on the example. In section 9, we explain in

details the benefits of using reduction rules. Finally, section

10 concludes the paper.

II. ALGEBRAIC PETRI NETS

A. Definition (Algebraic Petri Nets)

A tuple AN = [D; P, T, F; ψ, ξ, λ; m0] is an algebraic Petri

net iff :

- D = [Σ, E] is a specification with Σ = [S, Ω]:

 - S is q set of sorts;

 - Ω is a set of operations symbols;

 - E is a set of equations;

- [P, T, F] is a net;

- ψ : P → S is s sort assignment;

- ξ assigns a set of Σ variables ξ(t) to each transition t ∈ T;

- λ is the arc inscription such that for f =[p, t] or f = [t, p] in F,

 λ(f) is a multi–term over TΩ,ψ(p)(ξ(t));

- m0 is the initial marking, it assigns a finite multi–term over

TΩ,ψ(p) to every p ∈ P.

B. Reduction Rules for APNs

In this section, we present the reduction rule ‘side

conditions places’. Because APNs are polymorph, they can be

interpreted according to different models of the specification.

Schmidt describes the application condition of every rule for

term algebra, standard algebra and skeleton algebra. In our

implementation, we take into account only standard algebra.

For more details about reduction rules, see [9]. In the

following, we consider N as the net before reduction rule

application and N' the net after reduction. pF and Fp are

respectively the set of output transitions and the set of input

transitions of a place p.

Reduction Rule: Side Condition Places. If all transitions

check only a place without changing its marking, then this

place can be removed. After applying this rule interleaved

events could become concurrent without changing the

interleaving semantics of the net.

Application Condition. There is a place p such that for all

transitions t : λ[p, t] ≡I λ[t, p].

Application. For every injective assignment of an occurrence

of a term in m0(p) to λ[t, p] and every unifier σ for the set of

pairs of assigned terms, insert a transition tσ where ξ(tσ) =

var(σ), and for all p’ ∈ P \ {p}, λ([p’, tσ]) = λ([p’, t])σ and

λ([tσ, p’]) = λ([t, p’])σ.

Remove p, pF and all arcs connected to them.

Properties.

1. All removed transitions are dead in N;

2. p is bounded in N;

3. All properties and formulas concerning non removed nodes

hold in N iff they hold in N’;

Benefit. The size of the graph does not change at all, but one

component of the marking vector is removed and the

enabledness check for transitions becomes faster. Moreover,

interleaved transitions become concurrent. This makes this

rule interesting for partial order verification methods.

III. REWRITING LOGIC REVIEW

In rewriting logic, each concurrent system is represented by

a rewrite theory ℜ = (Σ, E, L, R). Its static structure is

described by the signature (Σ, E), whereas its dynamic

structure is described by the set of labelled rewrite rules R,

which are applied modulo the equation E. An important

feature of the rewriting logic is that a rewrite theory ℜ = (Σ, E,

L, R) can be viewed as an executable specification of the

concurrent system that it formalizes. This section reminds the

basic definitions of the rewriting logic.

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ, E, L, R)

where (Σ, E) is a signature; Σ is the sorts set and operators and

E is a set of Σ-equations. The signature (Σ, E) is an equational

theory which describes the particular algebraic structure of

the states of a system (multi-set, binary tree, etc.) which are

distributed according to this same structure. R ⊆ L ×

(TΣ,E(X))
2
 is the set of pairs whose first component is a label

and the second is a pair of E-equivalence classes of terms,

with X = {x1,…,xn,…}a countable infinite set of variables.

The elements of R are called conditional rewrite rules. They

describe the elementary and local transitions in a concurrent

system. Each rewrite rule corresponds to an action being able

to occur, simultaneously, with other actions. The rewriting

will operate on equivalence classes of terms, modulo the set of

equations E. For a rewrite rule (r, ([t],[t’]),

([u1],[v1]),….,([uk],[vk])) we use the notation r: [t]→[t’] if

[u1]→[v1] ∧…∧ [uk]→[vk], where [t] represents the

equivalence class of the term t. A rule r expresses that the

equivalence class containing the term t is changed to the

equivalence class containing the term t’ if the conditional part

of the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified.

Given a labeled rewrite theory ℜ, we say that ℜ entails a

sequent r: [t]→[t’], or that r: [t]→[t’] is a (concurrent)

ℜ-rewrite and write ℜ |- r : [t] → [t’] iff [t]→ [t’] is derivable

from the rules in ℜ by a finite application of the deduction

rules (reflexivity, transitivity, congruence, and replacement)

of rewriting logic.

A rewrite theory is a static description of a concurrent

system. Its semantics is defined by a mathematical model

which describes its behaviour. The model for a given labelled

rewriting theory ℜ = (Σ, E, L, R) is a category τℜ(X) whose

objects (states) are equivalence classes of terms [t]∈TΣ,E(X)

and whose morphisms (transitions) are equivalence classes of

proof-terms representing proofs in rewriting deduction .

• Reflexivity. For every [t] ∈ TΣ,E(X) :
[] []t t→

• Congruence. For every f ∈ Σn, n ∈ N :

' '

1 1

' '

1 1

[] [] ... [] []

[(,...,)] [(,...,)]

n n

n n

t t t t

f t t f t t

→ →

→

• Replacement. For every rewriting rule

1 1:[(,...,)] ['(,...,)]n nr t x x t x x→ in R,

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

' '

1 1

_ _ _ _

[] [] ... [] []

[(/)] ['('/)]

n nw w w w

t w x t w x

→ →

→

, such that

_ _

(/)t w x

indicates the simultaneous substitution of iw for ix in

t.

Transitivity. 1 2 2 3

1 3

[] [] [] []

[] []

t t t t

t t

→ →

→

A. Maude Language

Maude is a specification and programming language based

on rewriting logic. Maude is simple, expressive and efficient.

It is rather simple to program with Maude, considering that it

belongs to the declarative programming languages. It is

possible to describe using Maude different types of

applications, from prototyping ones to high concurrent

applications. Maude is a competitive language in terms of

execution and simulation with imperative programming

languages [4]. Three types of modules are, in fact, defined in

Maude. The functional modules, the system modules and the

object-oriented modules which can, in fact, be reduced to

system modules. However, they offer explicitly the

advantages of the object paradigm. Because we do not need

object-oriented modules in this work, we will introduce only

functional and system modules.

Functional Modules. The functional modules define data

types and related operations, which are based on equations

theory. By using equations as simplification rules, each

expression called term could be evaluated to its reduced form

called canonical representation. All the equal terms by means

of equations form an equivalence class. The canonical form

represents all the terms of the same equivalence class. The set

of all the equivalence classes of the ground (i.e, variable-free)

terms constitutes a denotational model for a functional

module (initial algebra). Equations in a functional module are

oriented. They are used from left to right and the final result of

the simplification of an initial term is unique independently of

the order in which these equations are applied. In addition to

equations, this type of modules supports membership’s

axioms. These axioms impose constraints so that a term is of a

particular type if a certain condition is satisfied. This

condition is a conjunction of equations and unconditional

tests of memberships.

System Modules. The system modules define the dynamic

behavior of a system. This type of module augments the

functional modules by the introduction of rewriting rules.

This type of module offers a maximum degree of

concurrency. A system module describes a “rewriting theory”

which includes kinds, operations and three types of

statements: equations, memberships and rewriting rules.

These three types of statements can be conditional. A

rewriting rule specifies a “local concurrent transition” which

can proceed in a system. The execution of such transition,

specified by the rule, can take place when the left part of a rule

matches to a portion of the global state of the system and the

condition of the rule is valid.

IV. ECATNETS

Let be Spec = (Σ, E) an algebraic specification of an

abstracted data type given by the user. MTΣ,E(X) represents

the free commutative monoid of the terms TΣ,E(X) (the

∑-algebra of the equivalence classes of the ∑-terms with

variables in X, modulo the equations E) endowed with the

internal operator ⊕ and having ∅ as the identity element.

CATdas(E, X) is the structure of equivalence classes formed

from the multi-sets of MTΣ,E(X) modulo the associative,

commutative and identity axioms for the operator ⊕. An

ECATNet [1] is a structure ECATNet = (P, T, sort, IC, DT,

CT, Cap, TC) where:

- P is a finite set of places; T is a finite set of transitions;

- sort : P → S is a function that associates a sort to each place;

- IC (Input Condition): P × T → CATdas(E, X)~ where

CATdas(E, X)~ is the set of the following elements:

CATdas(E,X)sort(p) ∪{empty}∪ {[m]~/ [m] ∈

CATdas(E,X)sort(p)};

- DT (Destroyed Tokens): P × T → CATdas(E, X);

- CT (Created Tokens): P × T → CATdas(E, X);

- Cap (Capacity): P × T → CATdas(E,∅) is a partial function

that for every p ∈ domain(Cap), associates a capacity Cap(p)

∈ CATdas(E,∅);

- TC (Transition Condition): T → CATdas(E, X)bool is a

function such that for every t ∈ T, TC(t)∈CATdas(E, X(t))bool

where X(t) is called the transition context. A graphical

representation of a generic ECATNet is given in (Fig. 1). The

expressions IC(p, t), DT(p, t), CT(p’, t) and TC(t) are

multi-sets of equivalence classes of ∑-terms with ⊕ being the

multi-set union operator which is associative, commutative

and has the term ∅ (the empty multi-set) as the identity

element. IC(p, t) specifies the condition on the input place

marking for the enabling of the transition t. DT(p, t) and

CT(p’, t) specify, respectively, the multi-set of tokens to be

removed from the marking of p and the multi-set of tokens to

be created in the output place p’, when t is fired. TC(t) is a

Boolean term which specifies an additional enabling

condition for the transition t. TC(t) may contain variables

occurring in IC(p, t), DT(p, t) and CT(p’, t). When TC(t) is

omitted, the default value is the term True.

Fig. 1. A generic ECATNet

A transition t is fireable when several conditions are

satisfied simultaneously:

- The first condition is that every IC(p, t) is satisfied for each

input place p of the transition t:

If IC(p, t) is of the form [m] (positive case) then [m] must be

included in the input place marking M(p). (if m = ∅, then

IC(p, t) is always true)

If IC(p, t) is of the form [m]~ (negative case) then [m] must

not be included in M(p).

If IC(p, t) = empty then M(p) has to be empty (i.e. M(p) = ∅).

- The second condition is that TC(t) is true.

IC (p, t)

DT(p, t)
 TC(t)

 CT(p’, t) P : S P’: S’
 t

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

Finally, the addition of the tokens CT(p’, t) to the output

place p’ of t must not result in p’ exceeding its capacity when

this capacity is finite. When t is fired, DT(p, t) is removed

from the input place p and simultaneously CT(p’, t) is added

to the output place p’. In the case where DT(p, t) is not

included in M(p) (i.e. IC(p, t) ≠ DT(p, t)) we remove the

elements which are common between these two multi-sets.

For the sake of clarity, in the graphical representation of

ECATNets, we note in italic the term IC(p, t) for a given

transition t.

ECATNets Distributed State. Let P ={p1, … pn} the set of

places of an ECATNet N. Each place pi of N is marked with a

finite multi-set of algebraic terms of sort Multiset. The

constant ∅ represent the empty multi-set and ⊕ is the

corresponding multi-set union operator, which is associative,

commutative and has the constant ∅ as the identity element

(ACI axioms). The marking of an ECATNet N has typically a

structure of a multi-set made up of the marking of each place

of N [10]. This last can be viewed as a term of the form <p1 ;

Mp1> ⊗...⊗ <pn ; Mpn> of sort Marking endowed with a

multi-set union operator denoted ⊗, for which the ACI

axioms are also specified with the empty marking ∅ as the

identity element. The marking of an ECATNet is axiomatized

by the following equational theories. The theory

MARKING-OPERATION defined in [6], specifies the

multi-set difference, the multi-set cardinality, the multi-set

inclusion and the multi-set intersection operators.

fmod PLACE-MARKING is

sorts Place Token Multiset Place-marking .

subsort Token < Multiset .

op Ems:-> Multiset.

------ the constant implementing the empty multi-set

op _⊕_ : Multiset Multiset -> Multiset [assoc comm id: ∅].

op <_;_> : Place Multiset -> Place-marking .

endfm

fmod MARKING is pr PLACE-MARKING.

------ pr for protecting

sort Marking . subsort Place-marking < Marking .

op Em :-> Marking.

------ The constant implementing the empty marking ∅

op _⊗_: Marking Marking -> Marking [assoc comm id:∅].

endfm

fmod MARKING-OPERATION is

Pr MARKING . vars mts mts1 mts2 : Multiset .

vars t1 t2 : Token .

------ Operations on multi-sets ------------------

op _Inclu_ : Multiset Multiset -> Bool .

op Nbr : Multiset -> Nat .

op _Supp_ : Multiset Multiset -> Multiset .

op _Inter_ : Multiset Multiset -> Multiset .

------ Difference -----------------------------------

eq mts1 Supp Ems = mts1 .

eq Ems Supp mts1 = Ems .

eq (t1 ⊕ mts1) Supp (t1 ⊕ mts2)= mts1 Supp mts2 .

eq (t1 ⊕ mts1) Supp t1 = mts1 .

eq (t2 ⊕ mts1) Supp t1 = t2 ⊕ (mts1 Supp t1)[owise] .

------ Cardinality -----------------------------------

eq Nbr(Ems) = 0 . eq Nbr(t1) = s(0) .

eq Nbr(t1 ⊕ mts1) = s(Nbr(mts1)) .

------ Inclusion ------------------------------------

ceq mts1 Inclu Ems = true if mts1 == Ems.

ceq mts1 Inclu Ems = false if mts1 =/= Ems.

eq Ems Inclu mts1 = true.

eq t1 Inclu t2 ⊕ mts1= true if t1 == t2.

ceq t1 Inclu t2 ⊕ mts1 = t1 Inclu mts1 if t1 =/= t2 .

eq (t1 ⊕ mts1) Inclu (t1 ⊕ mts2) = mts1 Inclu mts2 .

eq (t1 ⊕ mts1) Inclu (t2 ⊕ mts2) = false [owise] .

------ Intersection -----------------------------------

eq mts1 Inter Ems = Ems .

eq (t1 ⊕ mts1) Inter (t1 ⊕ mts2) = t1 ⊕ (mts1 Inter mts2).

eq (t1 ⊕ mts1) Inter (t2 ⊕ mts2) = mts1 Inter mts2 [owise] .

endfm

ECATNets Rewrite Rules. The behaviour of the

ECATNets ([1], [6]) is expressed by a set of rewrite rules

describing the local effect of each transition and a set of

deduction rules allowing to deduce an ECATNet marking

from a previous one, after steps of concurrent rewritings. The

form of these rules is rather complex if we consider all

features of ECATNets such as places capacities, transitions

conditions, the negative case and the fact that when a

transition t is fired (in the case where DT(p, t) is not included

in M(p)) we remove from its input place p, the common

elements between DT(p, t) and M(p). In the following, we

propose a general technique for the representation of the

rewrite rules expressing the behaviour of ECATNets

transitions taking into account all the mentioned features and

extending that one already proposed for contextual

ECATNets. A transition t which has p1, p2 and p3 as input

places and p4 as an output place, such that IC(p1, t) = [α1],

IC(p2, t)=[α2]~ and IC(p3, t) = empty, is formalized by a

rewrite rule of the following general form (given in Maude

syntax, where Mp1, Mp2 , Mp3 and Mp4 are variables of sort

Multiset):

crl [t] : <p1 ; Mp1> ⊗ <p2 ; Mp2> ⊗ <p3 ; Mp3> ⊗ <p4 ; Mp4> →

<p1 ; Mp1 Supp (Mp1 Inter DT(p1, t)) > ⊗ <p2 ; Mp2

Supp (Mp2 Inter DT(p2 ; t)) > ⊗ <p4 ; CT(p4, t) ⊕ Mp4>

 if ((α1 Inclu Mp1) and not (α2 Inclu Mp2) and (Mp3 == ∅)

 and Nbr (CT(p4, t) ⊕ Mp4) ≤ Cap (p4)) .

The test on the capacity can be omitted, if Cap(p4) is

infinite. If the transition is associated to a local condition

TC(t), the rewrite rule will contain the additional component

[TC(t)→true]. The application of the splitting and/or

recombining axioms on places marking (i.e. ∀p∈P, where P is

the set of an ECATNet places, <p ; m1 ⊕ m2> ≡ <p ; m1> ⊗ <p

; m2>) are restricted in order to obtain coherent execution

results under Maude engine. In the case when for each

transition t of an ECATNet, [IC(p, t)]⊕ = [DT(p, t)]⊕, the

rewrite rule formalizing the behaviour of t can be simplified

as follows : < p, [IC(p, t)]⊕ > → < p’, [CT(p’, t)]⊕ >. Note that

the splitting and/or recombining axioms can be applied in this

case which allows detecting the maximum of parallelism in

ECATNets computations by judiciously splitting and/or

recombining different multi-sets equivalence class of terms.

V. META-LEVEL COMPUTATION IN MAUDE

Maude provides a plate-form getting easy implementation

for ECATNets’ tools. Meta-level description is one of

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

services provided by Maude. This service permits describing

a module in meta-level. This module becomes an input to

another module. We will use meta-level representation in

Maude to describe an ECATNet and act on it. The syntax of

meta-level representation is different from ordinary

representation in Maude. Term and module in the meta-level

are called meta-term and meta-module respectively.

Meta-term is considered as term of a generic type called

Term. A Meta-module is considered as term of generic type

called Module. To manipulate a module in meta-level

representation, Maude provides a module called

META-LEVEL. This module encapsulates some services

called descent functions. A descent function performs

reduction and rewriting of meta-term, according to the

equations and rules in the corresponding meta-module at the

meta-level.

A. Descent Functions in Maude

Function metaMatch. The process of matching two terms at

the top is reified by a built-in function metaMatch:

op metaMatch : Module Term Term Condition Nat _ >

Substitution? .

The operation metaMatch(R, t, t’, Cond, n) tries to match at

the top terms t and t' in the module R in such way that the

resulting substitution satisfies the condition Cond. The natural

number is used to indicate possible matches. In success case,

this function returns substitution as result. In failure case, it

returns noMatch. From theoretical point of view, consider that

TΣ : is a Σ–algebra of ground terms in the signature Σ and

TΣ(X) is a term algebra where terms may have variables in a

set of variables X. Given a term t ∈ TΣ(X), corresponding to

the lefthand side of an oriented equation, and a subject ground

term t’ ∈ TΣ(X), we say that t matches t’ if there is a

substitution σ such that σ(t) ≡ t’, that is, σ(t) and t’ are

syntactically equal terms.

Selectors Functions. A selector function allows extracting a

part of the code. For example, selector function getRls takes

meta-representation of a module and returns

meta-representation of rules:

op getRls : Module –> RuleSet .

Operators used to meta-represent sets of rules are:

sorts Rule RuleSet . subsort Rule < RuleSet .

op rl_=>_[_] : Term Term AttrSet –> Rule [ctor] .

op crl_=>_if_[_] . : Term Term Condition AttrSet –> rule

[ctor] .

op none : -> RuleSet [ctor] .

op __ : RuleSet RuleSet –> RuleSet [ctor assoc comm id:

none] .

VI. DISCUSSION AND ADAPTATION OF REDUCTION RULE

‘SIDE CONDITION PLACES’ TO ECATNETS

ECATNets are described in meta-level (as data) and may

be manipulated by another module. We can apply Maude

descent functions on it. In sequel, M is the name of a module

describing an ECATNet system and T0 is an initial marking.

Let’s consider that all places of M have an infinite capacity.

Let R be the set of all rewrites rules of M. We consider p an

input place (resp. output place) for r if p appears in the

lefthand (resp. righthand) side of the rule (transition) r. We

need to define some functions used in the context of our

adaptation of reduction rules to ECATNet. The function

RuleLeft(r) (resp. RuleRight(r)) returns the term in lefthand

(resp. righthand) side of a rule r. The function

RuleCondition(Rl) returns the condition part of the rule Rl.

The function GetSubTermConcerningPlace(T, p) returns the

SubTerm of T that concerns only the place p. So, for a term T

= < p ; T1 > .. < p ; Tn > . T’ (T’ is independent from p), this

function returns the term < p ; T1 > .. < p ; Tn >.

Application Condition. There is a place p such that for all

transitions (rewriting rules) Rl, we have:

EquivalentTerms(GetSubTermConcerningPlace(RuleLeft(Rl

), p), GetSubTermConcerningPlace(RuleRight(Rl), p),

RuleCondition(Rl)) == true. [a]

Application. For every injective assignment of an occurrence

of a term in GetSubTermConcerningPlace(T0, p) to

GetSubTermConcerningPlace(RuleRight (Rl), p) and every

unifier sub for the set of pairs of assigned terms, insert a

transition Rlsub and for all p’ ∈ P \ {p},

GetSubTermConcerningPlace(RuleLeft(Rlsub), p’) =

GetSubTermConcerningPlace(RuleLeft(Rlsuv), p’)

and GetSubTermConcerningPlace(RuleRight(Rlsub), p’) =

GetSubTermConcerningPlace(RuleRight(Rlsuv), p’) [b]

Remove p and all terms < p ; T > for p ∈ P figuring in

rewrite rules of M.

VII. IMPLEMENTATION OF REDUCTION RULE ‘SIDE

CONDITION PLACES’

For simplicity reasons, we present some principal functions

of the application which should be sufficient to explain all the

implementation. We first explain how to implement the

EquivalentTerms function. After that, we give details about

the implementation of ‘side condition place’ reduction rule.

A. Implementation of the Function EquivalentTerms

In a module called COMPLETENESS-DECISION, we

propose the description of this function. The condition

(metaMatch(M, T1, T2, CD, 0) =/= noMatch) decides that the

term T2 is the term T1 after doing a certain substitution of its

variables if a certain condition CD is true.

op EquivalentTerms: Module Term Term Condition -> Bool .

eq EquivalentTerms(M, T1, T2, CD) =

if metaMatch(M, T1, T2, CD, 0) =/= noMatch

 and metaMatch(M, T2, T1, CD, 0) =/= noMatch

then true

else if metaMatch(M, T1, T2, CD, 0) =/= noMatch

 or metaMatch(M, T2, T1, CD, 0) =/= noMatch

 then EquivalentTerms1(M, GetTermsInPlace(T1),

 GetTermsInPlace(T2))

 else false fi fi .

However, the condition (metaMatch(M, T1, T2, CD, 0) =/=

noMatch) is not sufficient to implement all the signification of

EquivalentTerms. As described in [9], if we take, for instance,

T1 = < p ; a > . < p ; b > (ground term with a and b are constant

of sort S) and T2 = < p ; x > . < p ; succ(x) > (x is a variable of

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

sort S), we have in this case metaMatch(M, T1, T2, CD, 0) ==

noMatch. However, if a and b are the only elements of the sort

S with a = succ(b) and b = succ(a), then the application

condition of reduction rule is verified because the multi-set

composed of x and succ(x) is always equal to the multi-set

composed of a and b, for every substitution. In this case, T1

may be considered equivalent than T2. We can consider also

T1 equivalent to T2 (we explain this in the next sub-section).

We can say that T1 is equivalent to T2.

For this reason, we propose the function EquivalentTerms1

that deals with this case. This function takes three parameters,

the first one is of sort Module and the two others are of sort

TermList. In the expression EquivalentTerms1 (M,

GetTermsInPlace(T1), GetTermsInPlace(T2)), the function

GetTermsInPlace(T) extracts terms figuring in the places of

T, i.e, if T = < p1 ; t1 > .. < pn ; tn > such that

GetTermsInPlace returns the list of terms t1,..,tn.

The global behaviour of the function EquivalentTerms1 is

to consider for each sort S, a sub-list of terms (GTL) in

GetTermsInPlace(T1) being all of the same sort S and a

sub-list of terms (TL) in GetTermsInPlace(T2) of the same

sort S. These two sub-lists must have same lengths. GTL

contains only ground (variable-free) and TL must contain any

terms, else the condition of the reduction rule isn’t valid.

The function EquivalentTerms1verifies the set of terms of

GTL (without repetition) constitutes all elements of sort S

(property 1). Moreover, this function looks for all possible

substitutions for ti (i=1,.., n). Variables in common between

terms must have same values. After that, the function shows

that for each substitution, GTL and TL are identical in terms

of their contents (property 2). If it exist a substitution of all

variables of terms of TL, such that GTL and TL are different

in terms of their contents, then the condition of the rule is not

verified and EquivalentTerms1(M, GTL, TL) returns false.

Let GTL be the list containing terms gt1,..,gtn and TL the

list containing t1,..,tn. Let’s note that after showing gt1,..,gtn

are the alone elements of S, then if we have a substitution for

each term ti,(i=1,..,n), it is, surely, equal to one of terms gtj (j

=1,..,n).

The implementation in Maude of the checking of the

property 2 is possible now thanks to the ‘Completeness

Checker’ tool developed by Hendrix in [5]. This tool allows

the checking of the property ‘Sufficient completeness’. This

property indicates that the canonical form of any ground is

based only on ‘constructor’ operations. The declaration of the

function checkCompleteness in Maude is as follows :

op checkCompleteness : Module MembAxSet EquationSet

MembAxSet -> ProofObligationSet .

The first parameter of this function represents a module,

the second one represents subjects, the third one represents

equations and the fourth parameter represents constructor

memberships.

The function checkCompleteness(M, Subjects, Eqs, Mbs)

discards all equations and constructor membership that do not

unify with a subject, but if a subject has a non-conditional

matching, this function removes this it. If all subjects have a

matching, then this function returns that there is no proof

obligation (none.ProofObligationSet).

To use this function in our definition of EquivalentTerms1,

we proceed first to create a new module New-M containing

the set of terms of sort S as the alone elements of S. Let

gt1,..,gtn be the terms of sort S, the module containing the

definition of its terms as the alone elements of sort S, must

contain all definitions of operations and constructor

memberships in the following manner :

- If gti (i=1,..,n) is a constant (not-parameterized operation),

then we declare :

op gti : -> S .

- If gti (i=1,..,n) is not a constant (parameterized operation),

then gti is of the form f(r1,..,rm). For the moment, we accept

only the case where r1,..,rm are not-parameterized constants.

The declaration of ti is of the following form :

op f : S1 .. Sm -> S .

cmb f(x1:S1, …, xm :Sm) : S if (x1:S1 == r1.S1) and … and

(xm:Sm == rm.Sm) .

To check the previous property, we define the function

SortCompleteness as follows:

op SortCompleteness : Module Module Type -> Bool .

eq SortCompleteness(New-M, M, S) =

if checkCompleteness(New-M, patterns(M, S),

 getsEqs(New-M), patterns(New-M, S)) ==

 (none).ProofObligationSet then true else false fi .

The function patterns(M, S) looks for ground terms that

constitute initial algebra for the sort S. In infinity case, this

function returns ‘model’ terms covering all elements of the

sort S. The function SortCompleteness searches for each term

of sort S in M, if it exist a term of the same sort in New-M, in

such way it does not exist a matching between the terms. If it

exists a ground term in M and for each term in New-M, it does

not exist a matching between the two terms, then the condition

is not valid. In this case, defined elements in New-M are not

the alone elements of S.

In the following, we present in details the implementation

of the function EquivalentTerms1 and some functions called

by it. EquivalentTerms1(M, TL1, TL2) extracts all sorts of

elements of TL1 and calls MoreGeneralTerms2(M, TL1,

TL2, GetSortsOfTerms(M, (TL1, TL2))). The function

GetSortsOfTerms(M, (TL1, TL2) returns sorts of all elements

in TL1 and TL2:

op EquivalentTerms1 : Module TermList TermList -> Bool .

eq EquivalentTerms1(M, nil, nil) = true .

eq EquivalentTerms1(M, nil, (T2, TL2)) = false .

eq EquivalentTerms1(M, TL1, TL2) =

 if length(TL1) == length(TL2)

 then EquivalentTermsComp2(M, TL1, TL2,

 GetSortsOfTerms(M, (TL1, TL2)))

 else false fi .

The function EquivalentTermsComp2(M, TL1, TL2, (S

TpL)) extracts a sub-list of TL1 and a sub-List of TL2. Terms

of these two sub-list must be of the same sort S. This function

calls EquivalentTermLists(M, GetTermsOfSort(M, TL1, S),

GetTermsOfSort(M, TL1, S)) :

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

op EquivalentTermsComp2 : Module TermList TermList

TypeList -> Bool .

eq EquivalentTermsComp2(M, TL1, TL2, nil) = true .

eq EquivalentTermsComp2(M, TL1, TL2, (S TpL)) =

if EquivalentTermLists(M, GetTermsOfSort(M, TL1, S),

 GetTermsOfSort(M, TL2, S)) == true

 then EquivalentTermsComp2(M, TL1, TL2, TpL)

 else false fi .

The function EquivalentTermLists (M, (T1, TL1), (T2,

TL2)) removes from TL1 any non ground term that has its

equivalent terms in TL2 and calls EquivalentTermLists1. The

function EquivalentVars(M, TL1, TL2) returns some terms of

TL1 that have equivalents in TL2. The function

SameTypeTest(TL1) returns true if all elements of TL1 are of

the same type.

op EquivalentTermLists : Module TermList TermList -> Bool

.

eq EquivalentTermLists(M, (T1, TL1), (T2, TL2)) =

if (length(TL1) == length(TL2))

 and (SameTypeTest(TL1) == true)

 and (SameTypeTest(TL2) == true)

 and (getType(T1) == getType(T2))

 then EquivalentTermLists1(M,

 TermListSub(TL1, EquivalentVars(M, TL1, TL2)),

 TermListSub(TL2, EquivalentVars(M, TL2, TL1)),

 getType(T1)) else false fi .

EquivalentTermLists1(M, TL1, TL2, S) checks first that

one list contains ground terms and the other one contains any

terms. This function checks the property 1 described above

and calls MoreGeneralTermLists2(M, TL2, TL1) :

op MoreGeneralTermLists1 : Module TermList TermList

Sort -> Bool .

eq MoreGeneralTermLists1(M, TL1, TL2, S) =

if (GroundTermsTest(TL1) == true

 and VarsTest(TL2) == true)

 then if SortCompleteness(M, TermListNoDup(M, TL1), S)

 == true

 then MoreGeneralTermLists2(M, TL2, TL1)

 else false fi else false fi .

op EquivalentTermLists1 : Module TermList TermList Sort

-> Bool .

eq EquivalentTermLists1(M, TL1, TL2, S) =

if (GroundTermsTest(TL1) == true

 and NotGroundTermsTest(TL2) == true)

 then if SortCompleteness(M, TermListNoDup(M, TL1), S)

 == true

 then EquivalentTermLists2(M, TL2, TL1) else false fi

 else if (NotGroundTermsTest(TL1) == true

 and GroundTermsTest(TL2) == true)

 then if SortCompleteness(M,

 TermListNoDup(M, TL2), S) == true

 then EquivalentTermLists2(M, TL1, TL2)

 else false fi

 else false fi fi .

EquivalentTermLists2(M, TL, GTL) extracts all possible

substitutions for variables appearing in TL according to

values of GTL by calling the function ValidSubsForTList(M,

TL, GTL) :

op EquivalentTermLists2 : Module TermList

GroundTermList -> Bool .

eq EquivalentTermLists2(M, TL, GTL) =

EquivalentTermLists3(TL, GTL, ValidSubsForTList(M, TL,

GTL)) .

EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) checks the

property 2 described above. For each substitution Sub, the

function SubstitutionTermList(TL, Sub) returns a new list

after replacing variables of TL by values according to the

contents of Sub. EqualTermList(SubstitutionTermList(TL,

Sub), GTL) returns true if the obtained new list

(SubstitutionTermList(TL, Sub)) is equal to the list GTL. If

this function returns false, the function

EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) returns false,

else it continues this test for another substitution in Subs. In

the case of expiring all substitutions (emptySubList),

EquivalentTermLists3(TL, GTL, emptySubList) returns true.

op EquivalentTermLists3 : TermList GroundTermList

SubList -> Bool .

eq EquivalentTermLists3(TL, GTL, emptySubList) = true .

eq EquivalentTermLists3(TL, GTL, Sub) =

if EqualTermList(SubstitutionTermList(TL, Sub), GTL) ==

true then true else false fi .

eq EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) =

 if EqualTermList(SubstitutionTermList(TL, Sub), GTL)

 == true

 then MoreGeneralTermLists3(TL, GTL, Subs) else false fi .

B. Implementation of Reduction Rule ‘Side Condition

Places’

The module implementing reduction rule ‘side condition

place’ is called

SIDE-CONDITION-PLACES-REDUCTION, we present

and explain some of its principal functions:

mod SIDE-CONDITION-PLACES-REDUCTION is

…

var M : Module . var P : Term . vars Rl Rl1 Rl2 : Rule .

vars Rls Rls1 Rls2 : RuleSet . vars T T0 T1 T2 : Term .

var TL : TermList . var GTL : GroundTermList .

var CD : Condition . var L : List . var Sub : Substitution .

var Subs : SubList .

Module-AfterSide-Condition-Places-Reduction(M, T0) is

the main function of the application, in the code of this

function we find the function AddTransitionsInModule(M,

Add-Sub-Rules(M, T0, Get-All-Side-Condition-Places(M)))

which creates new transitions according to every side

condition place detected. After adding such transitions we call

the function DeletePlacesAndConnectedArcsInModule to

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

delete all side conditions places and all arcs connected to

them.

op Module-AfterSide-Condition-Places-Reduction : Module

Term -> Module .

eq Module-AfterSide-Condition-Places-Reduction(M, T0) =

DeletePlacesAndConnectedArcsInModule(AddTransitionsIn

Module(M,

Add-Sub-Rules(M, T0, Get-All-Side-Condition-Places(M))),

Get-All-Side-Condition-Places(M)) .

The function Get-All-Side-Condition-Places(M) returns a

list of all side condition places, this function calls

GetPlacesOfModule(M) to extract all places of the module

and pass this list of places as parameter to the function

All-Side-Condition-Places(M, GetPlacesOfModule(M)).

op Get-All-Side-Condition-Places : Module -> List .

eq Get-All-Side-Condition-Places(M) =

All-Side-Condition-Places(M, GetPlacesOfModule(M)) .

The function All-Side-Condition-Places(M, L) checks if

every place of the ECATNet M, is a side condition place or

not. If a place head(L) is side condition place

(SideConditionPlace(M, head(L)) returns true in this case), so

it is added to the list returned by this function otherwise it is

discarded.

op All-Side-Condition-Places : Module List -> List .

eq All-Side-Condition-Places(M, L) =

if L == emptyList then emptyList

else if SideConditionPlace(M, head(L)) == true

 then head(L) . All-Side-Condition-Places(M, tail(L))

 else All-Side-Condition-Places(M, tail(L)) fi fi .

The function SideConditionPlace(M, P) extracts all rules

of the module (call of getRls(M)) and passes them as

parameter to VerifySideConditionPlace(M, P, getRls(M))

which returns true if P is a side condition place and false

otherwise. This function checks for the place P and every rule

rl in the module if the application condition if satisfied or not.

op SideConditionPlace : Module Term -> Bool .

eq SideConditionPlace(M, P) =

VerifySideConditionPlace(M, P, getRls(M)) .

op VerifySideConditionPlace : Module Term RuleSet ->

Bool .

eq VerifySideConditionPlace(M, P, none) = true .

eq VerifySideConditionPlace(M, P, Rl Rls) =

if EquivalentTerms(M,

GetSubTermConcerningPlace(RuleLeft(Rl), P),

 GetSubTermConcerningPlace(RuleRight(Rl), P),

RuleCondition(Rl)) == true

 then VerifySideConditionPlace(M, P, Rls) else false fi .

The function Add-Sub-Rules(M, T0, L) creates rules for all

side condition places in the list L by calling

Add-Sub-Rules-1(M, T0, head(L)) which creates rules for

every place head(L).

op Add-Sub-Rules : Module Term List -> RuleSet .

eq Add-Sub-Rules(M, T0, L) =

 if L == emptyList then none

 else Add-Sub-Rules-1(M, T0, head(L)) Add-Sub-Rules(M,

T0, tail(L)) fi .

op Add-Sub-Rules-1 : Module Term Term -> RuleSet .

eq Add-Sub-Rules-1(M, T0, P) =

Add-Sub-Rules-2(M, T0, P,

Get-Side-Condition-Place-Rules(M, P)) .

op Add-Sub-Rules-2 : Module Term Term RuleSet ->

RuleSet .

eq Add-Sub-Rules-2(M, T0, P, none) = none .

eq Add-Sub-Rules-2(M, T0, P, Rl Rls) =

Add-Sub-Rules-3(M, T0, P, Rl) Add-Sub-Rules-2(M, T0, P,

Rls) .

op Add-Sub-Rules-3 : Module Term Term Rule -> RuleSet .

eq Add-Sub-Rules-3(M, T0, P, Rl) =

Create-Rules-For-Subs-Except-Place(M, P, Rl,

Get-Injective-Assignment(M, P, Rl, T0)) .

The function Get-Injective-Assignment(M, P, Rl, T0)

returns an injective assignment of an occurrence of a term in

GetTermsInPlace(GetSubTermConcerningPlace(T0))

(tokens in P), to

GetTermsInPlace(GetSubTermConcerningPlace(RuleLeft(R

l), P)):

op Get-Injective-Assignment : Module Term Rule

GroundTerm -> SubList .

eq Get-Injective-Assignment(M, P, Rl, T0) =

ValidSubsForTList(M, GetTermsInPlace(

GetSubTermConcerningPlace(RuleLeft(Rl), P)),

GetTermsInPlace(GetSubTermConcerningPlace(T0))) .

Get-Side-Condition-Place-Rules(M, P) extracts the

rewriting rules that verifying the condition application of the

reduction rule [a] :

op Get-Side-Condition-Place-Rules : Module Term ->

RuleSet .

eq Get-Side-Condition-Place-Rules(M, P) =

Get-Side-Condition-Place-Rules-1(M, P, getRls(M)) .

op Get-Side-Condition-Place-Rules-1 : Module Term

RuleSet -> RuleSet .

…

Create-Rules-For-Subs-Except-Place (M, P, Rl, Subs) and

the all functions called by this function are developed to

create Rlsub that satisfies [b]:

op Create-Rules-For-Subs-Except-Place : Module Term Rule

SubList -> RuleSet .

eq Create-Rules-For-Subs-Except-Place (M, P, Rl, Subs) =

Create-Rules-For-Subs(DeletePlacesDefInModule(M, P),

Rl, Subs) .

op Create-Rules-For-Subs : Module Rule SubList -> RuleSet .

eq Create-Rules-For-Subs(M, Rl, Subs) =

if Subs =/= emptySubList then Create-Rule-For-Sub(M, Rl,

 Sub-head(Subs))

 Create-Rules-For-Subs(M, Rl, Sub-tail(Subs)) else none fi .

…

endm

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

VIII. EXAMPLE

A. Presentation of the Example

Figure 2 represents the ECATNet model of the dining

philosopher problem. If inscriptions IC(p, t) and DT(p, t) are

equals, then we present only IC(p, t) on the arc (p, t).

Rewriting rules of this system will be presented directly in

Maude.

Fig. 2. ECATNet Model of Philosopher.

Let’s note that this example does not contain for the

moment any ‘side condition place’. To make the tool

implementing ‘side condition place’ reduction rule applicable

on this example, we have to reduce it by using another

reduction rule ‘free choice decisions’ which is not detailed in

this paper. But, we need to explain the adaptation of this

reduction rule to ECATNet in informal way, and through the

example of philosophers.

B. Application of Reduction Rules on the Example

In this section, we introduce in informal way, and through

the example of philosophers, how to adapt the reduction rule

‘free choice decisions’ to ECATNet.

Reduction Rule: Free Choice Decisions. Let’s note that the

transition take puts any value X of the domain D, and

give_back needs to be fired any value of the same domain D

(the term X covers all elements of the domain of Eating). The

place Eating is empty at the initial marking. We can delete the

place Eating and merge the transitions take (ti) and give_back

(tj) to get one transition take_give_back (tij). The input of the

new transition is the input of the transition take and the output

of the new transition is the output of the transition give_back

as depicted in the figure 3.

Properties.

1. ti is live in N iff there is a j such that tij is live in N’

2. p in unbounded in N iff a place in (pF)F is unbounded in N’

3. Every formula which does not concern p and (pF)F holds in

N if it holds in N’

Benefits. One of the benefits of this rule is that a sequence of

two transitions of the original net is replaced by a single

transition in the reduced net. Consequently the number of

states of the accessibility graph decreases.

Fig. 3. Reduction of the Philosopher net after applying ‘free choice

decisions’ reduction rule.

The two places in this obtained ECATNet are ‘side

condition places’. If we eliminate the place Chopsticks, so we

get the reduced net in the figure 4.

Fig. 4. Reduction of the reduced Philosopher net after applying ‘side

condition place’ and eliminating chopsticks.

The reduced net of Fig. 4 still has another ‘side condition

place’, which is Thinking, by eliminating this place, we get

the empty net. In the sequel, we give abbreviated names to

original ECATNet and to every ECATNet obtained after a

reduction. The table 1 resumes ECATNets’ naming.

TABLE I

 NAMING OF OBTAINED ECATNETS

ECATNet Definition

N Original ECATNet

N1 Reduced ECATNet after applying ‘free choice decisions’

rule

N2 Reduced ECATNet after applying ‘side condition place’

rule on N1 and eliminating Chopsticks

N3 Reduced ECATNet after applying ‘side condition place’

rule on N1 and eliminating Thinking

N4 Reduced ECATNet after applying ‘side condition place’

rule on N1 and eliminating both Chopsticks and Thinking

C. Implementation of the Example

Now, we will present the module describing this ECATNet

in Maude meta-level. Of course, the user is not obliged to

write his/her ECATNet in a meta-representation. He/she can

write it in the ordinary mode, and he/she uses the function

upModule of Maude which allows transforming the

representation of a module to its meta-representation. The

transformation in the other direction is possible also thanks to

the function downModule. But just for well explain our work,

we have preferred presenting the module describing the

previous ECATNet in its meta-representation. In a module

called

X Eating : D Chopsticks : D

X
X ⊕ s(X)

X

Thinking : D

take

give_back
X ⊕ s(X)

X

X
Chopsticks : D

X ⊕ s(X)

X

Thinking : D

take_give_back

X ⊕ s(X)

X

X

Thinking : D

take_give_back

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

META-LEVEL-PHILOSOPHER-ECATNET-SYSTEM, the

module META-PHILOSOPHER is defined as a constant of

Module type and its content is described using an equation.

'META-ECATNET is the description in meta-level of the

module containing basic operations of ECATNet. Because of

the simplicity of the example, we do not need all multi-sets

operations describe above, so the module META-ECATNET

will contain a minimum of operations manipulating marking.

We define in Maude only three sorts Place, Token and

Marking. For syntactic reason, we define the operation ‘_._’

to implement the operation described above ⊗. For simplicity

reason, we have not defined an operation implementing ⊕.

The operation ‘_._’ which implements ⊗ is sufficient while

basing on the concept of decomposition. For example, (p, a ⊕

b) can be written as < p ; a > . < p ; b >. The module

META-DOMAIN contains the definition of the data type D

which defines the algebraic terms that we find in the places.

fmod

META-LEVEL-PHILOSOPHER-ECATNET-SYSTEM is

pr LIST-OF-TRIPLE . op META-ECATNET : -> Module .

op META-DOMAIN : -> Module .

op META-PHILOSOPHER : -> Module .

--

eq META-ECATNET = (fmod 'META-ECATNET is nil

sorts 'Place ; 'Token ; 'Marking .

none op 'Em : nil -> 'Marking [none] .

op '<_;_> : 'Place 'Token -> 'Marking [none] .

op '_._ : 'Marking 'Marking -> 'Marking [assoc comm id : 'Em.

Marking] .

none none endfm) .

--

eq META-DOMAIN = (fmod 'META-DOMAIN is nil

sorts 'D . none

op '1 : nil -> 'D [none] . op '2 : nil -> 'D [none] .

op '3 : nil -> 'D [none] . op 'S_ : 'D -> 'D [none] .

none eq 'S_['1.D] = '2.D [none] . eq 'S_['2.D] = '3.D [none] .

eq 'S_['3.D] = '1.D [none] .

none endfm) .

--

eq META-PHILOSOPHER =

(mod 'META-PHILOSOPHER is

including META-ECATNET . including 'META-DOMAIN .

none subsort 'D < 'Token .

-------- Places -------

op 'Thinking : nil -> 'Place [none] .

op 'Chopsticks : nil -> 'Place [none] . none none

-------- Rewriting Rules --------

rl '_._['<_;_>['Thinking.Place, 'X:D],

 '_._['<_;_>['Chopsticks.Place, 'X:D],

'<_;_>['Chopsticks.Place, 'S_['X:D]]]]

=> '_._['<_;_>['Thinking.Place, 'X:D],

 '_._['<_;_>['Chopsticks.Place, 'X:D],

'<_;_>['Chopsticks.Place, 'S_['X:D]]]]

[label('takegiveback)] .

endm) . endfm

D. Application of the Tool on the Example

In the framework of this work, we used as platform the

version 2.3 of Maude under Linux. For the application of the

tool on the example, we can call any function. For instance, to

know what are side condition places, we use the command

‘red’ (red for reduce) to call the function

Get-All-Condition-Places(META-PHILOSOPHER) which

returns in this case a list containing the two places ‘Thinking ‘

and ‘Chopsticks’. To apply the reduction rule ‘side condition

place’, we have to call the principal function of the

application with a chosen initial marking:

red Module-AfterSide-Condition-Places-Reduction(

META-PHILOSOPHER,

'_._['<_;_>['Thinking.Place, '1.D],

 '_._['<_;_>['Thinking.Place, '2.D] ,

'_._['<_;_>['Thinking.Place, '3.D],

 '_._['<_;_>['Chopsticks.Place, '1.D],

'_._['<_;_>['Chopsticks.Place, '2.D],

 '<_;_>['Chopsticks.Place, '3.D]]]]]]) .

As illustrated in figure 5, the tool eliminates the two

transitions (rewriting rule) in the ECATNet

META-PHILOSOPHER after applying the reduction rule

‘side condition place’. The new obtained module does not

contain any rewriting rule (none).

Fig. 5. Reduction of the Module META-PHILOSOPHER after applying

‘side condition places’ reduction rule.

IX. BENEFITS OF THE REDUCTION RULES

Reduction helps us to get smaller nets in order to detect

easily and quickly some properties that are preserved by

reduction rules like accessibility graph construction,

boundness, liveness and LTL formulas. Let’s show the impact

of the reduction rules on the analysis of these properties

through the previous example. Just for simplicity, we used in

the sequel the Maude tools (accessibility analyser, LTL

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

Model Checker, etc.) under Windows system which give the

same result as same Maude tools under Linux.

Accessibility Graph Construction. The sequence of the two

transitions take and give_back of the net N is replaced by a

single transition take_give_back in the reduced net N’.

Consequently the number of states of a reachability graph

decreases from 20 states (from 0 to 19) as depicted in the

figure 6, to only 1 state as described in the figure 7.

Fig. 6. Part of the accessibility graph of the net N (before applying ‘free

choice decisions’ reduction rule)

Fig. 7. Part of the accessibility graph of the net N’ (after applying ‘free

choice decisions’ reduction rule)

Let’s note that we construct an accessibility graph in

Maude by executing the command search as follows:

search in PHILOSOPHER : Initial-Marking =>* M:Marking .

show search graph .

The command search looks for all states that are accessible

from the initial marking and next it shows the entire graph

(show search graph).

Boundeness.

- According to the property 2 of ‘free choice decisions’

reduction rule, we conclude that Eating is unbounded in N iff

Thinking or Chopsticks are unbounded in N1, which is

equivalent to say: Eating is bounded in N iff Thinking and

Chopsticks are bounded in N1.

- According to the property 2 of ‘side condition place’ rule,

we conclude that Thinking and Chopsticks are both bounded

in N1.

Consequently, all three places are bounded.

Liveness.

- According to the property 1 of ‘free choice decisions’

reduction rule we have: take and give_back are live in N iff

take_give_back is live in N1.

- According to the property 3 of ‘side condition place’ rule,

we have: take_give_back is live in N’ iff take_give_back is

live in N2.

It is easy to detect that take_give_back is live in the reduced

net N2. Thus, the transition take and give_back are live in N.

LTL Model Checking.

- According to the property 3 of ‘free choice decisions’

reduction rule we have: each formula which concerns the

place Chopsticks holds in N iff it holds in N1;

- According to the property 3 of ‘side condition place’ rule,

we have: each formula which concerns the place Chopsticks

holds in N1 iff it holds in N3;

So, let’s define a LTL property that concerns only the place

Chopsticks and we check its correctness for the three nets N,

N1 and N3. After that, we use LTL Model Checker of Maude

to compare the number of rewriting steps needed to check the

property for each net. First, we define a predicate:

op Term-In-Place : D Place -> Prop .

ceq M |= Term-In-Place(X, P) = true

if Find-Term-In-Place(X, P, M) == true .

Such that, the function Find-Term-In-Place(X, P, M)

returns true when the algebraic term X is in the place P in the

marking M. In this case, the predicate Term-In-Place(X, P) is

correct. Now, let’s consider the following property:

op MUTUAL-EXCLUSION : Place -> Prop .

eq MUTUAL-EXCLUSION(P) =

([] ((~ Term-In-Place(1, P) /\ ~ Term-In-Place(2, P)) =>

Term-In-Place(3, P))) ****** [c]

/\ ([] ((~ Term-In-Place(2, P) /\ ~ Term-In-Place(3, P)) =>

Term-In-Place(1, P)))

/\ ([] ((~ Term-In-Place(3, P) /\ ~ Term-In-Place(1, P)) =>

Term-In-Place(2, P))) .

The first line of the property ([c]) means: always, if the

terms 1 and 2 are not in Chopsticks (philosopher 1 is eating)

then the term 3 is in Chopsticks (philosophers 2 and 3 must

wait). It is a mutual exclusion property.

Finally, we call Maude LTL Model Checker to check this

property for the three nets N, N1 and N3 as follows:

red modelCheck(Initial-Marking,

 MUTUAL-EXCLUSION(Chopsticks)) .

We get the results in the table 2. Fig. 8 shows the result of

the Maude Model Checking of the property for the net N3.

TABLE II

 REWRITING STEPS REQUIRED TO CHECK THE PROPERTY FOR THE THREE NETS

ECATNet Rewriting steps

N 657

N1 158

N3 128

We note how reduction rules decreased significantly the

number of rewriting steps (and so the time) required to check

the property.

Fig. 8. Model Checking of the property in the case of the net N3

X. CONCLUSION

In this paper, we have shown the adaptation of two

reduction rules for ECATNets. These two rules were defined

in [9] for APNs. First, we described in informal way how we

adapted the reduction ‘free choice decisions’ to ECATNet.

But, we gave in formal way the adaptation and the

implementation of the reduction rule ‘side condition place’

for ECATNet by using rewriting logic. Of course, Maude is

considered that it is the most appropriate language to develop

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

such tools implementing reduction rules for ECATNets. In

addition of the integration of ECATNet in Maude, this last is a

language of specification equipped with a safe and complete

semantics and it is a programming language with a platform,

allowing us to implement and validate ECATNets’ properties.

Maude has a large battery of many tools like: simulator,

accessibility analysis, Model Checking, etc.

We showed also in this paper, the benefits we gained when

we use reduction rules. These last reduce the size of the

original ECATNet to get small reduced ECATNet and make

easier and faster the reasoning about some preserved

properties like accessibility graph construction, boundness,

liveness and LTL formulas. This consequence was defended

through the example of philosophers.

REFERENCES

[1] M. Bettaz, M. Maouche, “How to specify Non Determinism and True

Concurrency with Algebraic Term Nets,” Volume 655 of LNCS,

Spring-Verlag, 1993, pp. 11–30.

[2] N. Boudiaf, K. Barkaoui and A. Chaoui, “Applying Reduction Rules to

ECATNets,” Proceedings of AVIS'06 Workshop (Co-located with the

conferences ETAPS'06), Vienna, Austria, 2006.

[3] N. Boudiaf, K. Barkaoui, A. Chaoui, “Implémentation des Règles de

Réduction des ECATNets dans Maude,” Proceedings of Mosim’06

Conference, Rabat, Maroc, 2006, pp. 1505–1514.

[4] M. Clavel et aL., Maude Manual (Version 2.3). Internal report, SRI

International, 2007.

[5] J. Hendrix, M. Clavel and J. Meseguer, “A Sufficient Completeness

Reasoning Tool for Partial Specifications,” Volume 3467 of LNCS,

Spring-Verlag, 2005, pp. 165–174.

[6] A. Hicheur, K. Barkaoui and N. Boudiaf, “Modeling Workflows with

Recursive ECATNets,” PN&WM 2006, IEEE post-proceedings, 2006,

pp. 7–14.

[7] J. Meseguer, “Rewriting Logic as a Semantic Framework of

Concurrency: a Progress Report,” Volume 1119 of LNCS, Springer

Verlag, 1996, pp. 331–372.

[8] J. Meseguer, “Rewriting logic and Maude: a Wide-Spectrum Semantic

Framework for Object-based Distributed Systems,” (FMOODS’2000),

In S. Smith and C.L. Talcott, editors, 2000, pp. 89–117.

[9] K. Schmidt, “Applying Reduction Rules to Algebraic Petri Nets,”

TKK Monoistamo; Otaniemi1997, ISSN 0783 5396, 1997.

[10] N. Zeghib, K. Barkaoui and M. Bettaz , “Contextual ECATNets

semantics in terms of conditional rewriting logic,” in Proc. 4th

ACS/IEEE Int. Conf. on Computer Systems and Application, UAE,

2006, pp. 936– 943.

Noura Boudiaf is an Associate Professor of Computer Science at the

Department of Computer Science of the University of Oum El-Bouaghi in

Algeria. She received Ph.D. in Computer Science from the University of

Constantine in Algeria. Her main areas of interest include Object-oriented

Software Engineering, Multi-agents Systems, Petri net Analysis Methods,

and Formal Methods.

Kamel Bensaber is a Software Consultant in Eurofunk Kappacher GmbH

Company, Salzburg, Austria. He received the B.S. degree in Computer

Science at Constantine University and respectively the M.S and Ph.D. in

Language Sciences (Oral Communication) from Stendhal University,

Grenoble, France in 1998. His main areas of interest include Object-oriented

modelling combined with meta-data approach, Complex Information

Systems, Prototyping, Information retrieval, Digital Libraries, Speech

databases.

Engineering Letters, 20:2, EL_20_2_01

(Advance online publication: 26 May 2012)

__

