
 

 

 

  

Abstract—ECATNets are a category of algebraic Petri nets. 

The main feature of ECATNets is, their sound and complete 

semantics are based on rewriting logic. In this paper, we study 

the application of reduction rules to ECATNets in order to cope 

with state explosion problem. We adopted a reduction rule 

defined for algebraic Petri nets by K. Schmidt in 1997. The 

integration of ECATNets in the rewriting logic and its language 

Maude is very promising in terms of implementation of this 

reduction rule thanks to the concept of the reflectivity of 

rewriting logic: the self-interpretation of this logic allows us the 

modeling of an ECATNet and acting on it. We used Maude 

system to implement and execute such reduction rule adapted 

for ECATNets. We show how the representation of ECATNets 

in Maude, helps us to simplify the development by disregarding 

several details. Maude offers many functions to deal with the 

meta-level which makes our implementation easy. We show also 

in this paper how reduction rules help us to get reduced 

ECATNets smaller than original ones and faster for analyzing 

some properties. 

 
Index Terms—Algebraic Petri Nets, Reduction Rules, 

ECATNets, Rewriting Logic, Maude, Verification. 

 

I. INTRODUCTION 

CATNets are a category of algebraic Petri nets (APNs) 

based on a safe combination of algebraic abstract types 

and high level Petri nets [1]. The semantic of ECATNets is 

defined in terms of rewriting logic [7], allowing us to build 

models by formal reasoning. As Petri nets, ECATNets 

provide a quickly understood formalism due to their simple 

construction and graphical depiction. Moreover, ECATNets 

have a strong theory and development tools based on 

powerful logic with sound and complete semantic. The 

integration of ECATNets in rewriting logic and its language 

Maude [8] is very promising in terms of specification and 

verification of their properties. Rewriting logic provides to 

ECATNets a simple, intuitive, and practical textual version to 

analyze systems, without loosing the formal semantic.  

Analysis techniques supported by Petri nets in general, and 

ECATNets in particular, are usually very expensive, and any 

proposed reduction rule helping to cope with state explosion 

problem is interesting. In [9], Schmidt has presented some 

reduction rules for APNs bringing some solutions to cope 

with this problem. For instance, the application of some 

reduction rules can decrease the steps needed for creating 
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reachability graph or replacing an unbounded net by a 

bounded one. Each reduction rule preserves a specific set of 

APNs properties. 

In his paper, Schmidt has presented in total nine reduction 

rules. Compared to others, some of them have different 

implementation's needs. In this sense, we have proposed in [2] 

tools for adapting and implementing three reduction rules 

defined by Schmidt to ECATNets which are: ‘places without 

input transitions’, ‘parallel transitions’ and ‘equivalent 

places’. These three reduction rules present similar 

implementation's requirements. These rules are different from 

those presented in [3]. In [3], we presented our 

implementation of reduction rules: ‘transitions without input 

places’, ‘parallel places’ and ‘loop transition’. As extension of 

the work presented in [2] and [3], we describe in this paper 

our adaptation of the reduction rule: ‘side condition places’ to 

ECATNets. This reduction rule presents different and more 

complicated implementation’s needs compared to those 

described in the two previous papers. Moreover, Maude 

based tool that implements this rule is described in this paper. 

We will also informally describe the adaptation of the 

reduction rule ‘free choice decisions’ to the ECATNet. 

Through a simple example, we will show how both reduction 

rules ‘side condition places’ and ‘free choice decisions’ help 

us to get reduced nets smaller than original nets and easier for 

analyzing some properties. 

The integration of ECATNets in the rewriting logic and its 

language Maude is very promising in terms of implementation 

of these reduction rules thanks to the concept of the 

reflectivity of rewriting logic: a module could be an input data 

(parameter) to another module [4]. The input module is 

described in the meta-level. This concept of reflectivity 

allows us to describe an ECATNet as a module in meta-level 

and this module becomes an input to our tool implementing 

reduction rules. Moreover, Maude offers many services and 

functions to deal with the meta-level which makes our 

implementation easy. 

The remainder of this paper is organized as follows: In 

section 2, we give a brief definition of APNs and an overview 

about reduction rule ‘side condition place’ for APNs defined 

in [9]. Rewriting logic and Maude language is introduced 

shortly in section 3. The section 4 is a general introduction of 

ECATNets and their description in rewriting logic. In section 

5, we present the meta-level computation concept in Maude. 

We explain in this section some descent functions of Maude 

used in the framework of this paper. The adaptation in 

rewriting logic of the reduction rule to the ECATNets is 

presented in section 6 and its implementation in Maude is 

presented in section 7. An example of an ECATNet and its 
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description in Maude are given in the section 8. In this 

section, we show also how we apply the reductions rules and 

the developed tool on the example. In section 9, we explain in 

details the benefits of using reduction rules. Finally, section 

10 concludes the paper. 

II. ALGEBRAIC PETRI NETS 

A. Definition (Algebraic Petri Nets) 

A tuple AN = [D; P, T, F; ψ, ξ, λ; m0] is an algebraic Petri 

net iff : 

- D = [Σ, E] is a specification with Σ = [S, Ω]: 

 - S is q set of sorts; 

 - Ω is a set of operations symbols; 

 - E is a set of equations; 

- [P, T, F] is a net; 

- ψ : P → S is s sort assignment; 

- ξ assigns a set of Σ variables ξ(t) to each transition t ∈ T; 

- λ is the arc inscription such that for f =[p, t] or f = [t, p] in F,  

  λ(f) is a multi–term over TΩ,ψ(p)(ξ(t)); 

- m0 is the initial marking, it assigns a finite multi–term over 

TΩ,ψ(p) to every p ∈ P. 

B.  Reduction Rules for APNs 

In this section, we present the reduction rule ‘side 

conditions places’. Because APNs are polymorph, they can be 

interpreted according to different models of the specification. 

Schmidt describes the application condition of every rule for 

term algebra, standard algebra and skeleton algebra. In our 

implementation, we take into account only standard algebra. 

For more details about reduction rules, see [9]. In the 

following, we consider N as the net before reduction rule 

application and N' the net after reduction. pF and  Fp are 

respectively the set of output transitions and the set of input 

transitions of a place p. 

 

Reduction Rule: Side Condition Places. If all transitions 

check only a place without changing its marking, then this 

place can be removed. After applying this rule interleaved 

events could become concurrent without changing the 

interleaving semantics of the net. 

 

Application Condition. There is a place p such that for all 

transitions t : λ[p, t] ≡I λ[t, p]. 

 

Application. For every injective assignment of an occurrence 

of a term in m0(p) to λ[t, p] and every unifier σ for the set of 

pairs of assigned terms, insert a transition tσ where ξ(tσ) = 

var(σ), and for all p’ ∈ P \ {p}, λ([p’, tσ]) = λ([p’, t])σ and 

λ([tσ, p’]) = λ([t, p’])σ. 

Remove p, pF and all arcs connected to them. 

 

Properties. 

1. All removed transitions are dead in N; 

2. p is bounded in N; 

3. All properties and formulas concerning non removed nodes 

hold in N iff they hold in N’; 

 

Benefit.  The size of the graph does not change at all, but one 

component of the marking vector is removed and the 

enabledness check for transitions becomes faster. Moreover, 

interleaved transitions become concurrent.  This makes this 

rule interesting for partial order verification methods. 

III. REWRITING LOGIC REVIEW  

In rewriting logic, each concurrent system is represented by 

a rewrite theory ℜ = (Σ, E, L, R). Its static structure is 

described by the signature (Σ, E), whereas its dynamic 

structure is described by the set of labelled rewrite rules R, 

which are applied modulo the equation E. An important 

feature of the rewriting logic is that a rewrite theory ℜ = (Σ, E, 

L, R) can be viewed as an executable specification of the 

concurrent system that it formalizes. This section reminds the 

basic definitions of the rewriting logic. 

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ, E, L, R) 

where (Σ, E) is a signature;  Σ is the sorts set and operators and 

E is a set of Σ-equations. The signature (Σ, E) is an equational 

theory which describes the particular algebraic structure of 

the states of a system (multi-set, binary tree, etc.) which are 

distributed according to this same structure. R ⊆ L × 

(TΣ,E(X))
2
 is the set of pairs whose first component is a label 

and the second is a pair of E-equivalence classes of terms, 

with X = {x1,…,xn,…}a countable infinite set of variables. 

The elements of R are called conditional rewrite rules. They 

describe the elementary and local transitions in a concurrent 

system. Each rewrite rule corresponds to an action being able 

to occur, simultaneously, with other actions. The rewriting 

will operate on equivalence classes of terms, modulo the set of 

equations E. For a rewrite rule (r, ([t],[t’]), 

([u1],[v1]),….,([uk],[vk]) ) we use the notation r: [t]→[t’] if 

[u1]→[v1] ∧…∧ [uk]→[vk], where [t] represents the 

equivalence class of the term t. A rule r expresses that the 

equivalence class containing the term t is changed to the 

equivalence class containing the term t’ if the conditional part 

of the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified. 

Given a labeled rewrite theory ℜ, we say that  ℜ entails a 

sequent r: [t]→[t’], or that r: [t]→[t’] is a (concurrent) 

ℜ-rewrite and write ℜ |- r : [t] → [t’]  iff  [t]→ [t’] is derivable 

from the rules in ℜ by a finite application of the deduction 

rules (reflexivity, transitivity, congruence, and replacement) 

of rewriting logic. 

A rewrite theory is a static description of a concurrent 

system. Its semantics is defined by a mathematical model 

which describes its behaviour. The model for a given labelled 

rewriting theory ℜ = (Σ, E, L, R) is a category τℜ(X) whose 

objects (states) are equivalence classes of terms [t]∈TΣ,E(X) 

and whose morphisms (transitions) are equivalence classes of 

proof-terms representing proofs in rewriting deduction .  

• Reflexivity. For every [t] ∈ TΣ,E(X) : 
[ ] [ ]t t→

 

• Congruence. For every f  ∈  Σn, n ∈ N : 

' '

1 1

' '

1 1

[ ] [ ] ... [ ] [ ]

[ ( ,..., )] [ ( ,..., )]

n n

n n

t t t t

f t t f t t

→ →

→
 

• Replacement. For every rewriting rule 

1 1:[ ( ,..., )] [ '( ,..., )]n nr t x x t x x→  in R, 
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' '

1 1

_ _ _ _

[ ] [ ] ... [ ] [ ]

[ ( / )] [ '( '/ )]

n nw w w w

t w x t w x

→ →

→

, such that 

_ _

( / )t w x  

indicates the simultaneous substitution of iw  for ix  in 

t. 

Transitivity. 1 2 2 3

1 3

[ ] [ ] [ ] [ ]

[ ] [ ]

t t t t

t t

→ →

→
 

A. Maude Language 

Maude is a specification and programming language based 

on rewriting logic.  Maude is simple, expressive and efficient. 

It is rather simple to program with Maude, considering that it 

belongs to the declarative programming languages. It is 

possible to describe using Maude different types of 

applications, from prototyping ones to high concurrent 

applications. Maude is a competitive language in terms of 

execution and simulation with imperative programming 

languages [4]. Three types of modules are, in fact, defined in 

Maude. The functional modules, the system modules and the 

object-oriented modules which can, in fact, be reduced to 

system modules. However, they offer explicitly the 

advantages of the object paradigm. Because we do not need 

object-oriented modules in this work, we will introduce only 

functional and system modules. 

 

Functional Modules. The functional modules define data 

types and related operations, which are based on equations 

theory. By using equations as simplification rules, each 

expression called term could be evaluated to its reduced form 

called canonical representation. All the equal terms by means 

of equations form an equivalence class. The canonical form 

represents all the terms of the same equivalence class. The set 

of all the equivalence classes of the ground (i.e, variable-free) 

terms constitutes a denotational model for a functional 

module (initial algebra). Equations in a functional module are 

oriented. They are used from left to right and the final result of 

the simplification of an initial term is unique independently of 

the order in which these equations are applied. In addition to 

equations, this type of modules supports membership’s 

axioms. These axioms impose constraints so that a term is of a 

particular type if a certain condition is satisfied. This 

condition is a conjunction of equations and unconditional 

tests of memberships. 

 

System Modules. The system modules define the dynamic 

behavior of a system. This type of module augments the 

functional modules by the introduction of rewriting rules. 

This type of module offers a maximum degree of 

concurrency. A system module describes a “rewriting theory” 

which includes kinds, operations and three types of 

statements: equations, memberships and rewriting rules. 

These three types of statements can be conditional. A 

rewriting rule specifies a “local concurrent transition” which 

can proceed in a system. The execution of such transition, 

specified by the rule, can take place when the left part of a rule 

matches to a portion of the global state of the system and the 

condition of the rule is valid. 

IV. ECATNETS 

Let be Spec = (Σ, E) an algebraic specification of an 

abstracted data type given by the user. MTΣ,E(X) represents 

the free commutative monoid of the terms TΣ,E(X) (the 

∑-algebra of the equivalence classes of the ∑-terms with 

variables in X, modulo the equations E) endowed with the 

internal operator ⊕ and having ∅ as the identity element. 

CATdas(E, X) is the structure of equivalence classes formed 

from the multi-sets of MTΣ,E(X) modulo the associative, 

commutative and identity axioms for the operator ⊕.  An 

ECATNet [1] is a structure ECATNet = (P, T, sort, IC, DT, 

CT, Cap, TC) where:  

- P is a finite set of places; T is a finite set of transitions;  

- sort : P → S is a function that associates a sort to each place;  

- IC (Input Condition): P × T → CATdas(E, X)~ where 

CATdas(E, X)~ is the set of the following elements:  

CATdas(E,X)sort(p) ∪{empty}∪ {[m]~/ [m] ∈ 

CATdas(E,X)sort(p)}; 

- DT (Destroyed Tokens): P × T → CATdas(E, X);  

- CT (Created Tokens): P × T → CATdas(E, X); 

- Cap (Capacity): P × T → CATdas(E,∅) is a partial function 

that for every p ∈ domain(Cap), associates a capacity  Cap(p) 

∈ CATdas(E,∅); 

- TC (Transition Condition): T → CATdas(E, X)bool is a 

function such that for every t ∈ T, TC(t)∈CATdas(E, X(t))bool 

where X(t) is called the transition context. A graphical 

representation of a generic ECATNet is given in (Fig. 1). The 

expressions IC(p, t), DT(p, t), CT(p’, t) and TC(t) are 

multi-sets of equivalence classes of ∑-terms with ⊕ being the 

multi-set union operator which is associative, commutative 

and has the term ∅ (the empty multi-set) as the identity 

element. IC(p, t) specifies the condition on the input place 

marking for the enabling of the transition t. DT(p, t) and 

CT(p’, t) specify, respectively, the multi-set of tokens to be 

removed from the marking of p and the multi-set of tokens to 

be created in the output place p’, when t is fired. TC(t) is a 

Boolean term which specifies an additional enabling 

condition for the transition t. TC(t) may contain variables 

occurring in IC(p, t), DT(p, t) and CT(p’, t). When TC(t) is 

omitted, the default value is the term True. 

 

 

 

 

 
 

Fig. 1.  A generic ECATNet 

 

A transition t is fireable when several conditions are 

satisfied simultaneously:  

- The first condition is that every IC(p, t) is satisfied for each 

input place p of the transition t:  

If IC(p, t) is of the form [m] (positive case) then [m] must be 

included in the input place marking M(p). (if m = ∅, then 

IC(p, t) is always true)    

If  IC(p, t) is of the form [m]~ (negative case) then [m] must 

not be included in M(p). 

If IC(p, t) = empty then M(p) has to be empty (i.e. M(p) = ∅). 

- The second condition is that TC(t) is true. 

IC (p, t)    

DT(p, t) 
   TC(t) 

 

      CT(p’, t)      P : S P’: S’ 
  t 
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Finally, the addition of the tokens CT(p’, t) to the output 

place p’ of t must not result in p’ exceeding its capacity when 

this capacity is finite. When t is fired, DT(p, t) is removed 

from the input place p and simultaneously CT(p’, t) is added 

to the output place p’. In the case where DT(p, t) is not 

included in M(p) (i.e. IC(p, t) ≠ DT(p, t)) we remove the 

elements which are common between these two multi-sets. 

For the sake of clarity, in the graphical representation of 

ECATNets, we note in italic the term IC(p, t) for a given 

transition t. 

 

ECATNets Distributed State. Let P ={p1, … pn} the set of 

places of an ECATNet N. Each place pi of N is marked with a 

finite multi-set of algebraic terms of sort Multiset. The 

constant ∅ represent the empty multi-set and ⊕ is the 

corresponding multi-set union operator, which is associative, 

commutative and has the constant ∅ as the identity element 

(ACI axioms). The marking of an ECATNet N has typically a 

structure of a multi-set made up of the marking of each place 

of N [10]. This last can be viewed as a term of the form <p1 ; 

Mp1> ⊗...⊗ <pn ; Mpn> of sort Marking endowed with a 

multi-set union operator denoted ⊗, for which the ACI 

axioms are also specified with the empty marking ∅ as the 

identity element. The marking of an ECATNet is axiomatized 

by the following equational theories. The theory 

MARKING-OPERATION defined in [6], specifies the 

multi-set difference, the multi-set cardinality, the multi-set 

inclusion and the multi-set intersection operators.   

fmod PLACE-MARKING is 

sorts  Place  Token Multiset Place-marking .  

subsort Token < Multiset . 

op Ems:-> Multiset. 

------ the constant implementing the empty multi-set  

op _⊕_ : Multiset  Multiset -> Multiset [assoc comm id: ∅].  

op <_;_> : Place Multiset -> Place-marking .  

endfm 

fmod MARKING is pr PLACE-MARKING.  

------ pr for protecting 

sort Marking .  subsort Place-marking < Marking . 

op Em :-> Marking.  

------ The constant implementing the empty marking ∅ 

op _⊗_: Marking Marking -> Marking [assoc comm id:∅]. 

endfm  

fmod MARKING-OPERATION is   

Pr MARKING . vars mts mts1 mts2 : Multiset .  

vars t1 t2 : Token . 

------ Operations on multi-sets ------------------ 

op _Inclu_ : Multiset Multiset -> Bool .  

op Nbr : Multiset -> Nat .                                               

op _Supp_ : Multiset Multiset -> Multiset .                               

op _Inter_ : Multiset Multiset -> Multiset .                         

------ Difference ----------------------------------- 

eq mts1 Supp Ems = mts1 .  

eq Ems Supp mts1 = Ems .         

eq (t1 ⊕ mts1) Supp (t1 ⊕ mts2)= mts1 Supp mts2 .    

eq (t1 ⊕ mts1) Supp t1 =  mts1 .   

eq (t2 ⊕ mts1) Supp t1 =  t2 ⊕ (mts1 Supp t1)[ owise] . 

------ Cardinality  ----------------------------------- 

eq Nbr(Ems) = 0 . eq Nbr(t1) = s(0) .      

eq Nbr(t1 ⊕ mts1) = s(Nbr(mts1)) .                  

------ Inclusion ------------------------------------    

ceq mts1 Inclu Ems = true if mts1 == Ems.      

ceq mts1 Inclu Ems = false if mts1 =/= Ems.     

eq Ems Inclu mts1 = true.  

eq t1 Inclu t2 ⊕ mts1= true if t1 == t2.     

ceq t1 Inclu t2 ⊕ mts1 = t1 Inclu mts1 if t1 =/= t2 .   

eq (t1 ⊕ mts1) Inclu (t1 ⊕ mts2) = mts1 Inclu mts2 .  

eq (t1 ⊕ mts1) Inclu (t2 ⊕ mts2) = false [owise] .  

------ Intersection  ----------------------------------- 

eq mts1 Inter Ems = Ems . 

eq (t1 ⊕ mts1) Inter (t1 ⊕ mts2) = t1 ⊕ (mts1 Inter mts2). 

eq (t1 ⊕ mts1) Inter (t2 ⊕ mts2) = mts1 Inter mts2 [owise] .   

endfm 

 

ECATNets Rewrite Rules.  The behaviour of the  

ECATNets ([1], [6]) is expressed by a set of rewrite rules 

describing the local effect of each transition and a set of 

deduction rules allowing to deduce an ECATNet marking 

from a previous one, after steps of concurrent rewritings. The 

form of these rules is rather complex if we consider all 

features of ECATNets such as places capacities, transitions 

conditions, the negative case and the fact that when a 

transition t is fired (in the case where DT(p, t) is not included 

in M(p)) we remove from its input place p, the common 

elements between DT(p, t) and M(p). In the following, we 

propose a general technique for the representation of the 

rewrite rules expressing the behaviour of ECATNets 

transitions taking into account all the mentioned features and 

extending that one already proposed for contextual 

ECATNets. A transition t which has p1, p2  and p3 as input 

places and p4 as an output place, such that IC(p1, t) = [α1], 

IC(p2, t)=[α2]~ and IC(p3, t) = empty, is formalized by a 

rewrite rule of the following general form (given in Maude 

syntax, where Mp1, Mp2 , Mp3 and Mp4 are variables of sort 

Multiset): 

crl [t] : <p1 ; Mp1> ⊗ <p2 ; Mp2> ⊗ <p3 ; Mp3> ⊗ <p4 ; Mp4>    →  

<p1 ; Mp1 Supp (Mp1 Inter DT(p1, t)) > ⊗ <p2 ;  Mp2  

Supp (Mp2 Inter DT(p2 ; t)) >  ⊗ <p4 ; CT(p4, t)  ⊕  Mp4>   

 if ( (α1 Inclu Mp1) and not (α2 Inclu Mp2) and (Mp3 == ∅)  

      and Nbr (CT(p4, t)  ⊕  Mp4 ) ≤ Cap (p4) ) . 

 

The test on the capacity can be omitted, if Cap(p4) is 

infinite. If the transition is associated to a local condition 

TC(t), the rewrite rule will contain the additional component 

[TC(t)→true]. The application of the splitting and/or 

recombining axioms on places marking (i.e. ∀p∈P, where P is 

the set of an ECATNet places, <p ; m1 ⊕ m2> ≡ <p ; m1> ⊗ <p 

; m2>) are restricted in order to obtain coherent execution 

results under Maude engine. In the case when for each 

transition t of an ECATNet, [IC(p, t)]⊕ =  [DT(p, t)]⊕, the 

rewrite rule formalizing the behaviour of t can be simplified 

as follows : < p, [IC(p, t)]⊕ > → < p’, [CT(p’, t)]⊕ >. Note that 

the splitting and/or recombining axioms can be applied in this 

case which allows detecting the maximum of parallelism in 

ECATNets computations by judiciously splitting and/or 

recombining different multi-sets equivalence class of terms. 

V. META-LEVEL COMPUTATION IN MAUDE 

Maude provides a plate-form getting easy implementation 

for ECATNets’ tools. Meta-level description is one of 
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services provided by Maude. This service permits describing 

a module in meta-level. This module becomes an input to 

another module. We will use meta-level representation in 

Maude to describe an ECATNet and act on it. The syntax of 

meta-level representation is different from ordinary 

representation in Maude. Term and module in the meta-level 

are called meta-term and meta-module respectively. 

Meta-term is considered as term of a generic type called 

Term. A Meta-module is considered as term of generic type 

called Module. To manipulate a module in meta-level 

representation, Maude provides a module called 

META-LEVEL. This module encapsulates some services 

called descent functions. A descent function performs 

reduction and rewriting of meta-term, according to the 

equations and rules in the corresponding meta-module at the 

meta-level. 

A.  Descent Functions in Maude 

Function metaMatch. The process of matching two terms at 

the top is reified by a built-in function metaMatch: 

op metaMatch : Module Term Term Condition Nat _ > 

Substitution? . 

The operation metaMatch(R, t, t’, Cond, n) tries to match at 

the top terms t and t' in the module R in such way that the 

resulting substitution satisfies the condition Cond. The natural 

number is used to indicate possible matches. In success case, 

this function returns substitution as result. In failure case, it 

returns noMatch. From theoretical point of view, consider that 

TΣ : is a Σ–algebra of ground terms in the signature Σ and 

TΣ(X) is a term algebra where terms may have variables in a 

set of variables X. Given a term t ∈ TΣ(X), corresponding to 

the lefthand side of an oriented equation, and a subject ground 

term t’ ∈ TΣ(X), we say that t matches t’ if there is a 

substitution σ such that σ(t) ≡ t’, that is, σ(t) and t’ are 

syntactically equal terms. 

 

Selectors Functions. A selector function allows extracting a 

part of the code. For example, selector function getRls takes 

meta-representation of a module and returns 

meta-representation of rules: 

op getRls : Module –> RuleSet . 

Operators used to meta-represent sets of rules are: 

sorts Rule RuleSet . subsort Rule < RuleSet . 

op rl_=>_[_] : Term Term AttrSet  –> Rule [ctor] . 

op crl_=>_if_[_] . : Term Term Condition AttrSet  –> rule 

[ctor] . 

op none : -> RuleSet [ctor] . 

op __ : RuleSet RuleSet  –> RuleSet [ctor assoc comm id: 

none] . 

VI. DISCUSSION AND ADAPTATION OF REDUCTION RULE 

‘SIDE CONDITION PLACES’ TO ECATNETS 

ECATNets are described in meta-level (as data) and may 

be manipulated by another module. We can apply Maude 

descent functions on it. In sequel, M is the name of a module 

describing an ECATNet system and T0 is an initial marking. 

Let’s consider that all places of M have an infinite capacity. 

Let R be the set of all rewrites rules of M.  We consider p an 

input place (resp. output place) for r if p appears in the 

lefthand (resp. righthand) side of the rule (transition) r. We 

need to define some functions used in the context of our 

adaptation of reduction rules to ECATNet. The function 

RuleLeft(r) (resp. RuleRight(r)) returns the term in lefthand 

(resp. righthand) side of a rule r. The function 

RuleCondition(Rl) returns the condition part of the rule Rl. 

The function GetSubTermConcerningPlace(T, p) returns the 

SubTerm of T that concerns only the place p. So, for a term T 

= < p ; T1 > .. < p ; Tn > . T’ (T’ is independent from p), this 

function returns the term < p ; T1 > .. < p ; Tn >. 

 

Application Condition. There is a place p such that for all 

transitions (rewriting rules) Rl, we have:  

EquivalentTerms(GetSubTermConcerningPlace(RuleLeft(Rl

), p), GetSubTermConcerningPlace(RuleRight(Rl), p), 

RuleCondition(Rl)) == true. [a] 

 

Application. For every injective assignment of an occurrence 

of a term in GetSubTermConcerningPlace(T0, p) to 

GetSubTermConcerningPlace(RuleRight (Rl), p) and every 

unifier sub for the set of pairs of assigned terms, insert a 

transition Rlsub and for all p’ ∈ P \ {p},  

GetSubTermConcerningPlace(RuleLeft(Rlsub), p’) = 

GetSubTermConcerningPlace(RuleLeft(Rlsuv), p’) 

and GetSubTermConcerningPlace(RuleRight(Rlsub), p’) = 

GetSubTermConcerningPlace(RuleRight(Rlsuv), p’) [b] 

 

Remove p and all terms < p ; T > for p ∈ P figuring in 

rewrite rules of M. 

 

VII. IMPLEMENTATION OF REDUCTION RULE ‘SIDE 

CONDITION PLACES’ 

For simplicity reasons, we present some principal functions 

of the application which should be sufficient to explain all the 

implementation. We first explain how to implement the 

EquivalentTerms function. After that, we give details about 

the implementation of ‘side condition place’ reduction rule. 

A. Implementation of the Function EquivalentTerms 

In a module called COMPLETENESS-DECISION, we 

propose the description of this function. The condition 

(metaMatch(M, T1, T2, CD, 0) =/= noMatch) decides that the 

term T2 is the term T1 after doing a certain substitution of its 

variables if a certain condition CD is true. 

op EquivalentTerms: Module Term Term Condition -> Bool . 

eq EquivalentTerms(M, T1, T2, CD) = 

if metaMatch(M, T1, T2, CD, 0) =/= noMatch 

    and  metaMatch(M, T2, T1, CD, 0) =/= noMatch 

then true 

else if metaMatch(M, T1, T2, CD, 0) =/= noMatch 

           or  metaMatch(M, T2, T1, CD, 0) =/= noMatch 

       then EquivalentTerms1(M, GetTermsInPlace(T1),  

                GetTermsInPlace(T2)) 

        else false  fi fi . 

 

However, the condition (metaMatch(M, T1, T2, CD, 0) =/= 

noMatch) is not sufficient to implement all the signification of 

EquivalentTerms. As described in [9], if we take, for instance, 

T1 = < p ; a > . < p ; b > (ground term with a and b are constant 

of sort S) and T2 = < p ; x > .  < p ; succ(x) > (x is a variable of 
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sort S), we have in this case metaMatch(M, T1, T2, CD, 0) == 

noMatch. However, if a and b are the only elements of the sort 

S with a = succ(b) and b = succ(a), then the application 

condition of reduction rule is verified because the multi-set 

composed of x and succ(x) is always equal to the multi-set 

composed of a and b, for every substitution. In this case, T1 

may be considered equivalent than T2. We can consider also 

T1 equivalent to T2 (we explain this in the next sub-section). 

We can say that T1 is equivalent to T2. 

For this reason, we propose the function EquivalentTerms1 

that deals with this case. This function takes three parameters, 

the first one is of sort Module and the two others are of sort 

TermList. In the expression EquivalentTerms1 (M, 

GetTermsInPlace(T1), GetTermsInPlace(T2)), the function 

GetTermsInPlace(T) extracts terms figuring in the places of 

T, i.e, if T = < p1 ; t1 > .. < pn ; tn > such that 

GetTermsInPlace returns the list of terms t1,..,tn. 

The global behaviour of the function EquivalentTerms1 is 

to consider for each sort S, a sub-list of terms (GTL) in 

GetTermsInPlace(T1) being all of the same sort S and a 

sub-list of terms (TL) in GetTermsInPlace(T2) of the same 

sort S. These two sub-lists must have same lengths. GTL 

contains only ground (variable-free) and TL must contain any 

terms, else the condition of the reduction rule isn’t valid. 

The function EquivalentTerms1verifies the set of terms of 

GTL (without repetition) constitutes all elements of sort S 

(property 1). Moreover, this function looks for all possible 

substitutions for ti (i=1,.., n). Variables in common between 

terms must have same values. After that, the function shows 

that for each substitution, GTL and TL are identical in terms 

of their contents (property 2). If it exist a substitution of all 

variables of terms of TL, such that GTL and TL are different 

in terms of their contents, then the condition of the rule is not 

verified and EquivalentTerms1(M, GTL, TL) returns false. 

Let GTL be the list containing terms gt1,..,gtn and TL the 

list containing t1,..,tn. Let’s note that after showing gt1,..,gtn 

are the alone elements of S, then if we have a substitution for 

each term ti,(i=1,..,n), it is, surely, equal to one of terms gtj (j 

=1,..,n). 

The implementation in Maude of the checking of the 

property 2 is possible now thanks to the ‘Completeness 

Checker’ tool developed by Hendrix in [5]. This tool allows 

the checking of the property ‘Sufficient completeness’. This 

property indicates that the canonical form of any ground is 

based only on ‘constructor’ operations. The declaration of the 

function checkCompleteness in Maude is as follows : 

op checkCompleteness : Module MembAxSet EquationSet 

MembAxSet -> ProofObligationSet . 

The first parameter of this function represents a module, 

the second one represents subjects, the third one represents 

equations and the fourth parameter represents constructor 

memberships. 

The function checkCompleteness(M, Subjects, Eqs, Mbs) 

discards all equations and constructor membership that do not 

unify with a subject, but if a subject has a non-conditional 

matching, this function removes this it. If all subjects have a 

matching, then this function returns that there is no proof 

obligation (none.ProofObligationSet). 

To use this function in our definition of EquivalentTerms1, 

we proceed first to create a new module New-M containing 

the set of terms of sort S as the alone elements of S. Let 

gt1,..,gtn be the terms of sort S, the module containing the 

definition of its terms as the alone elements of sort S, must 

contain all definitions of operations and constructor 

memberships in the following manner : 

- If gti (i=1,..,n) is a constant (not-parameterized  operation), 

then we declare : 

op gti : -> S . 

- If gti (i=1,..,n) is not a constant (parameterized operation), 

then gti is of the form f(r1,..,rm). For the moment, we accept 

only the case where r1,..,rm are not-parameterized  constants. 

The declaration of ti is of the following form : 

op f : S1 .. Sm -> S . 

cmb f(x1:S1, …, xm :Sm) : S if (x1:S1 == r1.S1) and … and 

(xm:Sm == rm.Sm) . 

 

To check the previous property, we define the function 

SortCompleteness as follows: 

op SortCompleteness : Module Module Type -> Bool . 

eq SortCompleteness(New-M, M, S) = 

if checkCompleteness(New-M, patterns(M, S), 

   getsEqs(New-M),   patterns(New-M, S)) == 

   (none).ProofObligationSet  then true else false fi . 

 

The function patterns(M, S) looks for ground terms that 

constitute initial algebra for the sort S. In infinity case, this 

function returns ‘model’ terms covering all elements of the 

sort S. The function SortCompleteness searches for each term 

of sort S in M, if it exist a term of the same sort in New-M, in 

such way it does not exist a matching between the terms. If it 

exists a ground term in M and for each term in New-M, it does 

not exist a matching between the two terms, then the condition 

is not valid. In this case, defined elements in New-M are not 

the alone elements of S. 

In the following, we present in details the implementation 

of the function EquivalentTerms1 and some functions called 

by it. EquivalentTerms1(M, TL1, TL2) extracts all sorts of 

elements of TL1 and calls MoreGeneralTerms2(M, TL1, 

TL2, GetSortsOfTerms(M, (TL1, TL2))). The function 

GetSortsOfTerms(M, (TL1, TL2) returns sorts of all elements 

in TL1 and TL2: 

op EquivalentTerms1 : Module TermList TermList -> Bool . 

eq EquivalentTerms1(M, nil, nil) = true . 

eq EquivalentTerms1(M, nil, (T2, TL2)) = false . 

eq EquivalentTerms1(M, TL1, TL2) = 

 if length(TL1) == length(TL2) 

  then EquivalentTermsComp2(M, TL1, TL2,  

          GetSortsOfTerms(M, (TL1, TL2))) 

  else false fi . 

 

The function EquivalentTermsComp2(M, TL1, TL2, (S 

TpL)) extracts a sub-list of TL1 and a sub-List of TL2. Terms 

of these two sub-list must be of the same sort S. This function 

calls EquivalentTermLists(M, GetTermsOfSort(M, TL1, S), 

GetTermsOfSort(M, TL1, S)) : 
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op EquivalentTermsComp2 : Module TermList TermList 

TypeList -> Bool . 

eq EquivalentTermsComp2(M, TL1, TL2, nil) = true . 

eq EquivalentTermsComp2(M, TL1, TL2, (S TpL)) = 

if EquivalentTermLists(M, GetTermsOfSort(M, TL1, S),  

    GetTermsOfSort(M, TL2, S)) == true 

 then EquivalentTermsComp2(M, TL1, TL2, TpL)  

 else false fi . 

 

The function EquivalentTermLists (M, (T1, TL1), (T2, 

TL2)) removes from TL1 any non ground term that has its 

equivalent terms in TL2 and calls EquivalentTermLists1. The 

function EquivalentVars(M, TL1, TL2) returns some terms of 

TL1 that have equivalents in TL2. The function 

SameTypeTest(TL1) returns true if all elements of TL1 are of 

the same type. 

op EquivalentTermLists : Module TermList TermList -> Bool 

. 

eq EquivalentTermLists(M, (T1, TL1), (T2, TL2)) = 

if (length(TL1) == length(TL2))  

    and  (SameTypeTest(TL1) == true) 

    and (SameTypeTest(TL2) == true)  

    and (getType(T1) == getType(T2)) 

 then EquivalentTermLists1(M,  

         TermListSub(TL1, EquivalentVars(M, TL1, TL2)), 

         TermListSub(TL2, EquivalentVars(M, TL2, TL1)), 

         getType(T1)) else false fi . 

 

EquivalentTermLists1(M, TL1, TL2, S) checks first that 

one list contains ground terms and the other one contains any 

terms. This function checks the property 1 described above 

and calls MoreGeneralTermLists2(M, TL2, TL1) :  

op MoreGeneralTermLists1 : Module TermList TermList 

Sort -> Bool . 

eq MoreGeneralTermLists1(M, TL1, TL2, S) = 

if  (GroundTermsTest(TL1) == true  

    and VarsTest(TL2) == true) 

   then if SortCompleteness(M, TermListNoDup(M, TL1), S) 

              == true 

           then MoreGeneralTermLists2(M, TL2, TL1)   

           else false  fi  else false fi . 

 

op EquivalentTermLists1 : Module TermList TermList Sort 

-> Bool . 

eq EquivalentTermLists1(M, TL1, TL2, S) = 

if  (GroundTermsTest(TL1) == true  

     and NotGroundTermsTest(TL2) == true) 

 then if SortCompleteness(M, TermListNoDup(M, TL1), S)  

            == true 

          then EquivalentTermLists2(M, TL2, TL1) else false fi 

    else if (NotGroundTermsTest(TL1) == true  

             and GroundTermsTest(TL2) == true) 

            then if SortCompleteness(M, 

                       TermListNoDup(M, TL2), S) == true 

                    then EquivalentTermLists2(M, TL1, TL2)  

                    else false fi  

     else false fi  fi . 

 

EquivalentTermLists2(M, TL, GTL) extracts all possible 

substitutions for variables appearing in TL according to 

values of GTL  by calling the function ValidSubsForTList(M, 

TL, GTL) : 

op EquivalentTermLists2 : Module TermList 

GroundTermList -> Bool . 

eq EquivalentTermLists2(M, TL, GTL) =   

EquivalentTermLists3(TL, GTL, ValidSubsForTList(M, TL, 

GTL)) . 

 

EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) checks the 

property 2 described above. For each substitution Sub, the 

function SubstitutionTermList(TL, Sub) returns a new list 

after replacing variables of TL by values according to the 

contents of Sub. EqualTermList(SubstitutionTermList(TL, 

Sub), GTL) returns true if the obtained new list 

(SubstitutionTermList(TL, Sub)) is equal to the list GTL. If 

this function returns false, the function 

EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) returns false, 

else it continues this test for another substitution in Subs. In 

the case of expiring all substitutions (emptySubList), 

EquivalentTermLists3(TL, GTL, emptySubList) returns true.  

op EquivalentTermLists3 : TermList GroundTermList 

SubList -> Bool . 

eq EquivalentTermLists3(TL, GTL, emptySubList) = true . 

eq EquivalentTermLists3(TL, GTL, Sub) = 

if EqualTermList(SubstitutionTermList(TL, Sub), GTL) == 

true  then true else false fi . 

eq EquivalentTermLists3(TL, GTL, (Sub ;; Subs)) = 

 if EqualTermList(SubstitutionTermList(TL, Sub), GTL)  

     == true 

 then MoreGeneralTermLists3(TL, GTL, Subs)  else false fi . 

 

B. Implementation of Reduction Rule ‘Side Condition 

Places’ 

The module implementing reduction rule ‘side condition 

place’ is called 

SIDE-CONDITION-PLACES-REDUCTION, we present 

and explain some of its principal functions: 

mod SIDE-CONDITION-PLACES-REDUCTION  is 

… 

var M : Module . var P : Term . vars Rl Rl1 Rl2 : Rule . 

vars Rls Rls1 Rls2 : RuleSet . vars T T0 T1 T2 : Term . 

var TL : TermList . var GTL : GroundTermList .  

var CD : Condition . var L : List .  var Sub : Substitution . 

var Subs : SubList . 

 

Module-AfterSide-Condition-Places-Reduction(M, T0) is 

the main function of the application, in the code of this 

function we find the function AddTransitionsInModule(M, 

Add-Sub-Rules(M, T0, Get-All-Side-Condition-Places(M))) 

which creates new transitions according to every side 

condition place detected. After adding such transitions we call 

the function DeletePlacesAndConnectedArcsInModule to 
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delete all side conditions places and all arcs connected to 

them. 

op Module-AfterSide-Condition-Places-Reduction : Module 

Term -> Module . 

eq Module-AfterSide-Condition-Places-Reduction(M, T0) =  

DeletePlacesAndConnectedArcsInModule(AddTransitionsIn

Module(M,  

Add-Sub-Rules(M, T0, Get-All-Side-Condition-Places(M))),  

Get-All-Side-Condition-Places(M)) . 

 

The function  Get-All-Side-Condition-Places(M) returns a 

list of all side condition places, this function calls 

GetPlacesOfModule(M) to extract all places of the module 

and pass this list of places as parameter to the function 

All-Side-Condition-Places(M, GetPlacesOfModule(M)). 

op Get-All-Side-Condition-Places : Module -> List . 

eq Get-All-Side-Condition-Places(M) =   

All-Side-Condition-Places(M, GetPlacesOfModule(M)) . 

 

The function All-Side-Condition-Places(M, L) checks if 

every place of the ECATNet M, is a side condition place or 

not. If a place head(L) is side condition place 

(SideConditionPlace(M, head(L)) returns true in this case), so 

it is added to the list returned by this function otherwise it is 

discarded. 

op All-Side-Condition-Places : Module List -> List . 

eq All-Side-Condition-Places(M, L) = 

if L == emptyList then emptyList  

else if SideConditionPlace(M, head(L)) == true 

  then head(L) .  All-Side-Condition-Places(M, tail(L)) 

  else All-Side-Condition-Places(M, tail(L))  fi fi . 

 

The function SideConditionPlace(M, P) extracts all rules 

of the module (call of getRls(M)) and passes them as 

parameter to VerifySideConditionPlace(M, P, getRls(M)) 

which returns true if P is a side condition place and false 

otherwise. This function checks for the place P and every rule 

rl in the module if the application condition if satisfied or not. 

op SideConditionPlace : Module Term -> Bool . 

eq SideConditionPlace(M, P) = 

VerifySideConditionPlace(M, P, getRls(M)) . 

op VerifySideConditionPlace : Module Term RuleSet -> 

Bool . 

eq VerifySideConditionPlace(M, P, none) = true . 

eq VerifySideConditionPlace(M, P, Rl Rls) = 

if EquivalentTerms(M, 

GetSubTermConcerningPlace(RuleLeft(Rl), P),  

    GetSubTermConcerningPlace(RuleRight(Rl), P), 

RuleCondition(Rl)) == true 

 then VerifySideConditionPlace(M, P, Rls) else false fi . 

 

The function Add-Sub-Rules(M, T0, L) creates rules for all 

side condition places in the list L by calling 

Add-Sub-Rules-1(M, T0, head(L)) which creates rules  for 

every place head(L).  

op Add-Sub-Rules : Module Term List -> RuleSet . 

eq Add-Sub-Rules(M, T0, L) = 

 if L == emptyList then none  

 else Add-Sub-Rules-1(M, T0, head(L)) Add-Sub-Rules(M, 

T0, tail(L)) fi . 

op Add-Sub-Rules-1 : Module Term Term -> RuleSet . 

eq Add-Sub-Rules-1(M, T0, P) = 

Add-Sub-Rules-2(M, T0, P,  

Get-Side-Condition-Place-Rules(M, P) ) . 

op Add-Sub-Rules-2 : Module Term Term RuleSet -> 

RuleSet . 

eq Add-Sub-Rules-2(M, T0, P, none) = none . 

eq Add-Sub-Rules-2(M, T0, P, Rl Rls) =   

Add-Sub-Rules-3(M, T0, P, Rl) Add-Sub-Rules-2(M, T0, P, 

Rls) . 

op Add-Sub-Rules-3 : Module Term Term Rule -> RuleSet . 

eq Add-Sub-Rules-3(M, T0, P, Rl) =  

Create-Rules-For-Subs-Except-Place(M, P, Rl,  

Get-Injective-Assignment(M, P, Rl, T0)) .  

 

The function Get-Injective-Assignment(M, P, Rl, T0) 

returns an injective assignment of an occurrence of a term in 

GetTermsInPlace(GetSubTermConcerningPlace(T0)) 

(tokens in P), to  

GetTermsInPlace(GetSubTermConcerningPlace(RuleLeft(R

l), P)): 

op Get-Injective-Assignment : Module Term Rule 

GroundTerm -> SubList . 

eq Get-Injective-Assignment(M, P, Rl, T0) = 

ValidSubsForTList(M,     GetTermsInPlace( 

GetSubTermConcerningPlace(RuleLeft(Rl), P)), 

GetTermsInPlace(GetSubTermConcerningPlace(T0))) . 

 

Get-Side-Condition-Place-Rules(M, P) extracts the 

rewriting rules that verifying the condition application of the 

reduction rule [a] : 

op Get-Side-Condition-Place-Rules : Module Term  -> 

RuleSet . 

eq Get-Side-Condition-Place-Rules(M, P) =  

Get-Side-Condition-Place-Rules-1(M, P, getRls(M)) . 

op Get-Side-Condition-Place-Rules-1 : Module Term  

RuleSet -> RuleSet . 

… 

Create-Rules-For-Subs-Except-Place (M, P, Rl, Subs) and 

the all functions called by this function are developed to 

create  Rlsub that satisfies [b]: 

op Create-Rules-For-Subs-Except-Place : Module Term Rule 

SubList -> RuleSet . 

eq Create-Rules-For-Subs-Except-Place (M, P, Rl, Subs) =  

Create-Rules-For-Subs(DeletePlacesDefInModule(M, P),  

Rl, Subs) . 

 

op Create-Rules-For-Subs : Module Rule SubList -> RuleSet . 

eq Create-Rules-For-Subs(M, Rl, Subs) =  

if Subs =/= emptySubList  then Create-Rule-For-Sub(M, Rl,  

    Sub-head(Subs))  

   Create-Rules-For-Subs(M, Rl, Sub-tail(Subs))  else none fi . 

… 

endm 
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VIII. EXAMPLE 

A.  Presentation of the Example 

Figure 2 represents the ECATNet model of the dining 

philosopher problem. If inscriptions IC(p, t) and DT(p, t) are 

equals, then we present only IC(p, t) on the arc (p, t). 

Rewriting rules of this system will be presented directly in 

Maude. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.  ECATNet Model of Philosopher. 

 

Let’s note that this example does not contain for the 

moment any ‘side condition place’. To make the tool 

implementing ‘side condition place’ reduction rule applicable 

on this example, we have to reduce it by using another 

reduction rule ‘free choice decisions’ which is not detailed in 

this paper. But, we need to explain the adaptation of this 

reduction rule to ECATNet in informal way, and through the 

example of philosophers. 

B.  Application of Reduction Rules on the Example 

In this section, we introduce in informal way, and through 

the example of philosophers, how to adapt the reduction rule 

‘free choice decisions’ to ECATNet. 

 

Reduction Rule: Free Choice Decisions. Let’s note that the 

transition take puts any value X of the domain D, and 

give_back needs to be fired any value of the same domain D 

(the term X covers all elements of the domain of Eating). The 

place Eating is empty at the initial marking. We can delete the 

place Eating and merge the transitions take (ti) and give_back 

(tj) to get one transition take_give_back (tij). The input of the 

new transition is the input of the transition take and the output 

of the new transition is the output of the transition give_back 

as depicted in the figure 3. 

 

Properties. 

1. ti is live in N iff there is a j such that tij is live in N’ 

2. p in unbounded in N iff a place in (pF)F is unbounded in N’ 

3. Every formula which does not concern p and (pF)F holds in 

N if it holds in N’ 

 

Benefits. One of the benefits of this rule is that a sequence of 

two transitions of the original net is replaced by a single 

transition in the reduced net. Consequently the number of 

states of the accessibility graph decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Reduction of the Philosopher net after applying ‘free choice 

decisions’ reduction rule. 

 

The two places in this obtained ECATNet are ‘side 

condition places’. If we eliminate the place Chopsticks, so we 

get the reduced net in the figure 4. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Reduction of the reduced Philosopher net after applying ‘side 

condition place’ and eliminating chopsticks. 

 

The reduced net of Fig. 4 still has another ‘side condition 

place’, which is Thinking, by eliminating this place, we get 

the empty net. In the sequel, we give abbreviated names to 

original ECATNet and to every ECATNet obtained after a 

reduction. The table 1 resumes ECATNets’ naming. 

 
TABLE I 

 NAMING OF OBTAINED ECATNETS 

ECATNet Definition 

N Original ECATNet 

N1 Reduced ECATNet after applying ‘free choice decisions’ 

rule 

N2 Reduced ECATNet after applying ‘side condition place’ 

rule on N1 and eliminating Chopsticks  

N3 Reduced ECATNet after applying ‘side condition place’ 

rule on N1 and eliminating Thinking 

N4 Reduced ECATNet after applying ‘side condition place’ 

rule on N1 and eliminating both Chopsticks  and Thinking 

 

C. Implementation of the Example  

Now, we will present the module describing this ECATNet 

in Maude meta-level. Of course, the user is not obliged to 

write his/her ECATNet in a meta-representation. He/she can 

write it in the ordinary mode, and he/she uses the function 

upModule of Maude which allows transforming the 

representation of a module to its meta-representation. The 

transformation in the other direction is possible also thanks to 

the function downModule. But just for well explain our work, 

we have preferred presenting the module describing the 

previous ECATNet in its meta-representation. In a module 

called 

X Eating : D Chopsticks : D 

X 
X  ⊕ s(X) 

X 

Thinking : D 

take 

give_back 
X  ⊕ s(X) 

X 

X 
Chopsticks : D 

X  ⊕ s(X) 

X 

Thinking : D 

take_give_back 

X  ⊕ s(X) 

X 

X 

Thinking : D 

take_give_back 
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META-LEVEL-PHILOSOPHER-ECATNET-SYSTEM, the 

module META-PHILOSOPHER is defined as a constant of 

Module type and its content is described using an equation. 

'META-ECATNET is the description in meta-level of the 

module containing basic operations of ECATNet. Because of 

the simplicity of the example, we do not need all multi-sets 

operations describe above, so the module META-ECATNET 

will contain a minimum of operations manipulating marking. 

We define in Maude only three sorts Place, Token and 

Marking. For syntactic reason, we define the operation ‘_._’ 

to implement the operation described above ⊗. For simplicity 

reason, we have not defined an operation implementing ⊕. 

The operation ‘_._’ which implements ⊗ is sufficient while 

basing on the concept of decomposition. For example, (p, a ⊕ 

b) can be written as < p ; a > . < p ;  b >. The module 

META-DOMAIN contains the definition of the data type D 

which defines the algebraic terms that we find in the places. 

fmod 

META-LEVEL-PHILOSOPHER-ECATNET-SYSTEM is 

pr LIST-OF-TRIPLE . op META-ECATNET : -> Module .  

op META-DOMAIN : -> Module .  

op META-PHILOSOPHER : -> Module . 

------------------------------------------------------------------------ 

eq META-ECATNET = (fmod 'META-ECATNET is nil   

sorts 'Place ; 'Token ; 'Marking . 

none op 'Em : nil -> 'Marking [none] . 

op '<_;_> : 'Place 'Token -> 'Marking [none] . 

op '_._ : 'Marking 'Marking -> 'Marking [assoc comm id : 'Em. 

Marking] . 

none none endfm) . 

------------------------------------------------------------------------ 

eq META-DOMAIN = (fmod 'META-DOMAIN is nil  

sorts 'D . none  

op '1 : nil -> 'D [none] . op '2  : nil -> 'D [none] . 

op '3 : nil -> 'D [none] .  op 'S_ : 'D -> 'D [none] . 

none eq 'S_['1.D] = '2.D [none] . eq 'S_['2.D] = '3.D [none] .  

eq 'S_['3.D] = '1.D [none] . 

none endfm) . 

------------------------------------------------------------------------ 

eq META-PHILOSOPHER =  

(mod 'META-PHILOSOPHER is 

including META-ECATNET . including 'META-DOMAIN . 

none subsort 'D <  'Token . 

-------- Places ------- 

op 'Thinking : nil -> 'Place [none] .  

op 'Chopsticks : nil -> 'Place [none] .  none none 

-------- Rewriting Rules -------- 

rl '_._['<_;_>['Thinking.Place, 'X:D], 

 '_._['<_;_>['Chopsticks.Place, 'X:D],  

'<_;_>['Chopsticks.Place, 'S_['X:D]]]]  

=> '_._['<_;_>['Thinking.Place, 'X:D], 

 '_._['<_;_>['Chopsticks.Place, 'X:D], 

'<_;_>['Chopsticks.Place, 'S_['X:D]]]]  

[label('takegiveback)] . 

endm) . endfm 

D. Application of the Tool on the Example 

In the framework of this work, we used as platform the 

version 2.3 of Maude under Linux. For the application of the 

tool on the example, we can call any function. For instance, to 

know what are side condition places, we use the command 

‘red’ (red for reduce) to call the function 

Get-All-Condition-Places(META-PHILOSOPHER) which 

returns in this case a list containing the two places ‘Thinking ‘ 

and ‘Chopsticks’. To apply the reduction rule ‘side condition 

place’, we have to call the principal function of the 

application with a chosen initial marking: 

red Module-AfterSide-Condition-Places-Reduction( 

META-PHILOSOPHER,  

'_._['<_;_>['Thinking.Place, '1.D], 

 '_._['<_;_>['Thinking.Place, '2.D] ,  

'_._['<_;_>['Thinking.Place, '3.D], 

 '_._['<_;_>['Chopsticks.Place, '1.D],  

'_._['<_;_>['Chopsticks.Place, '2.D ], 

  '<_;_>['Chopsticks.Place, '3.D ] ] ] ] ] ]) . 

 

As illustrated in figure 5, the tool eliminates the two 

transitions (rewriting rule) in the ECATNet 

META-PHILOSOPHER after applying the reduction rule 

‘side condition place’. The new obtained module does not 

contain any rewriting rule (none). 

 

 
Fig. 5.  Reduction of the Module META-PHILOSOPHER after applying 

‘side condition places’ reduction rule. 

 

IX. BENEFITS OF THE REDUCTION RULES 

Reduction helps us to get smaller nets in order to detect 

easily and quickly some properties that are preserved by 

reduction rules like accessibility graph construction, 

boundness, liveness and LTL formulas. Let’s show the impact 

of the reduction rules on the analysis of these properties 

through the previous example. Just for simplicity, we used in 

the sequel the Maude tools (accessibility analyser, LTL 
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Model Checker, etc.) under Windows system which give the 

same result as same Maude tools under Linux. 

 

Accessibility Graph Construction. The sequence of the two 

transitions take and give_back of the net N is replaced by a 

single transition take_give_back in the reduced net N’. 

Consequently the number of states of a reachability graph 

decreases from 20 states (from 0 to 19) as depicted in the 

figure 6, to only 1 state as described in the figure 7. 

 

 
Fig. 6.  Part of the accessibility graph of the net N (before applying ‘free 

choice decisions’ reduction rule) 

 

 
Fig. 7.  Part of the accessibility graph of the net N’ (after applying ‘free 

choice decisions’ reduction rule) 

 

Let’s note that we construct an accessibility graph in 

Maude by executing the command search as follows: 

search in PHILOSOPHER : Initial-Marking =>* M:Marking . 

show search graph . 

The command search looks for all states that are accessible 

from the initial marking and next it shows the entire graph 

(show search graph). 

 

Boundeness. 

- According to the property 2 of ‘free choice decisions’ 

reduction rule, we conclude that Eating is unbounded in N iff 

Thinking or Chopsticks are unbounded in N1, which is 

equivalent to say: Eating is bounded in N iff Thinking and 

Chopsticks are bounded in N1.  

- According to the property 2 of ‘side condition place’ rule, 

we conclude that Thinking and Chopsticks are both bounded 

in N1. 

Consequently, all three places are bounded. 

 

Liveness. 

- According to the property 1 of ‘free choice decisions’ 

reduction rule we have: take and give_back are live in N iff 

take_give_back is live in N1. 

- According to the property 3 of ‘side condition place’ rule, 

we have: take_give_back is live in N’ iff take_give_back is 

live in N2. 

It is easy to detect that take_give_back is live in the reduced 

net N2. Thus, the transition take and give_back are live in N. 

 

LTL Model Checking. 

- According to the property 3 of ‘free choice decisions’ 

reduction rule we have: each formula which concerns the 

place Chopsticks holds in N iff it holds in N1; 

- According to the property 3 of ‘side condition place’ rule, 

we have: each formula which concerns the place Chopsticks 

holds in N1 iff it holds in N3; 

So, let’s define a LTL property that concerns only the place 

Chopsticks and we check its correctness for the three nets N, 

N1 and N3. After that, we use LTL Model Checker of Maude 

to compare the number of rewriting steps needed to check the 

property for each net. First, we define a predicate:  

op Term-In-Place : D Place -> Prop . 

ceq M |=  Term-In-Place(X, P) = true  

if Find-Term-In-Place(X, P, M) ==  true . 

Such that, the function Find-Term-In-Place(X, P, M) 

returns true when the algebraic term X is in the place P in the 

marking M. In this case, the predicate Term-In-Place(X, P) is 

correct. Now, let’s consider the following property: 

op MUTUAL-EXCLUSION : Place -> Prop . 

eq MUTUAL-EXCLUSION(P) =  

( [] ( (~ Term-In-Place(1, P) /\ ~ Term-In-Place(2, P) ) => 

Term-In-Place(3, P) ) )   ****** [c] 

/\ ( [] ( (~ Term-In-Place(2, P) /\ ~ Term-In-Place(3, P) ) => 

Term-In-Place(1, P)  ) ) 

/\ ( [] ( (~ Term-In-Place(3, P) /\ ~ Term-In-Place(1, P) ) => 

Term-In-Place(2, P) ) ) . 

 

The first line of the property ([c]) means: always, if the 

terms 1 and 2 are not in Chopsticks (philosopher 1 is eating) 

then the term 3 is in Chopsticks (philosophers 2 and 3 must 

wait). It is a mutual exclusion property. 

Finally, we call Maude LTL Model Checker to check this 

property for the three nets N, N1 and N3 as follows: 

red modelCheck(Initial-Marking, 

                            MUTUAL-EXCLUSION(Chopsticks) ) . 

We get the results in the table 2. Fig. 8 shows the result of 

the Maude Model Checking of the property for the net N3. 

 
TABLE II 

 REWRITING STEPS REQUIRED TO CHECK THE PROPERTY FOR THE THREE NETS 

ECATNet Rewriting steps 

N 657 

N1 158 

N3 128 

 

We note how reduction rules decreased significantly the 

number of rewriting steps (and so the time) required to check 

the property.  

 

 
Fig. 8.  Model Checking of the property in the case of the net N3 
 

X. CONCLUSION 

In this paper, we have shown the adaptation of two 

reduction rules for ECATNets. These two rules were defined 

in [9] for APNs. First, we described in informal way how we 

adapted the reduction ‘free choice decisions’ to ECATNet. 

But, we gave in formal way the adaptation and the 

implementation of the reduction rule ‘side condition place’ 

for ECATNet by using rewriting logic. Of course, Maude is 

considered that it is the most appropriate language to develop 
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such tools implementing reduction rules for ECATNets. In 

addition of the integration of ECATNet in Maude, this last is a 

language of specification equipped with a safe and complete 

semantics and it is a programming language with a platform, 

allowing us to implement and validate ECATNets’ properties. 

Maude has a large battery of many tools like: simulator, 

accessibility analysis, Model Checking, etc.  

We showed also in this paper, the benefits we gained when 

we use reduction rules. These last reduce the size of the 

original ECATNet to get small reduced ECATNet and make 

easier and faster the reasoning about some preserved 

properties like accessibility graph construction, boundness, 

liveness and LTL formulas. This consequence was defended 

through the example of philosophers. 
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