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Abstract—The main objective of the study is to estimate the
iterative coefficient of Metz filter equation based on different
point spread functions and its full width half maximum to
acquire the best filtered image of semi-compressed breast
phantom. The semi-compressed breast phantom image is gen-
erated using Monte Carlo N-Particle software version 5. Two
parameters of the image quality, which are contrast to back-
ground ratio and fluctuation error are becoming our interest
to be improved. These parameters indicate the visibility of the
tumor and the presence of the noise in the image respectively.
Every image is filtered with incremental value of the Metz
filter iterative coefficient and full width half maximum of four
different types of point spread function which are Gaussian,
radial, Gaussian-ellipse and sinusoidal distortion. Varying these
parameters will directly effect the tumor contrast and the
fluctuation error of the image produced. The best filtered image
produced is automatically selected, based on the output image
with the highest tumor contrast and lowest fluctuation error.
The algorithm is tested for one thousand samples of semi-
compressed breast phantom image, to evaluate the performance
of each different types of PSF and its relation to the selection
of the iterative coefficient. At the end of the study, we propose
an equation to estimate the iterative coefficient of Metz filter
equation based on the suitable full width half maximum of
Gaussian point spread function.

Index Terms—fluctuation error, contrast to background-ratio,
Metz filter, point spread function

I. INTRODUCTION

TUDIES shows that the type of filter use with the
S imaging modalities can effect on the diagnosis of tumor
detectability [1]-[4]. For the same reason, Metz filter had
been developed to enhance the quality of image produced
from the nuclear medical imaging [5]. Metz filter is derived
as in equation brlow:

1— (1 (H(u,v))*)*
H(u,v)

where H (u,v) is an imaging modulation transfer function
and X is an iterative coefficient that use to controls the
extent to which the inverse filter (denominator) is followed
before the filter switches to noise suppression using low pass
filter (numerator). Parameter X is also known as iterative
coefficient of Metz filter.

M(u,v) = (1)
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Several study has been done to demonstrate the application
of Metz filter in nuclear medical imaging [6]-[11]. Some
study suggested that Metz filter show the best result com-
pared with other types of filter such as Butterworth, Hanning
and Ramp filter to improve scintigraphy image [12], [13].
This could be achieved by using a suitable parameter of
the Metz filter equation. King et al. [6] suggested that the
iteration coefficient, X can be estimated base on photons
count. He used a count dependent Metz filter application
on Aldenson liver phantom image by scaling the image to
several different counts per pixel before applying the filter.
He came up with a function of X estimation that minimized
mean square error value of the filtered image. On the
other study [7], he proposed the other method of estimating
an iterative coefficient based on constrained least-squares
criterion restoration value to minimize the normalized mean
square error on several different phantom images.

Our study’s objective is to improve the tumor contrast and
reduce noise presence in the image background. To achieve
that, we propose an iterative algorithm in order to select the
best outcome for individual image. With a current technology
of high speed computer, iterative method is becoming more
valid and reliable [14]. We applied the algorithm with one
thousand image samples to find the relationship between the
image quality and Metz filter parameters.

The process is done in a frequency domain where the
original image, G(z,y) is first converted from the spatial
domain using 2D Fast Fourier Transform (FFT) to the fre-
quency domain, G(u,v). The convolution between original
image and Metz filter transfer function, M (u,v) is done in
a frequency domain as shown by equation below:

F(u,v) = M(u,v)G(u,v) (2)

Subsequently, the filtered image, F'(u, v) is converted back to
the spatial domain, F(z, y) using inverse 2D-FFT to measure
the image quality for display purposes.

II. GENERATING THE IMAGE SAMPLES

Semi-compressed breast phantom is constructed by using
four simple geometry, consist of two rectangular polygons to
represent the breast and torso, and two spheres to represent
the heart and tumors. The torso and the heart are added to
the breast phantom in order to simulate the scattering effect
cause by the body part that located near the breast. The tumor
was set to be 10 mm diameter and located at 3 cm depth from
the breast surface. The heart is located inside the torso with
8 cm diameter. The rests of the dimensions are shown in
Fig. 1.
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Fig. 1. Breast phantom and collimator dimension set up in MCNP5
simulation environment

This phantom application basically follow the work done
by Gruber et al. [15]. In the study, they simulated the
phantom with a discrete compact gamma camera. Al-
nafea et al. [16] also used the same phantom to test the
modified uniformly-redundant array-coded aperture gamma
camera.

In this study, we simulate the semi-compressed breast
phantom using wire mesh collimator gamma camera [17].
We used Toshiba GCA 7100A gamma camera model as
a reference configuration set up in MCNP5 [18], [19].
Previously, wire mesh collimator was configured to give
an optimized performance when simulated with the semi-
compressed breast phantom [20]. Even though wire mesh
collimator had been optimized with semi-compressed breast
phantom, the quality of the image produced is still not
adequate, since image can be degraded by several factors,
such as limited spatial resolution of gamma camera, Compton
scattering, septa penetration and Poisson noise cause in
radioactive decay process. By applying a Metz filter, poor
image quality associated with the above problems will be
improved [5]-[8], [10].

Semi-compressed breast phantom is positioned at 3 cm
from the surface of the collimator. The dimension of the
wire mesh collimator is 40 x 40 x 4.02 cm. We used
rectangular type of Tungsten wire mesh with hole dimension
of 0.15 x 0.15 cm, and septa thickness (wire diameter) is
0.02 cm. Sodium Iodide detector with density of 3.67 g/cm?®
and dimension of 40 x 40 x 0.9525 cm is placed behind
the collimator without any gap. The size of each pixel is
set at 0.3125 x 0.3125 cm? and energy acceptance window
is 126-154 keV. The pixel location for each of the photons
deposition is determined using Anger logic algorithm. We
only consider the dark region as shown in Fig. 1 to produce
an image as this region covered breast and tumor area. The
size of the image produced on this region is 13 x 45 pixels.

The composition of the breast phantom materials are
uniformly distributed in each of the parts. The materials com-
position and density are referred to the ICRU report 44 [21].

Energy of the photons emission is set to be 140 keV. Activ-

ity density for breast and torso is assumed to be 80 nCi/cm?
and heart activity density is ten time greater then activity
on the breast and torso which is 800 nCi/cm?. Tumor to the
background ratio (TBR) is set to be 10:1. Approximately,
~2.37 x 10'° number of photons are simulated to impersonate
10 minutes of the imaging time. Each part of the phantom is
simulated separately, and the final simulation result of each
part is combined. To generate different variation of output
images, breast and tumor are simulated several times with
the different random number generator initialization (seed
number).

III. EVALUATING THE IMAGE QUALITY

The quality of the image is measured using contrast to
background ratio (CBR) and fluctuation error of the image
on the breast area.

Tumor contrasts can be measured using CBR equa-
tion [16], [22], [23]. The CBR produce similar characteristic
as signal to noise ratio (SNR) [20]. Since the CBR calcu-
lation cover more pixel area then SNR, using CBR instead
of SNR will give more consistent evaluation for the semi-
compressed breast phantom image. The CBR is represented
by the following equation:

CBR == tmn 3)
tmn
where iy, is the pixel value at the tumor peak and Gmn 18 the
average pixel value on the breast area.

Pixel value on the breast area is fluctuated even thought the
material and photons emission is uniformly distributed. This
is due to the presence of noise as the result of interaction of
photons with matter. The equation of the fluctuation error is
shown in following equation:

FE = %ggj(m,y)—mf (4)

Equation 4 is applied on the selected region with the pixel
size of m x n, around breast area excluding the tumor area,
i(x,y) is a pixel value of (x,y) location. i,,, is average pixel
value on the selected region. In other words, fluctuation error
is a standard deviation of the selected region on the breast
area.

The histogram normalization is applied on the image
before measuring CBR and fluctuation error, so that the cal-
culation can be done to the image before it being displayed.

IV. METHODOLOGY

The PSF can be defined by the response of the ideal
imaging system to an isotropic point source. Gamma cam-
era with wire mesh collimator produced a Gaussian like
distribution when simulated with a single isotropic point
source [17], [20]. The FWHM of PSF is slightly changed
when configuration of the internal layer of the wire mesh
collimator is altered. The FWHM of the gamma camera PSF
also can be affected by several factors such as distance of the
point source to the collimator, septa thickness and hole size.
To overcome this uncertainty, we generate a 2D Gaussian
PSF from the equation, so that the value FWHM can be
manipulated.
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(a) Gaussian

(c) Gaussian-ellipse

(b) Radial
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Fig. 2. Different types of PSF image generated in this study where c¢=3

Other then Gaussian PSF, we also generate another three
different types of commonly used PSF which are radial ,
Gaussian-ellipse and sinusoidal distortion types [24], [25].
Here, we want to observed the effect of different PSFs to
our proposed algorithm. Gaussian, Gaussian-ellipse and sinu-
soidal distortion transfer function are shown in Equation 5, 6
and 7 respectively.

(x_xo)2+(y_yo)2) (5)

2¢2

2(A )2

hg(z,y) = a.exp (—

hs(x,y) = hg(%y)é (cos (%\/(x —2,)2 + (y — yo)2> + 1) \1'

(N
Parameter a is set to be 255, as it is a maximum pixel value of
the PSF image, x,and y,is center of the PSF image and c is
a parameter that relates to FWHM of the PSF. By increasing
this parameter, it will broaden the FWHM of the PSF. The
size of the PSF image generated, mxn is equal to the size
of the image to be processed which is 13 x 45 pixels.

Radial type of PSF is created by the arrangement of the
pixel value from the original image, starting from the center
pixel at i(x,, y,) with highest pixel value to the pixel location
that furthest from the center with lowest pixel value, based
on the Euclidean distance [26]. Illustration of four different
types of PSF images are shown in Fig. 2.

The algorithms of the proposed method are summarized
by the flow diagram shown on Fig. 3. First, image produce by
MCNPS5 is normalized to 8 bit grayscale, in order to calculate
the initial value of CBR and fluctuation error. Images will be
processed using Metz filter equation with four different types
of PSFs. For each type of different PSF applied, parameter
X and c is varied in every iteration, and the value of CBR
and fluctuation error is calculated on the output image after
the output image is normalized to 8 bit grayscale. The value
of CBR and fluctuation error are plotted for each iteration to
estimate a point where both CBR and fluctuation error are
on its highest value.

Fig. 4 is an example of the plot for CBR vs. X and
fluctuation error vs. X of a particular image sample, before
and after filtered using Metz equation with Gaussian-ellipse
PSF (c=1). From the plot, it can be noted that the CBR of the
output image is maximum when X=1 and fluctuation error
is minimum when X=1.2. The algorithm will automatically
select the value in between both of it which is at X=1.1.
The characteristic of the CBR and fluctuation error plot are
similar for different ¢ parameters, the same algorithm is
applied to all iteration. At this point, we will have several
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Fig. 3.

Flow diagram of the image processing

filtered images for different ¢ parameters used. Among these
images, the algorithm will select the final image based on
the best image quality displayed. The parameters of X and
c that been used to generate this final image are recorded.
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Fig. 4. Plot of Metz filter result; CBR vs. X and fluctuation error vs. X
for one of the image sample, using Gaussian-ellipse PSF with c=1
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V. RESULT AND DISCUSSION

One thousand of semi-compressed breast images were
tested using the iterative algorithm described in Section IV.
Fig. 6 is a plot of CBR against Fluctuation error for original
image and processed image. It shows that, CBR is inversely
proportionate to fluctuation error. We can conclude that,
when the presence of the noise in the image of breast tumor
is reduced, it will enhance the visibility of the tumor.

10 T T
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or Radial H
Gaussian ellipse
8r Sinusoidal distortion H
Original Image
7L i
6 4
o
8
5r 4
4t 4
3r 4
2r 4
1 1 1 1 1 1 1 1 1 1

Fig. 5. Plot of the CBR vs. fluctuation error before and after process using
four different type of PSF

The plot on Fig. 5 is summarized into a cumulative
distribution plot as shown in Fig. 6 and 7. It shows that,
using of sinusoidal distortion PSF give the output image
quality as good as by using Gaussian PSF. The other two PSF
are not encouraging enough compare to the Gaussian and
sinusoidal distortion. Generally, every image samples shows
at least a small improvement after the filtering process. This
is because, the best quality image can possibly be selected
by using the iterative algorithm.
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Fig. 6. Sample distribution of the CBR for the original image and image
after processed. The mean, p and standard deviation, o of the distribution is
written as CBR(y,0) , starting for Gaussian PSF, CBR4(4.72,0.87), Radial
PSF, CBR(3.92,0.81), Gaussian-ellipse PSF, CBR4¢(4.19,0.70), sinusoidal
distortion, CBR4(4.73,0.91) and original image, CBR,,(2.86,0.53)

Table I shows two examples of original image samples
and its filtered image, by using these four type of PSFs.
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Fig. 7. Sample distribution of the fluctuation error for the original
image and after filtered image. The mean, p and standard deviation, o
of the distribution is written as F E(u,0), starting for Gaussian PSF,
FE4(14.81,1.69), Radial PSF, FE;-(17.52,1.64), Gaussian-ellipse PSF,
FFE4(18.29,1.59) ,sinusoidal distortion, F'E4(14.47,1.78) and original
image, F'Er(22.26,1.88)

Visually, all the filtered images are less fluctuated compared
to the original image. The image process using a Radial PSF
appeared to be blurred and the tumor size seem to be enlarged
from it original size. This is due to the fact that, only this type
of PSF is not adjustable. Whereas, the image filtered using a
Gaussian-ellipse PSF, tumor size seem to be expanded from
it original size because this PSF is not isometric.
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Fig. 8. Plot of parameter X versus parameter ¢ of Gaussian PSF equation
for one thousand simulated images of semi-compressed breast phantom,
determined by optimizing the tumor contrast and the fluctuation error.

Fig. 8 shows the plot of X vs. ¢ by using Gaussian
PSF. The plot shows that, FWHM of the Gaussian PSF to
the iterative coefficient is inverse exponential. However, it
does not show the same relationship (Fig. 9), when we plot
the same parameters for sinusoidal distortion even though
both of this PSF shows a comparably good performance. As
discussed earlier, gamma camera PSF is similar to the 2D
Gaussian distribution function. That makes Gaussian PSF is
the most suitable function to substitute the gamma camera
PSE.
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Fig. 9. Plot of parameter X versus parameter ¢ of sinusoidal distortion

PSF equation for one thousand simulated images of semi-compressed breast
phantom, determined by optimizing the tumor contrast and the fluctuation
error

The plot on Fig. 8 can be fitted by the following equation:
Exponential pieq = k(e*lc) +m 8)

where k, | and m are the coefficient value of the best fit,
based on 99% of confident interval using non-linear least
square technique. Parameter c is related to FWHM of the
Gaussian PSF and can be expressed by:

FWHM = 2.3548¢ ©)]

where FWHM is measured in the pixels. By replacing
parameters k, [ and m on Equation 8 to its fitted value,
the relationship between iterative parameters of Metz filter
equation, X and FWHM for the Gaussian PSF can be written
as:

X = 1.019772.¢" 26T FWHM 4 () 373569 (10)

To use this equation, we still need to have the value of
FWHM for Gaussian PSF. This could be attained by applying
the iterative algorithm as proposed by the above method. The
time used to process each image will be reduced, since we
only required to estimate value of one parameter only.

VI. CONCLUSION

In this study, we managed to demonstrate the iterative
method in selecting the parameters used to apply Metz
filter for semi-compressed breast simulation using wire mesh
collimator gamma camera. The method is tested with one
thousand images of semi-compressed breast phantom to
evaluate the selection algorithm of the parameter estimation.
We also compared the effect of using four different types
of PSFs as modulation transfer function for the Metz filter
equation. The results showed that, in addition to Gaussian
PSF, sinusoidal distortion PSF also demonstrate a good
performance with the majority image samples. Finally, we
proposed the equation to estimate the value of the Metz filter
iterative coefficient based on the FWHM of the Gaussian
PSF.
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