
 

  
Abstract—Prediction, by interval or point, of an unobserved 

random variable is a fundamental problem in statistics. This 
paper deals with obtaining a prediction interval on a future 
observation Xl in an ordered sample of size m from an 
underlying distribution, which belongs to the location-scale 
family of distributions, for the situation where the first k 
observations X1 < X2 < ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ < Xk, 1≤≤≤≤k<l≤≤≤≤m, have been observed. 
Prediction intervals for future order statistics are widely used 
for reliability problems and other related problems. But the 
optimality property of these intervals has not been fully 
explored. To compare prediction intervals, we introduce a 
piecewise-linear loss function. The interval which minimizes a 
risk, associated with this piecewise-linear loss function, among 
the class of invariant prediction intervals is obtained. The 
technique used here for optimization of prediction intervals 
based on censored data emphasizes pivotal quantities relevant 
for obtaining ancillary statistics. It allows one to solve the 
optimization problems in a simple way. Illustrative examples 
are given for the Gumbel and two-parameter exponential 
distributions. The results can be also applied to related 
distributions. 
 

Index Terms — Location-scale distribution, future order 
statistic, prediction interval, risk function, optimization 
 

I. INTRODUCTION 

RADITIONAL  statistical analysis uses the information 
contained in a sample to make inferences about the 

population where this sample was taken from. Usually, these 
inferences are based on estimates, confidence intervals or 
hypothesis tests for parameters of a specified model. If this 
model describes adequately the population, the analyses 
containing these inferences are appropriate for most 
scientific problems. On the other hand, we also encounter 
problems where the understanding of the population's 
behavior is not of interest by itself; it is a means of 
foretelling future events. We call such problems prediction 
problems. Since prediction problems are rarely a case of 
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logical deduction, the use of probabilistic and statistical 
tools are inevitable in any scientific approach used to solve 
them. Many early papers deal with prediction; for example 
Pearson [1], Baker [2], or Wilks [3]. However, even if 
prediction problems are often encountered, statisticians are 
now devoting most of their attention to inferential problems. 
An interesting discussion about the neglect of prediction 
analysis can be found in the preface of Aitchison and 
Dunsmore's [4] book and this issue is also discussed in 
Geisser [5]. Antle and Rademaker [6] provided a method of 
obtaining a prediction bound for the largest observation from 
a future sample of the Type I extreme value distribution, 
based on the maximum likelihood estimates of the 
parameters. They used Monte Carlo simulations to obtain the 
prediction intervals. Using the well-known relationship 
between the Weibull distribution and the Type I extreme 
value distribution one can use their method to construct an 
upper prediction limit for the largest among a set of future 
Weibull observations. However this method is valid only for 
complete samples and limited to constructing an upper 
prediction limit for the largest among a set of future 
observations. Lawless [7] proposed a method for 
constructing prediction intervals for the smallest ordered 
observation among a set of k future observations based on a 
Type II censored sample of past observations. These results 
are based on the conditional distribution of the maximum 
likelihood estimates given a set of ancillary statistics. This 
procedure is exact, but it requires numerical integration, for 
each new sample obtained, to determine the prediction 
bounds. Mee and Kushary [8] provided a simulation based 
procedure for constructing prediction intervals for Weibull 
populations for Type II censored case. This procedure is 
based on maximum likelihood estimation and requires an 
iterative process to determine the percentile points. 

Statistical prediction can be applied in many domains 
such as engineering, industry, business, and medicine. In 
each of these domains, it can be used for planning purposes 
(predict the total medical cost of a population, predict a 
future number of insurance claims), for process monitoring 
(predict the number of nuclear scrams in a power plant), or 
for decision making (software debugging, determination of a 
maintenance policy). 

Although confidence intervals for a mean are often 
relatively easy to compute and interpret, Christoffersen [9] 
argues that interval prediction is a better tool than interval 
parameter estimation for economic planning. For example, a 
central bank governor would be more interested in 
forecasting the actual inflation rate over the next six months 
than estimating its mean inflation in order to carry out a 
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monetary policy. A production manager planning to 
purchase inventory needs to predict sales in order to decide 
how much to order. A prediction interval might serve as a 
control bound for assessing product quality on an assembly 
line. Data points that are beyond the control bounds are 
referred to as being “out of control” and could indicate that 
remedial action needs to be taken. Patel [10] also states that 
prediction intervals could provide guidelines for establishing 
warranty limits for the future performance of a product.  

This paper deals with frequentist prediction. Frequentist 
probability interpretations of the methods considered are 
clear, and analogous to the interpretation of confidence 
intervals. Bayesian methods are not considered further. We 
note, however, that, although subjective Bayesian prediction 
has a clear personal probability interpretation, it is not 
generally clear how this should be applied to non-personal 
prediction or decisions. Objective Bayesian methods, on the 
other hand, do not have clear probability interpretations in 
finite samples. Prediction methodology based on likelihood 
has also been proposed. We similarly do not consider these 
methods in this paper, but see Bjornstad [11] for a review. 

The purpose of this paper is to provide a unified treatment 
of frequentist prediction intervals and predictive 
distributions. 

 Consider the following examples of practical problems 
which often require the computation of prediction bounds 
and prediction intervals for future values of random 
quantities: (i) a consumer purchasing a refrigerator would 
like to have a lower bound for the failure time of the unit to 
be purchased (with less interest in distribution of the 
population of units purchased by other consumers); (ii) 
financial managers in manufacturing companies need upper 
prediction bounds on future warranty costs; (iii) when 
planning life tests, engineers may need to predict the number 
of failures that will occur by the end of the test to predict the 
amount of time that it will be take for a specified number of 
units to fail. Some applications require a two-sided 
prediction interval that will, with a specified high degree of 
confidence, contain the future random variable of interest. In 
many applications, however, interest is focused on either an 
upper prediction bound or a lower prediction bound (e.g., 
the maximum warranty cost is more important than the 
minimum, and the time of the early failures in a product 
population is more important than the last ones). 
Conceptually, it is useful to distinguish between ‘new-
sample’ prediction and ‘within-sample’ prediction. For new-
sample prediction, data from a past sample are used to make 
predictions on a future unit or sample of units from the same 
process or population. For example, based on previous 
(possibly censored) life test data, one could be interested in 
predicting the time to failure of a new unit, time until r 
failures in a future sample of m units, or number of failures 
by time t• in a future sample of m units. For within-sample 
prediction, the problem is to predict future events in a 
sample or process based on early data from that sample or 
process. If, for example, m units are followed until t• and 
there are k observable failures, X1 < X2 < ⋅⋅⋅< Xk, one could 
be interested in predicting the time of the next failure, X(k+1); 
time until r additional failures, X(k+r) ; number of additional 

failures in a future interval (t•,t
•). In general, to predict a 

future realization of a random quantity one needs the 
following: 

1) A statistical model to describe the population or 
process of interest. This model usually consists of a 
distribution depending on a vector of parameters θ. In this 
paper, attention is restricted to location-scale families of 
distributions which are invariant under location and/or scale 
changes. In particular, the case may be considered where a 
previously available complete or type II censored sample is 
from a continuous distribution with cdf F((x-µ)/σ), where 
F(⋅) is known but the location (µ) and/or scale (σ) 
parameters are unknown. For such family of distributions the 
decision problem remains invariant under a group of 
transformations (a subgroup of the full affine group) which 
takes µ  (the location parameter) and σ  (the scale) into cµ + 
b and cσ, respectively, where b lies in the range of µ,  c > 0. 
This group acts transitively on the parameter space. 

2) Information on the values of components of the 
parametric vector θ. It is assumed that only the functional 
form of the distribution is specified, but some or all of its 
parameters are unspecified. In such cases ancillary statistics 
and pivotal quantities, whose distribution does not depend 
on the unknown parameters, are used. 

 The technique used here for constructing prediction 
intervals (or bounds) emphasizes pivotal quantities relevant 
for obtaining ancillary statistics. It represents a simple 
procedure that can be utilized by non-statisticians, and which 
provides easily computable explicit expressions for both 
prediction bounds and prediction intervals. The technique is 
a special case of the method of invariant embedding of 
sample statistics into a performance index (see, e.g., Nechval 
et al. [12-24]) applicable whenever the statistical problem is 
invariant under a group of transformations, which acts 
transitively on the parameter space. 

In this paper, for the within-sample prediction situation, 
we obtain optimal prediction intervals for future order 
statistics under parametric uncertainty of the underlying 
distributions. 

II.  PROBLEM STATEMENT OF WITHIN − SAMPLE PREDICTION 

INTERVALS FOR FUTURE ORDER STATISTICS 

A. Piecewise-Linear Loss Function 

Consider a situation described by one of a location-scale 
family of density functions, indexed by the vector parameter 
θ = (µ,σ), where µ and σ ( > 0) are respectively parameters 
of location and scale. For this family, invariant under the 
group of positive linear transformations: x → ax + b with a 
> 0, we shall assume that there is obtainable from some 
informative experiment a maximum likelihood estimator 

),( σµ ))
(or sufficient statistic) for (µ,σ) with density function 
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We are thus assuming that for the family of density functions 
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an induced invariance holds under the group G of 
transformations: 
 

,ba +→ µµ ))
 σσ ))

a→  (a > 0).   (2) 

 
The family of density functions satisfying these conditions 
is, of course, the limited one of normal, negative exponential 
and gamma (with known index) density functions. The 
structure of the problem is, however, more clearly seen 
within the general framework. 

We shall consider the interval prediction problem for the 
lth order statistic Xl, k<l≤m, in the same sample of size m for 
the situation where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 
1≤k<m, have been observed. Suppose that we assert that an 
interval (d1,d2) contains Xl. If, as is usually the case, the 
purpose of this interval statement is to convey useful 
information we incur penalties if d1 lies above Xl or if d2 
falls below Xl. Suppose that these penalties are c1(d1− Xl) 
and c2(Xl−d2), losses proportional to the amounts by which 
Xl escapes the interval. Since c1 and c2 may be different the 
possibility of differential losses associated with the interval 
overshooting and undershooting the true µ is allowed. In 
addition to these losses there will be a cost attaching to the 
length of interval used. For example, it will be more difficult 
and more expensive to design or plan when the interval 
(d1,d2) is wide. Suppose that the cost associated with the 
interval is proportional to its length, say c(d2−d1). In the 
specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are 
led to investigate the piecewise-linear loss function   
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The decision problem specified by the informative 
experiment probability distribution function F((x-µ)/σ) and 
the loss function (3) is invariant under the group of 
transformations, which takes µ  (the location parameter) and 
σ  (the scale) into cµ + b and cσ, respectively, where b lies 
in the range of µ,  c > 0. This group acts transitively on the 
parameter space.  Thus, the problem is to find the best 
invariant interval predictor of Xl,  
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where D is a set of invariant interval predictors of Xl, 
R(θ,d1,d2)=Eθ{ r(θ, d1,d2)} is a risk function. 

B. Transformation of the Loss Function 

It follows from (3) that the invariant loss function, r(θ, 
d1,d2), can be transformed as follows: 
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(V1,V2)  is a vector of the pivotal quantities,  
 
V1= σ/)( kl XX − ,   V2= σσ /

)
 (or o

2V = σµ /)(
)−kX   ),  (7) 

 
(η1,η2)  is a vector of decisions (decision function), 
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        (or η2= )/()( 2 µ)−− kk XXd ).  (8) 

C. Risk  Function 

It follows from (4)-(6) that the risk associated with (d1,d2) 
and θ can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) (d1,d2) is used, where f(v1,v2) represents the 
probability density function of the pivotal quantities V1 and 
V2. The fact that the risk is independent of θ means that the 
decision function (η1,η2) which minimizes R(η1,η2) is 
uniformly best invariant.  

D. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
paper. 

Theorem 1. Suppose that (U1,U2) is a random vector 
having density function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of U1/U2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xl based on the first k ordered 
observations (order statistics) in a sample of size m is 
(Xk+ ση )

1 , Xk+ ση )

2 ), where 
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(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 

interval predictor of Xl based on the first k ordered 
observations in a sample of size m degenerates into a point 
predictor Xk+ ση )

• , where  
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Now ∂R(η1,η2)/∂η1 = ∂R(η1,η2)/∂η2 = 0 if and only if (11) 

hold. We thus obtain one stationary value for R(η1,η2) 
provided (11) has a solution with η1<η2 and this is so if 
1−c/c2>c/c1. It is easily confirmed that this (η1,η2) gives the 
minimum value of R(η1,η2). Thus (i) is established.  

If c/c1+c/c2≥1 then the minimum of R(η1,η2) in the region 
η2≥η1 occurs where η1=η2=η•, η• being determined by 
setting  
 

 ∂R(η•,η•)/∂η•=0 (18) 
 
and this reduces to 

   c1Q(η•) − c2[1− Q(η•)] = 0, (19)  
 
which establishes (ii).    

Corollary 1.1. The minimum risk of the optimal invariant 
predictor of Xl is given by 
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for case (i) with (η1,η2) as given by (11) and for case (ii) 
with η1=η2=η• as given by (12). 

Proof. These results are immediate from (9) when use is 
made of ∂R(η1,η2)/∂η1 = ∂R(η1,η2)/∂η2 = 0 in case (i) and 
∂R(η•,η•)/∂η•=0 in case (ii).    

The underlying reason why c/c1+c/c2 acts as a separator of 
interval and point prediction is that for c/c1+c/c2≥1 every 
interval predictor is inadmissible, there existing some point 
predictor with uniformly smaller risk.  

III.  EQUIVALENT CONFIDENCE COEFFICIENT 

For case (i) when we obtain an interval predictor for Xl we 
may regard the interval as a confidence interval in the 
conventional sense and evaluate its confidence coefficient. 
The general result is contained in the following theorem. 

Theorem 2. Suppose that (V1,V2) is a random vector 
having density function  f(v1,v2) (v1,v2>0) and let H be the 
distribution function of W=V1/V2, i.e., the probability density 
function of W is given by 
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Proof. The confidence coefficient for (d1,d2) 

corresponding to (µ,σ) is given by 
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This is independent of (µ,σ).    
The way in which (23) varies with c, c1 and c2, and the 
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fact that c1 and c2 are the factors of proportionality 
associated with losses from overshooting and undershooting 
relative to loss involved in increasing the length of interval, 
provides an interesting interpretation of confidence interval 
prediction. 

IV.  FINDING JOINT DISTRIBUTIONS OF PIVOTAL QUANTITIES 

COMING FROM THE UNDERLYING DISTRIBUTIONS 

In this section, the technique of finding the joint 
distributions of the pivotal quantities V1, V2 is given. These 
joint distributions are required to construct the optimal 
prediction intervals for future order statistics coming from 
the underlying distributions under parametric uncertainty. 

A. Mathematical Preliminaries 

Theorem 3. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from a 
continuous distribution with some probability density 
function fθ (x) and distribution function Fθ (x), where θ is a 
parameter (in general, vector). Then the joint probability 
density function of X1 ≤ ... ≤ Xk and the lth order statistics Xl 
(1 ≤ k < l ≤ m) is given by  
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represents the conditional probability density function of Xl 
given Xk=xk. 

Proof. The joint density of X1 ≤ ... ≤ Xk and Xl is given by 
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It follows from (27) that 
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i.e., the conditional distribution of Xl, given Xi = xi for all i = 
1,…, k, is the same as the conditional distribution of Xi = xi, 
given only Xk = xk, which is given by (26). This ends the 

proof.   � 
Corollary 3.1. The conditional probability distribution 

function of Xl given Xk=xk is 
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B. Two-Parameter Exponential Distribution 

Let us assume that the random variable X follows the two-
parameter exponential distribution with the probability 
density function  
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and the probability distribution function  
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where θ = (µ,σ), µ is the location parameter, and σ is the 
scale parameter (σ > 0). 

Theorem 4. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from the 
two-parameter exponential distribution (30). Then the 
conditional probability density function of the lth order 
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statistic Xl (1 ≤ k < l ≤ m) given Xk = xk is 

 

∑
−−

=
−







 −−
+−−Β

=
1

0

)1(
1

)1(,(

1
)|(

kl

j

j
kl j

kl

lmkl
xxgσ  

 








 −++−
−×

σσ
))(1(

exp
1 kl xxjlm

 

 

∑
−

=
−







 −
+−−Β

=
lm

j

j

j

lm

lmkl 0

)1(
)1(,(

1

 
 

 

  
 ,expexp1

1
1








 −
−















 −
−−×

+−−

σσσ
kl

jkl
kl xxxx

 

(32)

 
 
and the conditional probability distribution function of the 
lth order statistic Xl given Xk = xk is 
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Proof. It follows from (26) and (29), respectively.   � 
Corollary 4.1. It follows from (32) and (33) that the 

probability density function of the pivotal quantity 
V1= σ/)( kl XX −  is given by  
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and the probability distribution function of the pivotal 
quantity V1 is given by 
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It follows from (40) that that the probability density 

function of the pivotal quantity σσ /2
)=V  is given by  
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Thus, the joint probability density function of the pivotal 
quantities V1, V2 is given by  
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which is required to construct  the optimal prediction 
intervals for future order statistics coming from the two-
parameter exponential distribution (30). 

Theorem 5. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from the 
exponential distribution (30). Then the probability density 

function of the pivotal quantity σ/)( 12 XXV k −=o  is given 

by 
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Proof. It follows from (32) that the conditional probability 

density function of the kth order statistic Xk (1 ≤ k < l ≤ m) 
given X1 = x1 is 
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It is clear that (43) follows from (44). This ends the proof.   

�     
In this case, the joint probability density function of the 

pivotal quantities V1, 
o

2V  is given by  
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and may be considered as the alternative to (42). It will be 
noted that (42) and (45) are not necessarily alternative. 

C. Gumbel Distribution 

Let us assume that the random variable X follows the 
Gumbel distribution with the probability density function  
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and the probability distribution function   
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where θ = (µ,σ), µ is the location parameter, and σ  is the 

scale parameter (σ > 0). 
Theorem 6. Let X1 ≤ ... ≤ Xk be the first k ordered 

observations (order statistics) in a sample of size m from the 
Gumbel distribution (46). Then the conditional probability 
distribution function of the lth order statistic Xl (1 ≤ k < l ≤ 
m) given Xk = xk is given by 

 

{ }
)!()!1(

)!(
1|)|(

lmkl

km
xXxXPxxG kkllkl −−−

−−==≤= θθ  

 

.exp
1
)1(1

1
1

0

jlm
xxkl

j

j kl

ee
jlmj

kl
++−

−−−−

=









































−−

++−
−








 −−
× ∑ σ

µ
σ

µ

 

 

(48) 
 

Proof. The proof follows from (29) and (47).   �  
Corollary 6.1. The conditional probability density 

function of Xl given Xk=xk is 
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Theorem 7. The probability distribution function of the 
pivotal quantity σ/)(1 kl XXV −= is given by 
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where V1 = (Xl−Xk)/σ  is the pivotal quantity. Using the 
known distribution of the kth order statistic Xk, we eliminate 
the location parameter µ from the problem as 
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represents the probability density function of the kth order 
statistic Xk coming from the Gumbel distribution (46). This 

ends the proof.   � 
Corollary 7.1. The probability density function of the 

pivotal quantity σ/)(1 kl XXV −= is given by 
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Theorem 8. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations from a sample of size m, which follow the 

Gumbel distribution (46). Then the joint probability density 
function of the pivotal quantities 
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independent set, µ)  and  σ)  are the maximum likelihood 
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Proof. The joint density of X1 ≤ ... ≤ Xk is given by  
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Using the invariant embedding technique [12-24], we reduce 
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It follows from (66) that the probability element of the joint 
density of S1, V2, conditional on fixed z(k) = ), ..., ,( 1 kzz  is 
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 s1∈(−∞, ∞),   v2∈(0, ∞). (67) 
 
This ends the proof.   � 

Thus, the joint probability density function of the pivotal 
quantities V1, V2 is given by  
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which is required to construct  the optimal prediction 
intervals for future order statistics coming from the Gumbel 
distribution (46). 

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH  

In many statistical decision problems it is reasonable co 
confine attention to rules that are invariant with respect to a 
certain group of transformations. If a given decision problem 
admits a sufficient statistic, it is well known that the class of 
invariant rules based on the sufficient statistic is essentially 
complete in the class of all invariant rules under some 
assumptions. This result may be used to show that if there 
exists an optimal invariant rule among invariant rules based 
on sufficient statistic, it is optimal among all invariant rules. 
In this paper, we consider statistical prediction problems 
which are invariant with respect to a certain group of 
transformations and construct the optimal invariant interval 
predictors. The method used is that of the invariant 
embedding of sample statistics in a loss function in order to 
form pivotal quantities which allow one to eliminate 
unknown parameters from the problem. This method is a 
special case of more general considerations applicable 
whenever the statistical problem is invariant under a group 
of transformations, which acts transitively on the parameter 
space.  

More work is needed, however, to obtain optimal 
prediction intervals for future order statistics under 
parameter uncertainty when: (i) the observations are from 
general continuous exponential families of distributions, (ii) 
the observations are from discrete exponential families of 
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distributions, (iii) some of the observations are from 
continuous exponential families of distributions and some 
from discrete exponential families of distributions, (iv) the 
observations are from multiparametric or multidimensional 
distributions, (v) the observations are from truncated 
distributions, (vi) the observations are censored, (vii) the 
censored observations are from truncated distributions. 

Remark. It should be remarked that if we deal, for 
instance, with within-sample prediction and wish to obtain 
the best invariant prediction interval (d1,d2) for Xl, which has 
the prescribed confidence coefficient (or level) γ, we have to 
minimize the risk function R(θ,   d1,d2) = Eθ{ r(θ, d1,d2)} under 
constraint 

  
   .}Pr{ 21 γ=≤≤ dXd l  (69) 

 
It can be shown that this problem is reduced to the following 
one: 
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Subject to 
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i.e., the unknown parameter θ is eliminated from the 
problem.  
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