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Optimal Prediction Intervals for Order Statistics
Coming from Location-Scale Families

Nicholas A. Nechval, Member, IAEN®&onstantin N. Nechval, Maris Purgailis, and Uldis Rozevskis

logical deduction, the use of probabilistic and statistical
Abstract—Prediction, by interval or point, of an unobserved tools are inevitable in any scientific approach used to solve
random variable is a fundamental problem in statistics. This them. Many early papers deal with prediction; for example
paper deals with obtaining a prediction interval on a future Pearson [1], Baker [2], or Wilks [3]. However, even if
observation X, in an ordered sample of sizem from an o ' ' ) S
underlying distribution, which belongs to the location-scale prediction _problems are then er_lcountgred, St_atlst|C|ans are
family of distributions, for the situation where the first k  NOW devoting most of their attention to inferential problems.
observationsX; < X, < MI< X,, 1<k<lsm, have been observed. An interesting discussion about the neglect of prediction
Prediction intervals for future order statistics are widely used analysis can be found in the preface of Aitchison and
for reliability problems and other related problems. But the  Dunsmore's [4] book and this issue is also discussed in
optimality property of these intervals has not been fully ~ Geisser [5]. Antle and Rademaker [6] provided a method of

explored. To compare prediction intervals, we introduce a obtaining a prediction bound for the largest observation from
piecewise-linear loss function. The interval which minimizes a gap 9

risk, associated with this piecewise-linear loss function, among @ future sample of the Type | extreme value distribution,
the class of invariant prediction intervals is obtained. The based on the maximum likelihood estimates of the
technique used here for optimization of prediction intervals parameters. They used Monte Carlo simulations to obtain the
based on censored data emphasizes pivotal quantities relevantprediction intervals. Using the well-known relationship
for obtaining ancillary statistics. It allows one to solve the between the Weibull distribution and the Type | extreme

optimization problems in a simple way. lllustrative examples lue distributi thei thod t truct
are given for the Gumbel and two-parameter exponential value distribution one can use their method to construct an

distributions. The results can be also applied to related UPPer prediction limit for the largest among a set of future
distributions. Weibull observations. However this method is valid only for

complete samples and limited to constructing an upper
Index Terms — Location-scale distribution, future order prediction limit for the largest among a set of future
statistic, prediction interval, risk function, optimization observations. Lawless [7] proposed a method for
constructing prediction intervals for the smallest ordered
observation among a set lofuture observations based on a
Type Il censored sample of past observations. These results
RADITIONAL  statistical analysis uses the informatiorgre based on the conditional distribution of the maximum
contained in a sample to make inferences about tfiRelihood estimates given a set of ancillary statistics. This
population where this sample was taken from. Usually, thegeocedure is exact, but it requires numerical integration, for
inferences are based on estimates, confidence intervalsegeh new sample obtained, to determine the prediction
hypothesis tests for parameters of a specified model. If thigunds. Mee and Kushary [8] provided a simulation based
model describes adequately the population, the analysg®cedure for constructing prediction intervals for Weibull
containing these inferences are appropriate for moggpulations for Type Il censored case. This procedure is
scientific problems. On the other hand, we also encountgssed on maximum likelihood estimation and requires an
problems where the understanding of the populationgrative process to determine the percentile points.
behavior is not of interest by itself; it is a means of statistical prediction can be applied in many domains
foretelling future events. We call such problems predictioguch as engineering, industry’ business, and medicine. In
problems. Since prediction problems are rarely a case @ch of these domains, it can be used for planning purposes
(predict the total medical cost of a population, predict a
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monetary policy. A production manager planning tdailures in a future intervalt.(t’). In general, to predict a
purchase inventory needs to predict sales in order to decfdeure realization of a random quantity one needs the
how much to order. A prediction interval might serve as fallowing:
control bound for assessing product quality on an assemblyl) A statistical model to describe the population or
line. Data points that are beyond the control bounds apeocess of interestThis model usually consists of a
referred to as being “out of control” and could indicate thafistribution depending on a vector of paramei@rén this
remedial action needs to be taken. Patel [10] also states thaper, attention is restricted to location-scale families of
prediction intervals could provide guidelines for establishingistributions which are invariant under location and/or scale
warranty limits for the future performance of a product.  changes. In particular, the case may be considered where a
This paper deals with frequentist prediction. Frequentigireviously available complete or type Il censored sample is
probability interpretations of the methods considered afeom a continuous distribution with cdf((x-)/0), where
clear, and analogous to the interpretation of confidenq:E(D] is known but the location/§ and/or scale &)
intervals. Bayesian methods are not considered further. Wgrameters are unknown. For such family of distributions the
note, however, that, although subjective Bayesian predictig@cision problem remains invariant under a group of
has a clear personal probability interpretation, it is nfansformations (a subgroup of the full affine group) which
generally clear how this should be applied to non—persor@kesﬂ (the location parameter) amd (the scale) intau +
prediction or decisions. Objective Bayesian methods, on theyngcq respectively, wherb lies in the range of, ¢ > 0.

other hand, do not have clear probability interpretations ;g group acts transitively on the parameter space.
finite samples. Prediction methodology based on likelihood 2) Information on the values of components of the

has also _bee'f' proposed. We similarly do not considgr th‘?)szframetric vectoré. It is assumed that only the functional

methods in this paper, but see Bjornstad [11] for a review. torm of the distribution is specified, but some or all of its
The purpose of this paper is to provide a unified treatmepL, .o meters are unspecified. In such cases ancillary statistics

of frequentist prediction intervals and predictiveyg hivotal quantities, whose distribution does not depend

distributi_ons. ) ) on the unknown parameters, are used.
Consider the following examples of practical problems 14 technique used here for constructing prediction

which ofte_n _requ_ire the computation of prediction boundge gy (or bounds) emphasizes pivotal quantities relevant
and prediction intervals for future values of randong, oniaining ancillary statistics. It represents a simple

quantltles: (i) a consumer purchasn_]g a refrlgerator V"_OUHocedure that can be utilized by non-statisticians, and which
like to have a lower bound for the failure time of the unit 1, iqes easily computable explicit expressions for both

be purchased (with less interest in distribution of th_ﬁrediction bounds and prediction intervals. The technique is
population of units purchased by other consumers); (i) gpecial case of the method of invariant embedding of
financial managers in manufacturing companies need UPREmple statistics into a performance index (see, e.g., Nechval

prediction bounds on future warranty costs; (i) whery 51 [12.24)) applicable whenever the statistical problem is
planning life tests, engineers may need to predict the nUMBer-jant under a group of transformations, which acts
of failures that will occur by the end of the test to predict thﬁansitively on the parameter space.

amount of time that it will be take for a specified number of | s paper, for the within-sample prediction situation,

units to fail. Some applications require a two-sidede optain optimal prediction intervals for future order
prediction interval that will, with a specified high degree of4tistics under parametric uncertainty of the underlying
confidence, contain the future random variable of interest. H?stributions.

many applications, however, interest is focused on either an

upper prediction bound or a lower prediction bound (e.gl.l,' PROBLEM STATEMENT OFWITHIN — SAMPLE PREDICTION
the maximum warranty cost is more important than the INTERVALS FORFUTURE ORDER STATISTICS
minimum, and the time of the early failures in a product

population is more important than the last ones).A. Piecewise-Linear Loss Function

Conceptually, it is useful to distinguish between ‘new- consider a situation described by one of a location-scale
sample’ prediction and ‘within-sample’ prediction. For newsamjly of density functions, indexed by the vector parameter
sample prediction, data from a past sample are used to make (14,0), wherey and o ( > 0) are respectively parameters
predictions on a future unit or sample of units from the samg |qcation and scale. For this family, invariant under the
process or population. For example, based on previoys,, of positive linear transformations: ax + b with a
(possibly censored) life test data, one could be interested>|n0, we shall assume that there is obtainable from some
predicting the time to failure of a new unit, time until ;.o mative experiment a maximum likelihood estimator

fallu.res |.n.a future sample of unlts,. or numbgr .of failures (2,) (or sufficient statisticfor (1,0) with density function
by timet" in a future sample ah units. For within-sample
gf the form

prediction, the problem is to predict future events in
sample or process based on early data from that sample or R R

process. If, for examplem units are followed untit. and Py (41,6) :iz f(ﬂ,f} Q)
there arek observable failures$; < X, < & X,, one could o g o

be interested in predicting the time of the next failXg.);

time until r additional failures Xg.; number of additional We are thus assuming that for the family of density functions
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an induced invariance holds under the groufp of where
transformations: F(ViV2,171,12)

- 3ji+b, 0~ ag (a>0) ) CtVitn N, Y, m Vs Vi<nV2),

The family of density functions satisfying these conditions Ce=/m V3 (72 <V1<112V2), - (6)
is, of course, the limited one of normal, negative exponential (€2 a=7V2 ¥ € /f2=/n Vo Vi>17V,),

and gamma (with known index) density functions. The

structure of the problem is, however, more clearly segw,,\V,) is a vector of the pivotal quantities,

within the general framework.

We shall consider the interval prediction problem for thg/lz(xI -X )0, Vo=6lo (orV5=(X -@lc ), (7)
Ith order statistic;, k<I<m, in the same sample of siaefor
the situation where the firktobservations(; < X, < K X, ( ) is a vector of decisions (decision function)
1<k<m, have been observed. Suppose that we assert that eriqz '
interval d;,d,) containsX. If, as is usually the case, the M=ty =X )/, m=(dy=X,)I0
purpose of this interval statement is to convey useful
information we incur penalties i; lies aboveX, or if d, _
falls belowX,. Suppose that these penalties ef@;— X)) (0r772=(dy = Xi) (X = A)). (®)
and cy(X—d,), losses proportional to the amounts by which ¢. Risk Function
X, escapes the interval. Sinceandc, may be different the It follows from (4)-(6) that the risk associated with,6,)
possibility of differential losses associated with the interva}jlnd 6can be expressed as
overshooting and undershooting the tuds allowed. In
addition to these losses there will be a cost attaching to the _ _ef
length of interval used. For example, it will be more difficult REO.d1.d2)=E,{r 0.6, 6,)} = E[f (VoVon 7o)}
and more expensive to design or plan when the interval
(d1,dy) is wide. Suppose that the cost associated with the
interval is proportional to its length, safd,—d,;). In the - P.[ .[(_ W+71%) T4 ) dudv,
specification of the loss functiong is clearly a ‘nuisance 00
parameter’ and no alteration to the basic decision problem is - o
caused by multiplying all loss factors byol/Thus we are + “zj I( V=17,) T\, W) dydv,
led to investigate the piecewise-linear loss function

/vy

0772v2
a(d-X) , ody—d) 0%
X, <dy),
0.5 o (% <a) +emm)[[ v Uy W dydw =R, (9)
r(0,d,,dp) = =2+ (i< X =dp), "
cz(dz—dl)+(>2(X, —dy) (X, >d,). which is constant on orbits when an invariant predictor
o 2 (decision rule) d,,d,) is used, wherd(v,,v,) represents the

(3) probability density function of the pivotal quantitig’s and

V,. The fact that the risk is independentéineans that the

Thg decision p.rloble.m -spgcified py the informativ%lecision function £y,7;) which minimizes R(7,,77,) is
experiment probability distribution functioR((x-)/0) and uniformly best invariant.

the loss function (3) is invariant under the group of _ o _ o
transformations, which takgs (the location parameter) and D. Risk Minimization and Invariant Prediction Rules

o (the scale) intey + b andcg, respectively, wherb lies The following theorem gives the central result in this
in the range ofs, ¢ > 0. This group acts transitively on thePaper.

parameter space. Thus, the problem is to find the bestTheorem 1.Suppose thatU;U) is a random vector
invariant interval predictor of, having density function

(df,d3) = arg_min_R(0,d;,d), (4) w000 -1
(e u oy} [ uf(yy)dydy | (u,>0), (10)
where @ is a set of invariant interval predictors f, 00

R(6.01,02)=E4 (8, di.0p)} s a risk function. wheref is defined byf(v,v,), and letQ be the probability

B. Transformation of the Loss Function distribution function otJ,/U..
It follows from (3) that the invariant loss functior(g, () If c/citc/c<1 then the optimal invariant linear-loss
dy,d,), can be transformed as follows: interval .predlctor of X pqsed on the firstkk ordgrgd
observations (order statistics) in a sample of sizdas
r©,dy,d;)=7V,Va1,172), (5) (X¢tma , Xt n,0), where
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QL )=ck, Q@)=1-clc,. (11)

(iiy If c/citc/c=1 then the optimal invariant linear-loss

interval predictor of X, based on the firstk ordered

observations in a sample of simedegenerates into a poin

predictorX+n,0 , where

Qn.) = C /(e +cy). (12)
Proof. From (9),
OR(171,172)
om
/112 0000
= 4| ¥y dvdy- [ vy w)dydv,
00 00
=[] v €y ¥ dydu[aQm) -cl (13)
00
and
0R(171,17)
0,
== f [ ¥ Gy dvdy+ ] v (4 waudy,
0nv2 00
=[ ¥ Uy ¥ dydwl-0-Qu)+cl,  (14)
00
where
7
Q) = [ awyew, (15)
0
[ & fws, vo)v,
o(w) =22 , (16)
[ v f04 v dudv,
00
W=V, /V,. 17)

Now 0R(771,172)10 17, = OR(11,172)/017, = Oif and only if (11)
hold. We thus obtain one stationary value 1{r1,/7,)
provided (11) has a solution withy<s, and this is so if
1-cl/c>clcy. It is easily confirmed that thigy{,/7,) gives the
minimum value ofR(771,77,). Thus (i) is established.

If c/ci+c/c=1 then the minimum oR(#71,77,) in the region
nx2m, occurs wherem=n,=n., 1. being determined by
setting

oR(n.,n.)/0n.=0 (18)

and this reduces to

aQ(7.) —c[1-Q(n.)] = O, (19)

which establishes (ii).[]
Corollary 1.1 The minimum risk of the optimal invariant

tpredictor ofX, is given by

RO, 4, &)= 5116, &, &)} = Hi (Vi Vo1 = READ)

00 I V; ©
=- 1§ ljz vy ¥ dvdy+ vzj j\i f( ¥, W) dydv,
00

077v2
(20)

for case (i) with §1,77,) as given by (11) and for case (i)
with 7,=1,=n. as given by (12).

Proof. These results are immediate from (9) when use is
made ofdR(71,172)10m, = 0R(171,172)/0n, = 0 in case (i) and
0R(#.,n.)I0n.=0 in case (ii). O

The underlying reason wtofc;+c/c, acts as a separator of
interval and point prediction is that fafc,+c/c,=1 every
interval predictor is inadmissible, there existing some point
predictor with uniformly smaller risk.

I1l. EQUIVALENT CONFIDENCECOEFFICIENT

For case (i) when we obtain an interval predicton{owe
may regard the interval as a confidence interval in the
conventional sense and evaluate its confidence coefficient.
The general result is contained in the following theorem.

Theorem 2 Suppose that\V,V,) is a random vector
having density functionf(vy,v,) (v1,v,>0) and letH be the
distribution function oME=V4/V,, i.e., the probability density
function ofW s given by

W= v (W, v)dv,. (21)
0

Then the confidence coefficient based on the kirstdered
observations in a sample of simeand associated with the
optimum prediction interval(d;,d,), where di=X+/7,0,

do=X+ 17,0, IS
Pri(d,d):d <X <d,| 140}
= HQ'l-d ¢)] - HQ(c/c)l. (22)

Proof. The confidence coefficient

corresponding tog, o) is given by

for dfdy)

Pr{(Xg,0): Xy +m0 < X, < Xy +1,0| 14 7}
=Pr{( vy V) 1 17,< i/ v, <175}

= Hnp) - Hm) = HQ'- d )] - HQ™(c/cy)]. (23)

This is independent of{o). [
The way in which (23) varies with, ¢; andc,, and the
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fact that c; and c, are the factors of proportionality k
associated with losses from overshooting and undershooting ~ fo (¢ % %) =m |_| fa(%)
relative to loss involved in increasing the length of interval, ' S
provides an interesting interpretation of confidence interval
prediction. xR0 ~ RO ()L~ Fy(x)I™
IV. FINDING JOINT DISTRIBUTIONS OFPIVOTAL QUANTITIES

COMING FROM THEUNDERLYING DISTRIBUTIONS = 6 0f e %) G (% ] %) (27)

In this section, the technique of finding the joint
distributions of the pivotal quantitieé,, V, is given. These |
joint distributions are required to construct the optima
prediction intervals for future order statistics coming from
the underlying distributions under parametric uncertainty.

} follows from (27) that

A f s X s
n fH (>ﬁ |)@_,...,Xk):M
. Mathematical Preliminaries %)

Theorem 3.Let X; < ... £ X, be the firstk ordered
t § I i.e., the conditional distribution of;, givenX; = x; for all i =

observations (order statistics) in a sample of sizeom a 1. ks th h ditional distributiorX
continuous distribution with some probability density """ . is the same as the conditional distributiorKpf x;,

functionf, (x) and distribution functiorF, (x), wheredis a oV c only X = X, which is given by (26). This ends the

parameter (in general, vector). Then the joint probabilitg}rOOf' J " o T
density function o, < ... < X, and theth order statistic Co.roIIary 3._1 The cgnd|t|onal probability distribution
(1<k<l<m)is given by function ofX, givenX,=xy is

=0p (% %), (28)

§ (0= B0 RGO %), 24) R0% < X1 =t =1 o
where |-k-1 -k j [ m- +1+]j
Mok N JR-k-1) (1)) [1-Fy(x)
fo 04, %) ZMD fa(O6)=Fa(x)I™,  (25) ,Z:;‘)( i ]m-| +1+ | 1- FH(Xk):|
_ . Ikt . (m-k) ’“"(m—l} D
_ k)! Fo(%) = Fa(x) —_\m=K):
9o (% lxk)_(l—lle)!(r)n—l)!{ glng():()k} (|—|<—1)!(m—|)!jz:;'J i T-k+]
|—k+j
RO0-Fa00) ™ fa(x) | P =R ] (29)
-1 _F - 1- Fp(%)
2(X) 1-Fo(x) 617k

B. Two-Parameter Exponential Distribution

_ I=k=1/1 _ | — _
- (mokt Z [l k 1J(—l)J Let us assume that the random variabfellows the two-
(I=k=Dim=D' i ] parameter exponential distribution with the probability
density function
m-l+]j
1- Fg(m} fo(x) 1 -
X _ _X— U
[1— Fa (%) 1- Fy(%) fe(X)—;eXl{ & ] X>u, 0>0, (30)
_ (m=k)! mz—f m-1 -y and the probability distribution function
(I=k=-Dm-NH=0 j
F, ()= 1- ex;{— X“H ) (31)
o
I—k=1+]
{ Fg(m—Fe(xk)} L fp(x) 28 wore 0 e oo -
1- Fy(x,) 1- Fy(%) where @ = (1,0), u is the location parameter, andis the

scale parametew(> 0).

Theorem 4.Let X; < ... £ X, be the firstk ordered
represents the conditional probability density functiorXof observations (order statistics) in a sample of Bifeom the
given X =Xy. two-parameter exponential distribution (30T.hen the

Proof. The joint density oK; < ...< X, andX is given by  conditional probability density function othe Ith order
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statisticX; (L < k <l < m) givenX,= X is 1 1k -k-1
Fl(vl):l_B— [ . j

(-km-1+) 2 ]

9 (% ka)—mz( j ]( D _
= x— DL expe 141+ )
m—1+1+ !
xiex;{— (m=1+1+ j)(% _Xk)]
o o

_ 1 (M-’
_B(I—k,(m—l+1)z( j Jl—k+j

j=0

B 1 o m- N
_B(I—k,(m—l+1)z[ i ]( Y

j=0 I—k+]
x [l-exp(-vy)] - (35)

I-k-1+] ) NP
L { ox F{— X = X, ﬂ ox F{‘ X — X ) (32) It is known that the statistig, &) , where
g g

o
a=% (36)
and the conditional probability distribution function thie
Ith order statistie givenX,= X is and
k
P{X < x| X, =%} Z(X‘ X) + (M= K) (% — %)
g=4% , (37)
k-1
o1 1 & (1-k-1
B B(l-k,(m-1+12) = j is sufficient for 8= (1,0); also i and & are independently
distributed, with
(G L O (e S R P (£,0) = P (£) Py (0), (38)
m-| +1+j o
where
- i _,_m m(u - A
_ 1 ““Z' m-1 (-’ pgw)=;ex{—%} a>u, (39)
B(I-k,(m-1+1) = jo)I=k+j
and
It k-1)" %2 k-1a
—exg - 3 % 0) = exg - , 0>0. (40
{1 ex;{ - H | @3 Pl (aj e - (40)
Proof. It follows from (26) and (29), respectively! It follows from (40) that that the probability density

Corollary 4.1 It follows from (32) and (33) that the function of the pivotal quantity, =& /o is given by
probability density function of the pivotal quantity

Vi=(X, = X )/ o is given by - V|2<—z
folv,)=(k=-D*" explk-Dv,], v, >0. (41
2(v)=(k-D r(k=-1) plk-Dv,], v, (41)
_ 1 & -k-1),
fi(v) = B(I-k,(m-I+1) ]Z:(:)[ i J( D Thus, the joint probability density function of the pivotal
guantitiesV,, V, is given by
xexptm=1+1+ v) f(vyy Vo) = f1(vy) F2(v2), (42)
1 nf[mq]( Y which is required to construct the optimal prediction
= . -1 intervals for future order statistics coming from the two-
B(I-k Mm-1+) < | 9

parameter exponential distribution (30).

Theorem 5.Let X; < ... £ X, be the firstk ordered
observations (order statistics) in a sample of BiZeom the
exponential distribution (30). Then the probability density

function of the pivotal quantity,, = (X, —X;)/o is given

x [+ expev)] " expewy), (34)

and the probability distribution function of the pivotal
quantityV, is given by by

(Advance online publication: 21 November 2012)
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1 k‘z[k - ZJ 1)’ scale parameterd> 0).
J

fy(v2) = B(k—l(m—k+1)z Theorem 6.Let X; < ... < X, be the firstk ordered
1=0 observations (order statistics) in a sample of BiZeom the

Gumbel distribution (46)Then the conditional probability
xexpt(m-k+1+ j)v;) distribution function othe Ith order statistic, (1 < k< <

m) given X, = Xy is given by
_ 1 m-k m-k i
_B(k—l(m-k+1)z( j j( Y

= _ R (m=k)!
=0 @(Xl&)—%{NSMXk—Xk}—l‘m
xexptv)] et >0 (43) et
1-k-1 |—k-1 (_1)] XTH XH
Proof. It follows from (32) that the conditional probability * Z( . ]m exp-|e? -e“ :
density function ofthe kth order statisticX, (L< k<l < m) 1=0 ] :
given X; = Xy is
(48)
1 K2(k-2),
0, (% %) = B (- L(m—K+D) Z( . J(—l)' Proof. The proof follows from (29) and (47).]
j=o\ | Corollary 6.1 The conditional probability density

function ofX, givenX,=x, is

1 ~k+1+ j)(% -
X;ex{—(m al)()& Xl)] (m-k)!

%t % X = T im

e’ -e? ~e7 .
o

j=0

k=2+]j
xi[l_ ex{_uﬂ ex{_u} (44) (49)
ag ag ag

Theorem 7 The probability distribution function of the
It is clear that (43) follows from (44). This ends the proofpIVOtaI quantity \j = (X, = X,)/ g is given by

1 m—k(m_k] . )
= NG E ~ ~ M +1+ | B
B(k—l(m—k+1)jzz(:) J xlfl(l_k_ljﬁl)j ex{—[ AH MD 1 X

U
In this case, the joint probability density function of the HY =RV,<v}
pivotal quantities/;, V., is given by
o oo Y1 -k-1 -1)!
£ (v V) = Fi(vy) f3(v3) @45  =1- m D R P = -
(I=k=D(m=Nik-1)! 1=5 i m-=| +1+ |
and may be considered as the alternative to (42). It will be
noted that (42) and (45) are not necessarily alternative. KL 1 1
s X -1)"
C. Gumbel Distribution rZ:c:)[ r j( ) (exp@4 )- (M-I +1+ j)+ (m-k +1+r)

Let us assume that the random variakldollows the
Gumbel distribution with the probability density function

S P L l_k_l(' —k ‘1j D’
fe(x):iex;{ﬂjex;{—exl{ﬂjj (—oo<x<oo), (I—k—l)'(m—l)' i=0 J m—|+1+J
o} lo lo
K -1
Te<Xx<w, >0, (46) x(|‘j[(exm)—1)(m—l+1+ j)+(m—k+1+r)]] .(50)
and the probability distribution function "
Proof. We reduce (48) to
Pi{X<xkE T ex{—ex;{%ﬂ . 47

Pe{XPXk 8 XI_Xk|Xk:X'<}

where 8 = (1,0), 1 is the location parameter, amd is the g g |
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_ L _a (m=k)! Gumbel distribution (46). Then the joint probability density
= Bl Y= vl %= 1= G ix) =1 (I-k=1)!(m~—1)! function of the pivotal quantities
_HA-H _o

T 0l e 42+ S=—m"m Vo=—, (55)
xlil(l_l.(_l) -’ . ex{— ecfﬂ{e)qﬂ —1]]] 7 o
= j)m=l+1+j

conditional on fixed

(mekr REY1-k-1) ) M =(z...3), (56)
(I=k=DH(m-N! = i Jm-l+1+] where

“H =1k (57)

m-l+1+]j
_ X —H _
X{GXFE ex;{ o ](exp(/l) DH ' (1) are ancillary statistics, arkr-2 of which form a functionally
independent setiz and & are the maximum likelihood

estimates fory and o based on the firsk ordered
observations X;< ... <X) from a sample of sizem from the
Gumbel distribution (46), which can be found from solution

where V; = (X—X)/o is the pivotal quantity. Using the
known distribution of théth order statisticX,, we eliminate

the location parametegrfrom the problem as of
k _ _
FY= Vs 9=] (I 0B, (2) ﬁz&'“[{é 8+ (m- e }/k] 8)
0
where and )
m k-1 m-k 5’=[z ?(éi/ﬁ-'-(m_k))(keXKIaJ
9o (%) :m Fo (XL~ Fa(%)1™ ™ fa () i=1

K -1 K
k-1 x Zé“’ﬁ+(m—k)e"k’5] —szi, (59)
m { + ex;{— ex;{u]ﬂ (i=1 ki3

(k=D (m=-K)!

o
is given by
k
S _ _ f & v, [299)=8" @ W ?ex VZZZ-]
X[ex%—ex;{MJD lex;{MIJ exé—ex;{un i=1 I
o o o o
k
X D (eo,), (53) xel exp[-es{z exp(zy )+ (m- k)exp(zkvz)D
i=1
represents the probability density function of Htle order
statistic X, coming from the Gumbel distribution (46). This i} )
ends the proof.[] = 1(w [209) (s [v,2%), si0(=e0, @), v,0(0, ), (60)
Corollary 7.1 The probability density function of the
pivotal quantity V| = (X, — X, )/ o is given by where

g @)= (I‘ (k)]2 y? ex;{vzzk: z J
0 i=1

) - ESTETSE AN
fl(vl)_(|_k—l)!(m—|)!(k_1)! 120{ j ]( v

-1

‘ -k
{ZGXD(H)J’(W k)eXp(Zsz)} deJ (61)

k i=1

2

-1
r=0

(k _]j(_l)r exp(vl)
r [(exp4)-D(m=1+1+ j)+(m-k+1+1)*
is the normalizing constant,

(54)
k
Theorem 8.Let X; £ ... £ X be the firstk ordered f @, z2%)=9e® 2 eXF{VZZZi]
observations from a sample of simg which follow the i=1
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. A m M)
{Zexmzw (m- k)exp(zkva} . v, 00w), (62) TR =
i=1
19(z<k>):U »;—zexp[vzﬁzj x §(y12%) dy §(5120)ds, (66)
0 i=1

It follows from (66) that the probability element of the joint
) « 1 density ofS,, Vs, conditional on fixed® = (3 ,...,,), is
X{Z exp(zy)+ (m- k)eXp(&Vz)} dvz] . (63)

= (3% 209)dsdv,

“ k
& lVZ'Z(k)) - (k) {Z exp(zy )+ (m- k)exp(Zsz)} = (Z(k) )\5'2 exl{ \éizzl: Z]eksi
k
x g% exp[—es{g exp(zy )+ (m- k)EXp(Zsz)D, xexp[—esl{izzll exp(ijzy)+ (m Rexp(z \/Z)D dsdv,,
§[0(—00, ) (64) S 0(=00, ), Vv20(0, ). (67)

This ends the proofl]

Proof. The joint density oK, < ... < X, is given by Thus, the joint probability density function of the pivotal
guantitiesV,, V, is given by

k - —
foberx) =l D%ex;{’“ £ —ex{x'a"]] f4% 129)= Wb 129, (69)

which is required to construct the optimal prediction
X, — U intervals for future order statistics coming from the Gumbel
x exp- (M k)eX{ j (65)  distribution (46).

V. CONCLUSIONS ANDDIRECTIONS FORFUTURE RESEARCH
Using the invariant embedding technique [12-24], we reduceln many statistical decision problems it is reasonable co

(65) t0 confine attention to rules that are invariant with respect to a
o certain group of transformations. If a given decision problem
b (4 ,...%)dudo admits a sufficient statistic, it is well known that the class of
invariant rules based on the sufficient statistic is essentially
complete in the class of all invariant rules under some
mi —=T( K[Hz*)] T assumptions. This result may be used to show that if there
(m K)!o exists an optimal invariant rule among invariant rules based
on sufficient statistic, it is optimal among all invariant rules.
In this paper, we consider statistical prediction problems
J which are invariant with respect to a certain group of
transformations and construct the optimal invariant interval
predictors. The method used is that of the invariant
x embedding of sample statistics in a loss function in order to
} dv form pivotal quantities which allow one to eliminate
2 unknown parameters from the problem. This method is a
special case of more general considerations applicable
whenever the statistical problem is invariant under a group
}k of transformations, which acts transitively on the parameter

x9 @M W2 exg v z;

=1

k
x{z exp(zy )+ (m- Kexp(z\,)

i=1

T {Z exp(zy )+ (M- Klexp(zv,)

space.
More work is needed, however, to obtain optimal
prediction intervals for future order statistics under
K parameter uncertainty when: (i) the observations are from
x kst exp[_esl{z exp(izy)+ (m Kexp(z Vz)D general continuous exponential families of distributions, (ii)
i=1 the observations are from discrete exponential families of
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distributions, (iii) some of the observations are froni¥

continuous exponential families of distributions and so

from discrete exponential families of distributions, (iv) th

observations are from multiparametric or multidimensionaé)

distributions,

(v) the observations are from truncated

distributions, (vi) the observations are censored, (vii) the

censored observations are from truncated distributions.

(7]

Remark It should be remarked that if we deal, forg
instance, with within-sample prediction and wish to obtain

the best invariant prediction interval, {d,) for X, which has
the prescribed confidence coefficient (or levyeljve have to
minimize the risk functiofiR(8, d1,d,) = E4{r(6, d1,d»)} under
constraint

Pr{d < X, =d,}=). (69)

[13
It can be shown that this problem is reduced to the following

one:
Minimize
0/,
ROw12)= g [ wnaw) (4 w)dydv,
00
+of [(u=n2%) Ty, w)dydv
0772v2
+c,=m)|[ [ % (% W) dudv, (70)
00
Subject to
LU
[ ] fw wdvdv, =, (71)
0771v2

i.e., the unknown parametef is eliminated from the
problem.
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