
 

  
Abstract—In recent years, progress has been made in the 

analysis of global convergence of clonal selection algorithms 
(CSA), but most analyses are based on the theory of Markov 
chain, which depend on the description of the transition matrix 
and eigenvalues. However, such analyses are very complicated, 
especially when the population size is large, and are presented 
for particular implementations of CSA. In this paper, instead of 
the traditional Markov chain theory, we introduce martingale 
theory to prove the convergence of a class of CSA, called elitist 
clonal selection algorithm (ECSA). Using the submartingale 
convergence theorem, the best individual affinity evolutionary 
sequence is described as a submartingale, and the almost 
everywhere convergence of ECSA is derived. Particularly, the 
algorithm is proved convergent with probability 1 in finite steps 
when the state space of population is finite. This new proof of 
global convergence analysis of ECSA is more simplified and 
effective, and not implementation specific.  
 
 

Index Terms—Clonal selection algorithm; Elitist strategy; 
Martingale theory; Almost everywhere convergence  
 

I. INTRODUCTION 
RTIFICIAL immune algorithm (AIS) inspired by 
biological immune mechanism is a new intelligent 

computation for solving complex problems. AIS has become 
a new leading edge research direction after the artificial 
neural networks, fuzzy systems, evolutionary computation 
[1]-[3]. Clonal selection algorithm (CSA) is one of the most 
popular and important algorithms in AIS. Consequently it has 
attracted growing interest of computational intelligence 
experts and scholars. Currently, the studies of CSA have 
revealed many  interesting findings, but these results are 
mainly focused on algorithmic implementations, 
improvements and engineering applications, but the 
theoretical research exploring the characteristics of CSA and 
its convergence behavior is yet inadequate [4]. To assess 
whether an algorithm can effectively solve a class of 
problems, one must first start from convergence analysis. An 
algorithm has no practical value if the algorithm is not 
guaranteed to converge or not convergent within acceptable 
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computation time [5]. 
Existing convergence conclusions of CSA were mainly 

derived from the Markov chain and the ergodicity of 
mutation operators when the time tends to infinity, and 
basically were convergence in probability [6]. There are 
direct, accurate advantages when using Markov chain model 
to describe the evolution process of algorithms [7]. Though 
CSA described by Markov chain model has those advantages, 
due to the limitations of finite state Markov chain theory, the 
model can only be used for the description of the usual binary 
or special non-binary clonal selection algorithm. In addition, 
the convergence results obtained by these methods generally 
refer to the corresponding Markov chain that tends to follow 
a stationary distribution, which is different from the common 
convergence defined in optimization area. Moreover, it does 
not guarantee that the algorithm will necessarily be 
convergent with probability 1 to the global optimal solution 
[8]. Perhaps even greater limitation of those studies lies in the 
fact that they were established on the basis of particular 
implementations of the CSA, or discussed in a relatively 
weak sense of convergence. They belong to the weak law of 
large numbers category, and the means and methods of 
analysis have considerable limitations. The universal proof of 
clonal selection algorithm convergence theory has not yet 
been offered [9].  

To improve the performance of CSA in terms of better 
convergence behavior and solution, many researchers have 
proposed elitist selection strategy for generating new 
population during the evolution process. Such class of CSA 
algorithms is known as elitist clonal selection algorithm 
(ECSA), which is the most widely used CSA in the current 
literature. In this paper, instead of the traditional Markov 
chain theory, we employ martingale theory to study the 
convergence of ECSA. The best individual affinity 
evolutionary sequence is transformed into a submartingale. 
Based on the submartingale convergence theorem, the almost 
everywhere convergence of the ECSA is analyzed. Our proof 
of convergence is valid irrespective of any particular 
implementation of ECSA. 

The paper is structured as follows. The basic principles of 
clonal selection mechanism and the design scheme of the 
elitist clonal selection algorithm are presented in Section 2. In 
Section 3, the definitions of almost everywhere convergence 
and submartingale convergence theorem are introduced. 
After that, the submartingale theory proof method to ECSA 
and our main results are proposed. Finally, the conclusions 
and some possible work for future research are presented in 
Section 4. 
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II. ELITIST CLONAL SELECTION ALGORITHM (ECSA) 
Clone selection principle is one of the best-known 

mechanisms of biological immunology [10]. The basic idea 
of the algorithm is that antigens are required as objective 
function, and antibodies as the possible models of function 
optimization solutions. The affinity of the antibody and 
antigen corresponds to the function value of feasible solution. 
Only those cells recognizing antigens will be clonal 
expanded and selected relative to those not recognize the 
antigens. Those selected cells are subject to affinity 
maturation process. Clonal selection algorithm itself has 
these characteristics, which suggest that the algorithm has 
great potential for a variety of optimization problems and can 
be expected to be widely used in the field of optimization 
[11]. 

Clonal selection algorithm based on this mechanism has 
been widely used in many areas of optimal control, data 
processing, intrusion detection and fault diagnosis, and has 
become another research focus in the artificial immune 
computation. The CLONALG algorithm proposed by De 
Castro in 2002 is a typical clonal selection algorithm in recent 
years [12], which marks the beginning of intelligent 
algorithm based on immune mechanism to solve the 
optimization problem. Since then, the researchers proposed a 
wide variety of clonal selection algorithms from different 
angles of clone selection principle, most of which were based 
on the elitist remains strategy [13]-[17]. The antibody with 
highest affinity in current population does not participate in 
cloning and mutation operations, and directly replace the one 
with the lowest affinity after these operations. This strategy is 
the basic condition to ensure the convergence of an 
algorithm. 

For convenience, the basic steps of a class of elitist clone 
selection algorithm are given in details. 

Step 1. 0i = ，Randomly generating an initial set of 

antibodies ( ) { }1 20 , , , NX X X X=
JJG

" , the length of the 
antibody is L , binary coded, the number of antibodies is N ; 

Step 2. Calculating each antibody’s affinity ( )if X  in the 

antibody set ( )X i
JJG

. 
Step 3. Selecting the antibody with highest affinity 

in ( )X i
JJG

, and sending it directly into the next generation and 
replace the antibody with the lowest affinity; 

Step 4. Conducting cloning operation, mutation operation 
to the remaining 1N −  antibodies in ( )X i

JJG
and generating a 

new antibody set ( )1X i +
JJG

. 

Step 5. Generating d  new antibodies randomly, and 

replacing d antibodies with lowest affinity in ( )1X i +
JJG

. 

Step 6. 1i i= + ，Repeating Step (2) - (6), until the end 
condition is met.  

The flow chart of elitist clone selection algorithm is given 
in Fig 1. 

 
 
 
 

 
 
 
 

 
Fig.1 Flow Chart of Elitist Cloning Selection Algorithm 

 

III. ALMOST EVERYWHERE CONVERGENCE 
ANALYSIS OF ECSA 

We substitute traditional ergodic analysis, by using 
stochastic processes martingale theory, whereby the 
martingale characteristic of the best individual affinity of the 
population is analyzed and the almost everywhere 
convergence of ECSA is deduced. Furthermore, it is proved 
that the algorithm is global convergent with probability 1 in a 
finite number of steps when the state space is finite. This 
method offers a new tool for theoretical analysis of clonal 
selection algorithm [18]. 

Let ( )X t
JJG

 be the population at generation  t , and S  be 
the state space of antibody. The best individual affinity of the 

population ( )X t
JJG

 is denoted by ( )( )f X t∗
JJG

. The global 

optimal set is denoted by ( ){ }; ,M f X S f f X∗ ∗= ∀ ∈ ≥ .  
Let us give the formal definition of some terms as follows: 
Definition 1: The sequence ( ){ }, 0X t t ≥  is almost 

everywhere convergence, if and only if  
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( )( ){ }lim 1
t

P f X t M∗

→∞
⎡ ⎤⊂ =⎢ ⎥⎣ ⎦

JJG
. 

Definition 2: Let ( ){ }, 0X t t ≥  be a stochastic sequence 

defined in probability space ( ), , PξΩ , and ( ){ }tξ  be an 

increasing σ -field of ξ . Then ( ){ }, 0X t t ≥  is a 
submartingale, if it meets the following conditions: 

(1) ( ){ }X t adapts to ( ){ }tξ ; 

(2) ( ) ,E X t t⎡ ⎤ < +∞ ∀⎣ ⎦ ; 

(3) ( ) ( ) ( )1 | ,E X t t X t tξ+ ≥ ∀⎡ ⎤⎣ ⎦ . 
Based on the analysis of ECSA, the convergence of the 

algorithm is studied by using the feature of the best individual 
affinity function. If the conditional expectation of the best 
individual affinity function of new population with respect to 
current population is equal or greater than the best individual 
affinity function of current population, then the best 
individual affinity function can be transformed into a 
submartingale and used to analyze the convergence of ECSA. 
This can be formulated in the following theorem. 

Theorem 1:  The population sequence of ECSA is denoted 

as ( ){ }, 0X t t ≥
JJG

, and  ( ) ( ) ( ) ( )( )0 , 1 , ,t X X X tξ ξ=
JJG JJG JJG

"  is 

measurable least σ -algebra. Then ( )( ){ }, 0f X t t∗ ≥
JJG

 is a 

submartingale, that is 

( )( ) ( ) ( )( )1 |E f X t t f X tξ∗ ∗⎡ ⎤+ ≥⎢ ⎥⎣ ⎦

JJG JJG
, 0t ≥ . 

Proof: For ( ){ }, 0X t t ≥
JJG

 is a Markov process, from above 

analysis, we can obtain: 

( )( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( ){ }
( )( )

1 |

1 | 0 , 1 , ,

1 |

1 |
Y

E f X t t

E f X t X X X t

E f X t X t

f Y P X t Y X t X

f X t

ξ∗

∗

∗

∗

∗

⎡ ⎤+⎢ ⎥⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

= + = =

≥

∑JG

JJG

JJG JJG JJG JJG
"

JJG JJG

JG JJG JG JJG JJG

JJG

 

i.e., ( )( ){ }, 0f X t t∗ ≥
JJG

is a submartingale. 

Let mT be the operator of ECAS and { },
m

t
TP X Y
JJG JG

 the 

transition probability from population X
JJG

 to Y
JG

 at generation 
t . 

Theorem 2: Under Theorem 1, let { }
,

min ,
m

t
t T

X Y
r P X Y∗ = JJG JG

JJG JG
, 

0t ≥ , while 
1

t
t

r
∞

∗

=

= ∞∑ , we have 

(1)  ( )( ){ } 1
t

P lim f X t M∗

→∞
⎡ ⎤⊂ =⎢ ⎥⎣ ⎦

JJG
; 

(2)  ( )( )
1

1
k t k

P f X t M
∞ ∞

∗

= =

⎧ ⎫⎡ ⎤⊂ =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

JJG
∪∩ . 

Proof：

Let ( )( ){ } ( )( ){ }tF X t X M f X t f∗ ∗= = ∩ = ∅ = ≠
JJG JJG JJG

. 

Assuming ( ) mX t Y=
JJG JJG

 satisfies ( )( )mX t Y M= ∩ ≠ ∅
JJG JJG

. 

Let ( ) ( ) ( ) ( ){ }min ,f X f Y f X f Yϑ = − ≠ , 

then ( ) ( )mf Y f X
N
ϑ∗ ∗− ≥

JJG JJG
. 

Due to the property of conditional expectation, we have  
( )( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( )( )
( ){ } ( )( ) ( )( ) ( )( )( )
( ){ } { } ( ) ( )( )

( ){ } { } ( ) ( )( )
( )

1

1 |

1 |

,

,

m

m

X

t
T

X Y

t
T m m

X M

t t

E f X t E f X t

E E f X t X t E f X t

P X t X E f X t X t X f X t

P X t X P X Y f Y f X

P X t X P X Y f Y f X

P F r
N
ϑ

∗ ∗

∗ ∗

∗ ∗

∗

∗

∩ =∅

∗

+ −

= + −

= = + = −

= = −

≥ = −

≥

∑

∑ ∑

∑

JJG

JJG JG

JJG

JJG JJG

JJG JJG JJG

JJG JJG JJG JJG JJG JJG

JJG JJG JJG JG JG JJG

JJGJJG JJG JJG JJG JJG

. 

Summating the above inequality, then 

( )( )( ) ( )( )( ) ( )
1

1 1
t

k k
k

f E f X t E f X P F r
N
ϑ∗ ∗ ∗ ∗

=

≥ + − ≥ ∑
JJG JJG

, as 

t → ∞ , ( )
1

t t
t

P F r
∞

∗

=

< ∞∑ . 

Where
1

t
t

r
∞

∗

=

= ∞∑ , therefore, as t → ∞ , ( ) 0tP F → . Namely, 

( )( )lim
t

f X t f∗ ∗

→∞
=

JJG
, that is  

( )( ){ } 1
t

P lim f X t M∗

→∞
⎡ ⎤⊂ =⎢ ⎥⎣ ⎦

JJG
. 

Since ( )( )lim
t

f X t f∗ ∗

→∞
=

JJG
, when the state space S  is finite, 

i.e., ( ){ }, 0X t t ≥
JJG

only contains finite different values. 

Hence, k∃ , when t k≥ , ( )( )f X t f∗ ∗=
JJG

, consequently, 

( )( )f X t M∗ ⊂
JJG

, i.e., 

( )( )
1

1
k t k

P f X t M
∞ ∞

∗

= =

⎧ ⎫⎡ ⎤⊂ =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

JJG
∪∩ . 

From the above we can conclude the followings. (1) of 
theorem 2 shows that population affinity must tend to the 
optimal values if ECSA meets conditions, that is, ECSA is 
almost sure strong convergent; Conclusion (2) shows that the 
algorithm is globally convergent with probability 1 in a finite 
number of steps when the state space of population is finite. 

 

IV. CONCLUSIONS 
In this paper, the convergence of elitist clonal selection 

algorithm (ECSA) is studied using martingale theory. The 
best individual affinity evolutionary sequence of the 
algorithm is transformed into a submartingale, and based on 
the submartingale convergence theorem, the almost 
everywhere convergence of the ECSA is derived. Unlike the 
traditional theory of Markov chain, the new method can 
avoid solving complex transition matrix eigenvalues, and is 
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independent of the encoded form of the chromosome. This 
method makes the convergence analysis of ECSA more 
simplified and effective because of its unique advantage. 
However, it is to be noted that the method proposed in this 
paper are still under development and our future work will 
focus  on further theoretical analysis, e.g., convergence rate 
of ECSA.  
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