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Abstract—Visual navigation is extensively used in contempo-
rary robotics. In particular, we can mention different systems
of visual landmarks. In this paper, we consider one-dimensional
color panoramas. Panoramas can be used for creating fin-
gerprints. Fingerprints give us unique identifiers for visually
distinct locations by recovering statistically significant features.
Also, it can be used as visual landmarks for mobile robot
navigation. In this paper, we consider a method for automatic
generation of fingerprints. Since a fingerprint is a circular
string, different string-matching algorithms can be used for
selection of fingerprints. In particular, we consider the problem
of finding the consensus of circular strings under the Hamming
distance metric. We propose an approach to solve the problem.
In particular, we consider the center string problem, the center
circular string problem, and the center circular string with
fixed letters problem. We obtain an explicit reduction from the
center circular string problem to the satisfiability problem. We
propose a genetic algorithm for solution of the center circular
string problem. Also, we propose a genetic algorithm for the
prediction the effectiveness of the use of special algorithm for
four circular strings.

Index Terms—fingerprint, mobile robot, consensus of circular
strings, Hamming distance, genetic algorithms.

I. INTRODUCTION

PROBLEMS of mobile robot visual navigation are exten-
sively studied in contemporary robotics. In particular,

we can mention the problem of sensor placement (see e.g.
[1] – [4]), the problem of selection of a minimal set of
visual landmarks (see e.g. [5], [6]), selection of partially
distinguishable guards (see e.g. [7], [8]), the problem of
placement of visual landmarks (see e.g. [9], [10]), visual
calibration (see e.g. [12]), automatic generation of visual
recognition modules (see e.g. [13]), systems of robot self-
awareness (see e.g. [14] – [16]), the problem of anticipation
of motion (see e.g. [17], [18]), localization problems (see
e.g. [19]), etc.

Note that usage of systems of visual landmarks has been
widely applied for mobile robot navigation (see e.g. [20]).
There is a wide variety of different landmarks selection
techniques. In particular, one-dimensional 360◦ panoramas
received a lot of attention (see e.g. [21] – [29]).

Investigation of string processing problems has become
essential in bioinformatics (see e.g. [30] – [34]). A number
of efficient algorithms was proposed for solution of different
hard string processing problems (see e.g. [35] – [39]). Note
that many robotic methods consider images as strings of
features and use different string matching algorithms to solve
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Fig. 1. Neato XV-11 with camera.

robotic problems (see e.g. [40] – [44]). In particular, the
notion of fingerprint was proposed for creation unique iden-
tifiers for visually distinct locations (see [26]). Fingerprints
are especially interesting when used within a topological
localization (see e.g. [45]).

A fingerprint is a circular string of features. The ordering
of letters of a fingerprint matches the relative ordering of the
features around the robot.

To create a fingerprint we need a 360◦ degrees panoramic
image and a set of feature extractors that can identify
significant features in the image. It is clear that the quality
of feature extraction depends critically on the method of
selection of the panoramic image.

Obviously, the panoramic image quality can be verified by
human. However, for automatic generation of fingerprints, we
need some algorithm of selection of the panoramic image.
For instance, we use Neato XV-11 with camera (see [46]
and Figure 1) to create a topological map for Kuzma-II.3
(see e.g. [10]). Note that Kuzma-II.3 is equipped with a 2
DOF robotic camera only.

We assume that Neato uses the laser sensor for explo-
ration of the environment and laser map construction. For
selected points of laser map, Neato constructs a sequence of
panoramic images. This sequence gives us a set of finger-
prints. After this, we need to solve the problem of selection
of the consensus fingerprint (see e.g. Figure 2). For instance,
the first three panoramas from Figure 2 were obtained by
the robot. Since the other robot is present at each of these
panoramas, no one of these panoramas can not be used for
creating a landmark of high quality. However, we can use
these panoramas for generation of some consensus panorama.
The fourth panorama from Figure 2 gives us an example of a
consensus panorama. We have created a fingerprint for each
of the first three panoramas. Using this fingerprints we have
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Fig. 2. Examples of panoramas.

created a consensus fingerprint. This consensus fingerprint
allows us to generate a consensus panorama. In this paper, we
consider some approaches to solve the problem of selection
of the consensus fingerprint.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

Throughout the paper, the Hamming distance between S
and T we denote by D(S, T ). Let

Σ = {a1, a2, . . . , am}

be a finite alphabet. As usual, the set of all nonempty strings
over Σ we denote by Σ+. We use S to denote the set

{Si | 1 ≤ i ≤ n, Si ∈ Σ+}.

The length of a string S is the number of letters in it and is
denoted as |S|. For simplicity, we use S[i] to denote the ith
letter in the string S, and S[i, j] to denote the substring of S
consisting of the ith letter through the jth letter. For given
string S, let C(S) denote the set

{S[i+ 1, |S|]S[1, i] | 1 ≤ i ≤ |S|}

where S[|S|+ 1, |S|] is the empty string.
The following are the problems we consider in this paper:
CENTER STRING PROBLEM (CS):
INSTANCE: A set S of strings each of length p, a positive

integer k.
QUESTION: Is there a string T of length p such that

max
1≤i≤n

D(T, Si) ≤ k?

CENTER CIRCULAR STRING PROBLEM (CCS):
INSTANCE: A set S of strings each of length p, a positive

integer k.

QUESTION: Is there a string T of length p such that

max
1≤i≤n

min
S∈C(Si)

D(T, S) ≤ k?

CENTER CIRCULAR STRING WITH FIXED LETTERS PROB-
LEM (CCSFL):

INSTANCE: A set S of strings each of length p, a set Π
of letters, Π ⊆ Σ, a positive integer k.

QUESTION: Are there a string T of length p, a set

S ′ = {S′i | 1 ≤ i ≤ n}

such that
• for all 1 ≤ i ≤ n,

S′i ∈ C(Si);

• for each r if S′i[r] ∈ Π, then

S′i[r] = S′j [r],

where 1 ≤ i ≤ n, 1 ≤ j ≤ n;
•

max
1≤i≤n

D(T, S′i) ≤ k?

The idea of usage of solutions of problems CS, CCS,
and CCSFL to generate a consensus panorama was first
proposed in [11]. In particular, some experimental results
for different mobile robots were presented in [11]. Also, it is
shown in [11] that the usage of the problem CCSFL gives
us significant advantage for large distances.

III. COMPLEXITY OF CCS AND CCSFL

Let Θ denote the set

{b1, b2, . . . , bk+1}.
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We use Ti to denote the set

Sib1b2 . . . bk+1,

for all 1 ≤ i ≤ n. It is clear that there is T such that

max
1≤i≤n

min
S∈C(Ti)

D(T, S) ≤ k

if and only if there is U such that

max
1≤i≤n

D(U, Si) ≤ k.

Note that CS is NP-complete (see e.g. [47]). Therefore, CCS
is NP-complete.

In the special case Π = ∅, CCSFL becomes CCS. So,
CCSFL is NP-complete.

IV. AN EXPLICIT REDUCTION FROM CCS TO THE
SATISFIABILITY PROBLEM

In view of NP-completeness of CCS, we need some
efficient algorithm to solve the problem. Encoding hard
problems as instances of the satisfiability problem and solv-
ing them with efficient satisfiability algorithms has caused
considerable interest recently (see e.g. [48] – [54]). Now we
consider an explicit reduction from CCS to the satisfiability
problem.

Let

ϕ[1] =
∧

1≤i≤n

∨
1≤j≤p

x[i, j],

ϕ[2] =
∧

1≤i≤n,

1≤j[1]<j[2]≤p

(¬x[i, j[1]] ∨ ¬x[i, j[2]]),

ϕ[3] =
∧

1≤i≤p

∨
1≤j≤m

y[i, j],

ϕ[4] =
∧

1≤i≤p,

1≤j[1]<j[2]≤m

(¬y[i, j[1]] ∨ ¬y[i, j[2]]),

ϕ[5] =
∧

1≤i≤n,

1≤j≤p−k

∨
1≤s≤p

z[i, j, s],

ϕ[6] =
∧

1≤i≤n,

1≤j≤p−k,

1≤s[1]<s[2]≤p

(¬z[i, j, s[1]] ∨ ¬z[i, j, s[2]]),

ϕ[7] =
∧

1≤i≤n,

1≤j[1]<j[2]≤p−k,
1≤s≤p

(¬z[i, j[1], s] ∨ ¬z[i, j[2], s]),

ϕ[8] =
∧

1≤i≤n,

1≤j≤p−k,

1≤s≤p,

1≤t≤m,

1≤r≤p,

Si[1+(s+r−1 mod p)]6=at

(¬z[i, j, s] ∨

¬y[s, t] ∨ ¬x[i, r]),

ξ =
8∧

i=1

ϕ[i].

It is not hard to verify that ξ is satisfiable if and
only if there is a string T of length p such that
max1≤i≤n minS∈C(Si)D(T, S) ≤ k. It is clear that ξ is a
CNF. Using standard transformations we can easily obtain
an explicit transformation ξ into ζ such that ξ ⇔ ζ and ζ
is a 3-CNF. It is clear that ζ gives us an explicit reduction
from CCS to 3SAT.

V. EXPERIMENTAL SETUP

We have designed a set of natural instances for CCS.
In particular, we use Neato XV-11 with camera to obtain
panoramas of different environments. We create fingerprints
for these panoramas. It should be noted that thresholding-
based techniques have been widely used in image segmen-
tation (see e.g. [55]). In particular, we consider edges and
color features as the set of features (see [26]). To detect
such features we use histogram based edge detection, color
patches detection, and fuzzy voting scheme (see [26]).

It should be noted that the colors in the scene are not
known in advance. In particular, the colors can cover the
entire color space. We need to reduce the quantity of different
color patches and memory space. Therefore, similar colors
are grouped together considering their hue. Following [26],
we can use a fuzzy voting scheme for this purpose. In
particular, we can use some saturation thresholding. After
this, each pixel in the image will add a value depending on
the hue. For this purpose, we need some window filter. In
particular, {1, 2, 3, 2, 1} and {1, 2, 2, 2, 1} are considered in
[26]. In general, we can not use some fixed window filter to
obtain fingerprints. Therefore, we consider the set of window
filters

{{x1, x2, . . . , xk} | 5 ≤ k ≤ 11, 1 ≤ xi ≤ 10, 1 ≤ i ≤ k}

and use a simple genetic algorithm that evolves this set to
select proper window filter.

We have used heterogeneous cluster (500 calculation
nodes, Intel Core i7). Each test was runned on a cluster of
at least 100 nodes.

VI. SAT SOLVERS FOR CCS
To obtain optimal solutions of CCS we use genetic algo-

rithms OA[1] (see [9]), OA[2] (see [38]), OA[3] (see [52]),
OA[4] (see [56]), and OA[5] (see [57]) for the satisfiability
problem. Also, we have considered GSAT with adaptive
score function (see [58]). Selected experimental results are
given in Table I.
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TABLE I
EXPERIMENTAL RESULTS FOR DIFFERENT GENETIC ALGORITHMS

time average maximum best
OA[1] 17.9 min 1.27 hr 2.2 min
OA[2] 16.1 min 1.56 hr 1.3 min
OA[3] 3.43 min 34 min 11 sec
OA[4] 14.9 sec 29.15 sec 3.3 sec
OA[5] 5.87 sec 21.85 sec 0.8 sec
GSAT 4.76 min 18.19 min 1.13 min

VII. APPROXIMATE GENETIC ALGORITHMS FOR CCS

For real-time navigation robots require fast algorithms.
Quite often, the performance of SAT-solvers for CCS is
insufficient for such purposes. Therefore, it is natural to
consider the problem of finding approximate algorithms for
CCS.

At first, we consider a relatively standard genetic algorithm
GA[1] for solution of CCS. Let S be a collection of strings
over Σ. We assume that

T = {Tsτ1,sτ2,s . . . τn,s | 1 ≤ s ≤ r,
Ts ∈ Σ+,

τi,s ∈ {1, 2, . . . , p}}

is a set of potential solutions of CCS for S where Ts is a
potential consensus string and τi,s defines rotation of Si. We
consider T as a set of individual chromosomes. The fitness
function of GA[1] is

max
1≤i≤n

D(Ts, Si[τi,s + 1, p]Si[1, τi,s]).

We assume that d r2e chromosomes of the existing popu-
lation is selected to breed a new generation. Chromosomes
are selected by the fitness function. It is clear that two parent
chromosomes can be represented in the following form:

Ts[1]τ1,s[1]τ2,s[1] . . . τn,s[1],

Ts[2]τ1,s[2]τ2,s[2] . . . τn,s[2].

In this case, two child chromosomes

Ts[1][1, q[1]]Ts[2][q[1] + 1, p]τ1,s[1]τ2,s[1] . . .

τq[2],s[1]τq[2]+1,s[2]τq[2]+2,s[2] . . . τn,s[2],

Ts[2][1, q[1]]Ts[1][q[1] + 1, p]τ1,s[2]τ2,s[2] . . .

τq[2],s[2]τq[2]+1,s[1]τq[2]+2,s[1] . . . τn,s[1]

can be defined by two random numbers q[1] and q[2]. We
consider random variations of values of τi,s as mutations.

Also, we consider a genetic algorithm GA[2] to evolve a
set of functions

G = {gi(x1, x2) | i ∈ I}

where

gi : {1, 2, . . . , n} × {1, 2, . . . , p} → {1, 2, . . . , p}.

We can consider gi as a mutation for GA[1]. Note that
optimal solutions of CCS can be obtained using satisfiability
algorithms. An optimal solution for S we denote by

Topt.

We can apply G to GA[1] and obtain some solution T . The
standard edit distance between Topt and T we denote by

E(Topt, T ).

We consider

1

E(Topt, T ) + 1

as the fitness function of GA[2].
Let GA[3](t) be a genetic algorithm GA[1] with the set

of mutations G after t generations of GA[2]. For genetic
algorithms GA[1] and GA[3](t), we consider the average
value of

|T |
|Topt|

as a rate of the quality of the genetic algorithm. Selected
experimental results for different approximate genetic algo-
rithms for CCS are given in Tables II, III.

TABLE II
QUALITY OF GENETIC ALGORITHMS FOR DIFFERENT NUMBERS OF

GENERATIONS

102 103 104 105 106

GA[1] 3.69 3.21 2.84 2.39 2.11
GA[3](103) 2.47 2.08 1.73 1.52 1.46
GA[3](104) 2.37 1.12 1.07 1.06 1.052

TABLE III
PERFORMANCE OF GENETIC ALGORITHMS FOR DIFFERENT NUMBERS OF

GENERATIONS

time average maximum best
GA[1] 0.219 sec 0.244 sec 0.197 sec
GA[3](103) 0.527 sec 0.556 sec 0.438 sec
GA[3](104) 0.331 sec 0.349 sec 0.312 sec

VIII. THE PROBLEM CCS FOR FOUR CIRCULAR STRINGS

The set of edges {b1, b2, . . . , bm[1]} we denote by Σ1. The
set of color features {c1, c2, . . . , cm[2]} we denote by Σ2. We
assume that

Σ = Σ1 ∪ Σ2.

The set

{Fi | 1 ≤ i ≤ q, Fi ∈ Σ+}

of fingerprints of given point of the environment we denote
by F . A number of occurrences of string u in string v we
denote by

#occ(u, v).

Engineering Letters, 21:4, EL_21_4_07

(Advance online publication: 29 November 2013)

 
______________________________________________________________________________________ 



TABLE IV
THE AVERAGE NUMBER N OF CORRECT PREDICTIONS FOR DIFFERENT NUMBERS OF GENERATIONS

number of generations 102 103 104 105 5 · 105 106 5 · 106 107 5 · 107 108 5 · 108

N 53 % 56 % 58 % 73 % 77.3 % 81 % 84.4 % 87 % 88.7 % 89.2 % 89.3 %

A function

∑
i

αi

q∑
j

#occ(ui, Fj)

we denote by H(F ).
Note that CCS can be solved by an O(n2logn)-time

algorithm for three circular strings and an O(n3logn)-time
algorithm for four circular strings [59]. We assume that if
H(F ) < 1, then we can use the algorithm for four circular
strings.

To find values of αi and ui we use a genetic algorithm
GA[4]. Note that GA[4] evolves a population of sets

{αi, ui | αi ∈ Q, ui ∈ Σ1, i ∈ I}.

We assume that initial value of the fitness function f is
equals to 1 for any set. We use satisfiability algorithm to
obtain optimal solution for F . An optimal solution for F we
denote by Topt. Let T denote the solution that obtained by
the algorithm for four circular strings [59]. Let

k[1] = max
1≤i≤q

min
S∈C(Fi)

D(Topt, S),

k[2] = max
1≤i≤q

min
S∈C(Fi)

D(T, S).

For given set of values of αi and ui, we assume that

fnew =


fold + 1, if k[1] ≥ 0.9k[2] and H(F ) < 1,
fold + 1, if k[1] < 0.9k[2] and H(F ) ≥ 1,
fold − 1, if k[1] ≥ 0.9k[2] and H(F ) ≥ 1,
fold − 1, if k[1] < 0.9k[2] and H(F ) < 1.

Selected experimental results are given in Table IV.

IX. THE GENERAL SCHEME OF THE ALGORITHM FOR THE
PROBLEM OF SELECTION OF THE CONSENSUS

FINGERPRINT

For set F of fingerprints of given point of the environment
if H(F ) < 1, then we use the algorithm for four circular
strings [59]. If H(F ) ≥ 1, we try to solve CCSFL.

Let Ci be the longest subsequence of Fi such that

Ci ∈ Σ+
1 ,

where 1 ≤ i ≤ q. Frequently, we have

Ci = Cj ,

for all i, j ∈ {1, 2, . . . , q}. Moreover, in many cases, the
value of

max
1≤i≤q

{t− s | s < r < t,

Fi[s] ∈ Σ1,

Fi[t] ∈ Σ1,

Fi[r] ∈ Σ2}

is relatively small. Under these conditions, we can reduce
CCSFL to CS with small value of p. If we can not use the
algorithm for four circular strings or solve CCSFL, we use
GA[3](104).

For the general approximate algorithm for the problem
of selection of the consensus fingerprint, we have obtained
following results: average time – 0.117 sec; maximum time –
0.643 sec; best time – 0.057 sec.

X. CONCLUSION

In this paper, we have proposed an approach to solve
the problem of selection of the consensus fingerprint. In
particular, we have used histogram based edge detection,
color patches detection, and fuzzy voting scheme. For fuzzy
voting scheme, we have applied different window filters. To
select proper window filter a simple genetic algorithm have
used. We have used for selection of the consensus fingerprint
the center string problem, the center circular string problem,
and the center circular string with fixed letters problem.

We have considered an efficient algorithm for solution of
CCS. In particular, we have proposed an explicit reduction
from CCS to the satisfiability problem. To obtain optimal
solutions of CCS we have used different genetic algorithms
for the satisfiability problem. We have proposed genetic
algorithms for approximate solution of CCS. Also, we have
considered an approach for solution of CCS for four circular
strings.
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