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Abstract-Transient stability analysis plays an important role 
for planning, designing and upgrading an existing electrical 
power system network. In this paper, transient stability 
analysis is carried out by considering a three-phase fault at the 
busbars 7 and 4 with the effect of various fault-clearing times. 
The simulation is carried out using CYME 5.02 power system 
software with fast decoupled method. It is found that at fault 
clearing times of 0.05s, 0.1s, and 0.15s, the generators (G2, G3) 
under test are stable with respect to the simulation time.  
Whereas, at fault clearing times of 0.2s and 0.3s, these 
generators are found to be unstable for both faulted busbars 7 
and 4. These simulation results are then compared with the 
proposed model results and are found to be in good agreement. 
In addition, it has been demonstrated that the transient 
stability of a system can be improved using control devices. 
 
Keywords: Transient stability, CYME software, three-
machine, three-phase fault, fault clearing times, stable, 
unstable, control devices. 
 

I. INTRODUCTION 
 

AY by day demand of electrical power is increasing 
due to expansion of industrial, residential and 
commercial sectors. In this regard, electric utility 

companies are being asked to run their machines very close 
to their maximum output. To meet this demand, the size of 
the interconnected power system is increasing, which in turn 
is resulting in an increase in the modification cost of these 
power systems. The utility companies are planning and 
adopting wide range of design options to reduce the higher 
modification cost. In this circumstance, detail studies related 
to transient stability analysis are carried out by considering 
different assumptions. Transient stability analysis requires 
huge amount of computational efforts due to large size of 
interconnected power system.  Due to network complexity, 
power system stability is divided into smaller areas 
including rotor angles, frequency and voltage stabilities. 
Rotor angle stability refers to the ability of synchronous 
machines of an interconnected power systems to remain in 
synchronism after being subjected to a fault [1-2]. N. 
Amjady and S. F. Majedi [2] have proposed a new hybrid 
intelligent system for prediction of transient stability.  
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In their paper, the intelligent system is composed of a 
processor, an array of neural networks (NN) and an 
interpreter.  
In [3], the authors have demonstrated that the study of 
transient stability of a system is important not only for 
design and coordination of protection scheme at the 
planning stage but also for security control during system 
operation. A. M. Mihirig and M. D. Wvong [4] have 
proposed a catastrophe theory to determine the transient 
stability regions of multimachine power systems. They have 
calculated transient stability limits from the bifurcation set 
and the critical clearing time from the catastrophe manifold 
equation. Distributed approach for real time transient 
analysis have already been mentioned by some authors (e.g., 
see [5]) describing stability analysis for large number of 
machines and busbars. A direct method of Lyapunov 
functions has been used to recognize the fault location as a 
critical factor for the determining the boundary of the 
stability region [6].  
 A new method has been developed for economic dispatch 
together with nodal price calculations which included 
transient stability constraints and, at the same time, 
optimized the reference inputs to the flexible AC 
transmission system (FACTS) devices for enhancing 
system stability and reducing nodal prices [7, 8].  
 The accuracy of using static (nonlinear) load models with 
suitably identified parameters for transient stability analysis 
has been examined in [9]. Here, numerical studies have been 
conducted using on-line measurement data for modeling real 
power behaviors during disturbances and hence were 
deemed adequate for transient stability analysis. In [10], the 
authors have carried out Transient stability analysis in 
different cases such as peak and off-peak loads, connection 
and disconnection of busbar, with and without current limit 
reactor (CLR). In this case, the transient stability in peak 
load condition was more stable than that in off-peak load 
condition; the transient stability with bus-bar disconnected 
was more stable than that with bus-bar connected; the 
transient stability with CLR was more stable than that 
without CLR. Transient stability analysis in terms of 
machines rotor angle, electrical power, machines speed and 
terminal voltage has been done for Sarawak grid system 
using power system simulation for engineers in [11]. A 
power system analysis toolbox (PSAT) was used to study 
transient stability analysis for the IEEE 14-bus system with 
wind connected generator in [12]. Systematic investigations 
of transient stability analysis have been conducted by the 
combination of step-by-step integration and direct methods 
in [13]. In this case, more time was required to calculate 
potential and kinetic energies of all machines before and 
after the faults. Carlo Cecati and Hamed Latafat [14] have 
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studied transient stability of a two-machine infinite bus by 
time-domain versus transient energy function when affected 
by large disturbances. Here, they have used the Lyapunov 
function and decentralized nonlinear controller to study 
transient stability. 
 In this paper, a new method, based on control theory, has 
been proposed to overcome the drawbacks of different 
existing methods. In addition, CYME 5.02 simulation 
software is used to simulate the transient stability analysis 
by considering three-phase fault at busbars 4 and 7. The 
simulation results have been compared with the results 
obtained by the proposed method. 
 

II.PROPOSED METHOD 

 
The proposed method is developed based on the swing 
equation and the theory of control system. The well-known 
classical swing equation which is related to synchronous 
generator rotor swing angle is [15],  

2

2 a m e
d

M P P P
d t


                                                     (1)                                                                             

Where, 
2

s

H
M


 ,           (2) 

aP is the accelerating power, 

mP is the mechanical power, 

eP is the electrical power output, 

s is the synchronous angular velocity of the rotor, 

 is the synchronous machine rotor angle, 
H is the inertia constant. 
The power output of the single machine connected to an 
infinite bus at any instant of time is, 

sine mxmP P             (3) 

The mechanical power input equal to the prefault electrical 
power output at an initial angle 0 is given as, 

0sinm mxmP P             (4) 

At any location of the network, the system reactance 
during the occurrence of a fault is different from the 
reactance after clearing the fault. As a result, the 
corresponding output powers in these two conditions are 
found to be different. In this case, the maximum value of the 
machine output power mxmP  can be represented as a two-

valued step function as shown in Fig.1 and this can be 
represented as [16], 

1 ( ) ( )mxm rP Pu t u t t                                                (5)                                                                                                        

 
Where, 

( )u t is the step function at 0t  , 

( )ru t t is the step function at rt t , 

2 1P P   , 

1P  is the maximum power output during the occurrence of a 

fault, and  

2P  is the maximum power output after removing the fault. 

 
The rotor swing angle , which has been defined relative to 
a reference axis rotating at the synchronous angular velocity 

s , can be expressed in terms of the actual rotor speed 
as, 

( ) 's t t                                                                  (6)                   

Differentiating equation (6) with respect to t provides, 

' 2 '
d

f
dt

              (7) 

Where, ' is a measure of the frequency ( ')f of rotor 

oscillation with respect to the synchronously rotating 
reference axis.  
Considering the following relation: 

siny               (8) 

Substituting equation (6) into equation (8), yields, 
sin 'y t            (9) 

Substituting equations (5) and (9) into equation (3) provides, 

1 sin ' ( ) sin ' ( )e rP P t u t t u t t           (10) 

Taking Laplace transform of equations (1), (7), (9) 
2 ( ) ( ) ( ) ( )a m eMs s P s P s P s           (11) 
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Equation (11) provides the transfer function of the forward 
path block of Fig. 2 and it can be expressed as, 

2

( ) 1
( )

( )a

s
G s

P s Ms


                       (15)

              
Dividing equation (13) by equation (12), yields the transfer 
function of the first feedback block, 

2

1 2 2

( )
( )

( ) '

Y s s
H s

s s 
 


      (16)

             
Dividing equation (14) by equation (13) gives the transfer 
function of the second feedback block as, 

2 1
( ) ( 'cos ' sin ' )

( )
( ) '

rt s
e r rP s e t s t

H s P
Y s

  


 
       (17)         

In taking Laplace transforms the rotor oscillation angular 
velocity ' has been considered to be constant at an average 
value. The closed loop transfer function of the feedback 
system of Fig.2 corresponding to a synchronous machine is, 

1 2

( ) ( )

( ) 1 ( ) ( ) ( )m

s G s

P s G s H s H s





                                          (18)                    

Substituting the expressions of G(s), H1(s), and H2(s) into 
equation (18) gives, 
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Where, 
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The characteristic equation of the feedback system of Fig. 2 
derived from the swing equation of a synchronous machine 
is the denominator of equation (20) equated to zero as 
shown below:  

2
1 2 3 0r rt s t ss k k e k se                                               (24)                                                                                  

Equation (24) can be rewritten as follows: 

1 2( ) ( ) ( ) 0f s f s f s                                                      (25)                                                                               

Where, 
2

1 1( )f s s k                                                                    (26)                                                                             

3
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 

                                               (27)                                                                            

It is evident that a root of equation (25) is the point of 
intersection of the functions 1( )f s and 2 ( )f s . This point has 

been termed as the dominant root.  Fig.3 shows the sketches 
of the forms of the functions 1( )f s and 2 ( )f s . It can be seen 

that function 
1
( )f s  is greater than 

2
( )f s  i.e. 

1 2( ) ( ) ( )f s f s f s  is positive for all values of s  on the 

right of and up to the point 2

3

k
s

k
  .  At 2

3

k
s

k
  , the 

function 
2

( )f s is zero and beyond this point 
2

( )f s  starts 

increasing so that 
2

( )f s intersects 
1
( )f s at a point having its 

real part equal to roots . This point is the desired dominant 

root to be searched for. Beyond this point roots , 
2

( )f s  is 

greater than
1
( )f s  i.e. the function ( )f s is negative.  

Fig. 1 Maximum power output during and after faults. 

 
 
Fig. 2 Represented swing equation into a feedback model. 
 

Therefore, a search for the real axis bounds of the region 
containing the dominant root can be made starting from the 

point 2

3

k
s

k
   and continued by increasing the absolute 

value of s  until the function ( )f s becomes negative. 

 
Fig. 3 Sketches of functions 1( )f s and 2 ( )f s . 

 

III.RESULTS AND DISCUSSION 
 

The CYME software is used to study the transient stability 
analysis of the IEEE three-machine, nine-busbar power 
system network. The base MVA and system frequency are 
considered to be 100 MVA and 60 Hz, respectively. The 
single-line diagram of the three-machine power system is 
shown in Fig. 4. Here, generator G1 is connected to slack 
bus 1, whereas generators 2 (G2) and 3 (G3) are connected 
to busbars 2 and 3, respectively. Loads A, B and C are 
connected in busbars 5, 6 and 8 respectively. Initially, fast 
decoupled method is used for load flow analysis. Then 
transient stability analysis has been carried out by 
monitoring the performance of the generators (G1, G2 and 
G2) and different buses. Two cases have been considered in 
the transient stability analysis of this power system network. 
The simulation results based on the fast decoupled method 
and the proposed method were compared.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Single-line diagram of three machine power system. 

 
This comparison rendered the required minimum average 
distance of the dominant roots on the left of the imaginary 
axis. The power system network can be identified as either 
stable or unstable based on the minimum average distance 
of the dominant roots as shown by the proposed method. 
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The first case has been dealt with a three-phase fault 
occurring near bus 7 of the line 5-7 and, considered a 
number of fault clearing times (fct) of  0.05s, 0.1s, 0.15s, 
0.2s and 0.3s, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. SM relative rotor angles when fault at bus 7 and fct 0.05s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6.SM relative rotor angles when fault at bus 7 and fct 0.1s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.SM relative rotor angles when fault at bus 7 and fct 0.15s. 
 

 
 
 

Fig.8.SM relative rotor angles when fault at bus 7 and fct 0.2s. 

The fault is cleared by disconnecting the line 5-7 and, the 
duration of simulation is considered to be 180 cycles (3s). 
The swing angles of the generators G2 and G3 have been 
calculated by subtracting the swing angles of the generator 
G1 for different fault clearing times. Then the swing angles 
of generators G2 and G3 are plotted in the  t   plane, 
which are shown in Figs. 5 to 8.An inspection of Figs. 5, 6, 
and 7 shows that the three-machine system is stable for the 
first three fault clearing times of 0.05s, 0.1s, and 0.15s, 
because relative rotor angles of G2 and G3 swing together 
with respect to the simulation time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.SM relative rotor angles when fault at bus 7 and fct 0.3s. 

 
From Figs. 8 and 9, it is found that relative rotor angles of 
the generators G2 and G3 increases abnormally to 2800 
degree instead of swinging with the simulation time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. Busbar voltage fault at bus 7 and fct 0.1s. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.11. Busbar voltage fault at bus 7 and fct 0.15s. 
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This characteristic indicates that both generators are 
unstable for the fault clearing times of 0.2s and 0.3s 
respectively. The voltages at the buses 4, 7 and 9 for the 
fault clearing times of 0.1s, 0.15s, 0.2s and 0.3s are shown 
in Figs. 10, 11, 12 and 13, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Busbar voltage fault at bus 7 and fct 0.2s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13. Busbar voltage fault at bus 7 and fct 0.3s. 

 
From Figs. 10 and 11, it is observed that the busbar voltage 
is collapsed at the fault clearing times of 0.1s and 0.15s 
respectively. After that, the busbar voltages swing together 
with the simulation time, which indicates that the generators 
G2 and G3 are becoming stable. The bus voltages have been 
collapsed at the fault clearing times of 0.2s and 0.3s as can 
be seen in Figs. 12 and 13. After the fault, these voltages did 
not swing together with the simulation time, which caused 
unstable condition. 
The results obtained by the application of the proposed 
method in case I with a choice of 0.25 Hz for the rotor 
oscillation frequency of all machines have been shown in 
Table 1. From Table 1, it should be noted that the average 
distances of the dominant roots of the three machines from 
the imaginary axis for the first three faults clearing times of 
0.05s, 0.1s, and 0.15s are -72.95, -21.91 and -10.87, 
respectively. For stable condition, the minimum average 
distance of the dominant roots is considered to be -10.87. In 
this light, the power system network represents stable 
condition for the fault clearing times of 0.05s, 0.1s and 
0.15s. For the last two fault clearing times (0.2s, 0.3s), the 
average distance is very less than the minimum average 
distance of the dominant roots that makes the system 

unstable. A comparison with the swing curves in Figs. 5 to 9 
obtained by the simulation for the same fault clearing times 
also validates the results on stability by the proposed 
method as shown in Table 1.  
In the second case, a three-phase fault is considered near bus 
4 of the line 4-6. Then the load flow solution is carried out 
and the transient stability is performed for the fault clearing 
times (fct) of 0.05s, 0.1s and 0.3s respectively by opening 
the line 4-6. The swing angles of the generators G2 and G3 
are determined by subtracting the swing angles of the 
generator G1 at an interval of 0.01s for a simulation time of 
3s by the CYME 5.02 software and plotted in Figs. 14 to 16.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14. SM relative rotor angles when fault at bus 4 and fct 0.05s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.15. SM relative rotor angles when fault at bus 4 and fct 0.1s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16. SM relative rotor angles when fault at bus 4 and fct 0.3s. 
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From Figs. 14 to 16, it is observed that the system is stable 
for the fault clearing times of 0.05s and 0.1s respectively. It 
is unstable for the fault clearing time of 0.3s as the second 
swing is decreasing than the first swing of the generator G3. 
The results obtained by the proposed method for case II with 
a rotor oscillation frequency of 0.25 Hz is shown in Table 2. 
In case I, it is found that the minimum average distances of 
the roots on the left of the imaginary axis in s -plane must 
be -10.87 to consider the three-machine system stable. 
Therefore, it should be noted in Table 2 that the system is 
stable for case II for the fault clearing times of 0.05s and 
0.10s when the average distance of the dominant roots on 
the left of the imaginary axis is more than -10.87. Since for 
the fault clearing time of 0.3s, the average distance is only -
3.08 on the left of the imaginary axis, the system is 
indicated to be unstable. 
 

 

Fig.17. SM relative rotor angles when fault at bus 7 and fct 0.2s. 
 

 

 

Fig.18. SM relative rotor angles when fault at bus 7 and fct 0.3s. 
 

The simulation is then repeated to analyze the transient 
stability of the power system network by considering the 
effect of the exciter and the governor. In this case, the IEEE 
model of salient pole synchronous generator with automatic 
voltage regulator as the excitation system and diesel 
governor is used to improve the stability. The same fault 
clearing times (0.2s and 0.3s) are repeated for this 
simulation and the relative rotor angles for the generators 
are then plotted as shown in Figs. 17 and 18 respectively. 
The relative rotor angles of generators G2 and G3 swing 
smoothly up to 1s, whereas the angles increases together 
after 1s and again swing with simulation time. When 

compared to the results plotted in Figs. 8 and 9 with the 
corresponding results plotted in Figs. 17 and 18, it is seen 
that both generators G2 and G3 are in stable condition. 
Therefore, it can be concluded that the transient stability can 
be improved using control devices such as exciter and 
governor.   

TABLE I  

STABILITY RESULTS FOR A FAULT NEAR BUS 7 ON LINE 5-7 

IDENTIFYING DOMINANT ROOTS CORRESPONDING TO A 

ROTOR OSCILLATION FREQUENCY OF 0.25 HZ 

 
Fault 

clearing 
time 
(s) 

Starting 
point for 

root 
search 

Average 
number of 

search steps 
in increment 

of -10 

Average of the 
lower limits of 
roots locations 

in s -plane 

Remarks 

0.05 -19.95 7 -72.95 Stable  
0.1 -9.91 3 -21.91 Stable 

0.15 -6.54 2 -10.87 Stable 

0.2 -4.83 2 -6.83 Unstable 
0.3 -3.08 2 -3.41 Unstable 

 
 

TABLE II 

STABILITY RESULTS FOR A FAULT NEAR BUS 4 ON LINE 4-6 

IDENTIFYING DOMINANT ROOTS CORRESPONDING TO A 

ROTOR OSCILLATION FREQUENCY OF 0.25 HZ 

 
Fault 

clearing 
time 
(s) 

Starting 
point 

for root 
search 

Average 
number 

of search 
steps in 

increment 
of -10 

Average of 
the lower 
limits of 

roots 
locations in 

s -plane 

Remarks 

0.05 -19.95 7 -73.62 Stable  
0.1 -9.91 3 -21.58 Stable 
0.3 -3.08 2 -3.08 Unstable 

 
 

IV. CONCLUSION 
 
A new method has been proposed for analyzing transient 
stability of a three-machine nine bus power system network. 
This method uses a set of closed loop transfer functions, one 
for each synchronous generator and is derived by taking 
Laplace transformation of the nonlinear swing equation. The 
dominant root is searched in the s -plane for each generator 
starting from a real value, which is same for all generators 
and a function of only the rotor oscillation frequency and the 
fault clearing time. The minimum average distance in the s -
plane was deemed to be -10.87 for the three-machine 
system. A decrement of 10 was found to be quite 
satisfactory for searching the dominant root. In the stable 
cases of the system, the average distance of the dominant 
roots was at or further left of the minimum average distance 
depending upon the fault clearing time. The average 
location shifted more towards right with higher fault 
clearing time and this location was completely on the right 
of the minimum allowable value for the unstable cases. The 
simulation was carried out using CYME 5.02 power system 
software by considering two cases. The simulation results 
were compared with the proposed method and were found to 
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be in good agreement. Exciter and governor were also used 
to improve the transient stability of three machines nine 
busbar system.  
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