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Abstract—Battery Management System (BMS) requires an
indefinite accurate model. With an aging model, the lifetime of
a battery can be precisely predicted with respect to the State-of-
Charge (SoC) of a battery. The mathematical model in terms
of state variables involving smart BMS is presented in this
work. The state space model is crucial as an accurate model
and is able to represent the complex dynamic behavior of a
battery system. A numerical case study is done to verify the
model obtained through mathematical derivations by adopting
the prominent RC battery model from literature. Furthermore,
the well-known Kalman filter (KF) is applied to estimate the
SoC of a battery system. With accurate prediction of SoC of
battery system, its lifetime could be prolonged, and thereby
saving us substantial cost.

Index Terms—Battery Management System (BMS), battery
modeling, Kalman filter, State-of-Charge, state space.

I. INTRODUCTION

THE understanding of a battery system is essential before

efficient management system could be designed [1], [2],

[3]. Hence, a generic tool to describe the battery performance

under a wide variety of conditions and applications is highly

desirable [1]. As such, the electrical modeling is able to

provide such a tool that enables visualization of the processes

occurring inside rechargeable batteries. Only with the pres-

ence of these generic models could new battery management

system be developed for reliable performance. These algo-

rithms control the operation and maintain the performance

of battery packs. The ultimate aim is to prolong battery

life and ensures reliable safety alongside many applications,

especially in photovoltaic systems [4], [5], [6].

Battery modeling is done in many ways depending on the

types of battery. In general, the resulted battery model is

mathematical model comprising of numerous mathematical

descriptions [7]. Ultimately, the battery models aim to deter-

mine State-of-Charge (SoC) of a battery system. However,

the complexity of the nonlinear electrochemical processes

has been a great barrier to modeling this dynamic process

accurately. The accurate determination of SoC will enable the

utilization of battery for optimal performance, long lifetime,

and prevent irreversible physical damage to the battery [8].

Solutions to SoC via neural networks [9] and fuzzy logic [10]

have been difficult and costly for online implementation due

to large computation, causing the battery pack controller to
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be heavily loaded. However, this can be a good alternative

in the near future due to the increased computational power

of processing chips alongside their declining cost.

Model-based state-estimation has been proposed in [11],

[12], [13]. In [12] a state-estimation model had been utilized

for the determination of optimized charging current using

Genetic Algorithm (GA). In [14] Ant Colony algorithm was

applied to determine the charging current in each stage to

reduce charging time. In control theories, the well-known

Kalman filter [15] had been applied successfully for both

state observation and prediction problems [11]. Work in

[16] utilized manufacturers’ data in modeling the dynamic

behavior of battery.

In this work, a mathematical derivation leading to a state

space model is presented. The basic schematic model is

adopted from [11], [13]. Hereby, a thorough analysis in

the form of state variables with the application of Kalman

filter is presented. The rest of the paper is organized as

follows. Section II discusses the factors of battery aging. A

mathematical model is derived in Section III, describing the

state space model. Results are presented in Section V, and

finally the conclusions are derived in Section VI.

II. BATTERY AGING

Identification of key aging parameters in battery models

can validate degradation hypotheses and provide a foundation

for estimation of battery status, e.g. State of Health (SOH).

In brief, aging and degradation of batteries can be caused

by capacity fading (the loss of battery charging/discharging

capacity over time) as well as power fading (the loss of

absorbing and delivering electrical power). From another

perspective, power fading and energy fading are associated

with impedance rise and capacity loss, respectively. Detailed

discussion of typical aging effects can be found in [17]. A

few major effects are outlined in the following subsections.

A. Thermal Degradation

bThe performance of a battery is significantly affected by

temperature. For instance, Lithium battery can effectively

operate between −30◦C and 52◦C. When the temperature

drops below −30◦C, diffusion and chemical reactions be-

come inactive and thus battery impedance increases dramat-

ically. On the other hand, when the temperature rises above

60◦C, the battery has a significant capacity loss. Also, if the

temperature rises above 85◦C, the battery could be damaged

easily. Chemical reactions in batteries grow exponentially

when the temperature increases. Meanwhile, since vigorous

chemical reactions generate excessive heat, the battery could

also break down if the heat from batteries is not properly

managed.
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B. Physical Damage

Battery aging can also be caused by electrode fracture and

fatigue. In existing literatures, a specific electrode model and

a diffusion-induced stress model have been proposed for in-

vestigation [18]. Results showed that the output voltage does

not change significantly, however it increasingly accumulates

stress.

C. Particles Accumulation

Solid Electrolyte Interphase (SEI) is formed on the surface

of electrodes when the battery is charged, and in particular,

when electrode starts to react with the electrolyte. SEI ab-

sorbs mobilized Lithium ions and slows down the transporta-

tion of ions between electrode and electrolyte. These form

crystalline introduce power fading and capacity fading. In the

case of low and high current densities, moss and dendrite are

formed on the surface of negative electrode. These substances

reduce surface area of electrodes for reactions, and thus

causing battery fading.

D. Aging Characterization

Measurements are needed in order to accurately char-

acterize aging in batteries. To investigate the cycle life

capabilities of lithium ion battery cells during fast charging,

cycle life tests have been carried out at different constant

charge current rates. Through measurement results, cycle

life models have been developed to predict the battery cycle

ability. The analysis indicates that the cycle life of the battery

degrades when the charge current rate increases. In addition,

the measurement of battery impedance via electrochemical

impedance spectroscopy (EIS) and the current-pulse tech-

nique [19] helps in determining battery health.

In order to ensure a uniform temperature during battery

operations, maintaining battery performance, and eventually

prolong the battery lifetime, real-time temperature sensing

and monitoring systems as well as cooling systems are

needed [20], [21], [22]. In addition, in order to improve

cycle stability and battery capacity, thick anodes (e.g. about

1 mm) are adopted for Li-ion batteries. These anodes consist

of vertically aligned carbon nanotubes which are coated with

silicon and carbon [23].

E. Aging Models

Aging parameters in Lithium-ion batteries vary with dif-

ferent current rates, working temperatures and depths of

discharge. For example, in order to model the thermal

characteristics of the battery that causes battery aging, it

is necessary to model the generation of heat inside the

battery, heat transfer between battery and the environment,

and the reactivity of chemical reactions with respect to the

temperature [24]. In particular, in order to correctly model

the thermal distribution and characteristics of battery packs,

lumped thermal models are formulated to model the ohmic

heating in battery cell packs [25]. The aging parameters can

be applied for early aging detection. Through early detection

and appropriate maintenance, performance of battery cells

can be significantly improved. Detection can be done by

analyzing real-time data from operations of batteries (e.g.

voltage and current data from lithium-ion cells). In [12],

!"

!# !$

%#&'()*$ %+,!"# !"$

-# -+

./

-

Fig. 1. Schematic of RC battery model

battery aging detection is done based on the sequential

clustering of battery packs. During operations, a derived

fuzzy model is used to predict operation performance and

detect the aged battery via similarity comparisons, with

respect to the ideal situation.

III. BATTERY MODEL [13]

Several battery models existed over the past years. Each

of these models varies in term of its complexity and appli-

cations. In this work, a dynamical battery model is adopted,

consisting of state variable equations, from [11], [13]. The

schematic representation of this model is shown in Fig. 1. In

this model, there exists a bulk capacitor Cbk that acts as a

energy storage component in the form of charge, a capacitor

that models the surface capacitance and diffusion effects

within the cell Csurface, a terminal resistance Rt, surface

resistance Rs, and end resistance Re. The voltages across

both capacitors are denoted as VCb and VCs, respectively.

A. Mathematical Derivations of Battery Model

In this derivation, we aim to form a state-space model

consisting of the state variables VCb, VCs and V0. State

variables are mathematical description of the ”state” of a

dynamic system. In practice, the state of a system is used to

determine its future behaviour. Models that consist of paired

first-order differential equations are in state-variable form.

Following the voltages and currents illustrated in Fig. 1,

the terminal voltage V0 can be expressed as

V0 = IRt + IbRe + VCb, (1)

which is similar to

V0 = IRt + IbRs + VCs. (2)

By equating the (1) and (2), and after simple algebraic

manipulation, which results in

IbRe = IsRs + VCs − VCb. (3)

From Kirchoff’s laws, I = Ib + Is,

Is = I − Ib, (4)

Substituting (4) into (3) yields

Ib(Re +Rs) = IRs + VCs − VCb. (5)

By assuming a slow varying Cbk , that is Ib = CbkV̇Cb (from

basic formula of i = C ∂V
∂t

) and substituting into (5), the

following equation is obtained after rearrangement
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V̇Cb =
IRs

Cbk(Re +Rs)
+

VCs

Cbk(Re +Rs)

−
VCb

Cbk(Re +Rs)
. (6)

By applying a similar derivation, the rate of change of the

surface capacitor voltage, derived also from (1) and (2) as

V̇Cs =
IRe

Csurface(Re +Rs)
−

VCs

Csurface(Re +Rs)

+
VCb

Csurface(Re +Rs)
. (7)

By assuming A = 1
Cbk(Re+Rs)

and B = 1
Csurface(Re+Rs)

,

(6) and (7) can be written as

V̇Cb = A · IRs +A · VCs −A · VCb, (8)

and

V̇Cs = B · IRe −B · VCs +B · VCb, (9)

respectively. Further, (8) and (9) can be combined to form

a state variable relating voltages VCs and VCb and current

flow I , which is

[

V̇Cb

V̇Cs

]

=

[

−A A
B −B

] [

VCb

VCs

]

+

[

A ·Rs

B · Re

]

I. (10)

Next, the output voltage is derived from (1) and (2). By

adding both equations, we obtain

2V0 = 2IRt + IbRe + IsRs + VCb + VCs. (11)

By substituting Ib =
Rs

Rs+Re
and Is =

Re

Rs+Re
into (11), it is

further simplified as

V0 =
VCb + VCs

2
+

(

Rt +
ReRs

Re +Rs

)

I (12)

By taking the time derivative of the output voltage and

assuming dI/dt ≈ 0 (this simply mean that the change

rate of terminal current can be ignored when implemented

digitally). Hence we get

V̇0 =
V̇Cb + V̇Cs

2
. (13)

By substituting the values obtained earlier in (8) and (9) into

(13), results in

2V̇0 = (−A+B)VCb+(A−B)VCs+(ARs+BRe)I. (14)

Then, by solving for VCs from (12) we obtain

VCs = 2V0 − 2(Rt +
ReRs

Re +Rs

)I − VCb, (15)

and after substitution into (14) yields

V̇0 = (−A+B)VCb + (A−B)V0

+ [A (0.5Rs +Rt +D) +B (0.5Re −Rt −D)] I. (16)

Finally, the complete state variable network is obtained by

integrating (16) into (10), thus the complete state variable

description of the network is obtained as





V̇Cb

V̇Cs

V̇0



 =





−A A 0
B −B 0

(−A+B) 0 (A−B)



 ·





VCb

VCs

V0



+





A · Rs

B ·Re

A (0.5Rs −Rt −D) +B (0.5Re +Rt +D)



 I, (17)

whereby constants A, B and D have been given earlier and

hereby restated as





A
B
D



 =







1
Cbk(Re+Rs)

1
Csurface(Re+Rs)

ReRs

Re+Rs






. (18)

This completes the initial derivation of a battery model.

B. Numerical Example

By substituting all capacitor and resistor values from Table

I into (18), we obtain relevant values as




A
B
D



 =





0.001508759347566
1.623837940973491
0.001875000000000



 . (19)

By defining matrix M,

M =





−A A 0
B −B 0

(−A+B) 0 (A−B)



 , (20)

and

N =





A ·Rs

B · Re

A (0.5Rs −Rt −D) +B (0.5Re +Rt +D)



 ,

(21)

again by substituting all the values from Table I and calcu-

lated A,B and D, we obtain the value of M as

M =





−1.51× 10−3 1.51× 10−3 0
1.6238 −1.6238 0
1.6223 0 −1.6223



 , (22)

and N as

N =





5.66× 10−6

6.08× 10−3

1.05× 10−2



 . (23)

As such (17) can be rewritten as




V̇Cb

V̇Cs

V̇0



 = M ·





VCb

VCs

V0



+N · I, (24)

or numerically as




V̇Cb

V̇Cs

V̇0



 =





−0.0015 0.0015 0
1.6238 −1.6238 0
1.6223 0 −1.6223



·





VCb

VCs

V0



+





5.66× 10−6

6.08× 10−3

1.05× 10−2



 · I (25)
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Fig. 2. Output response of RC model due to constant input.

C. State Space Modeling

Based on control theories, a lumped linear network can be

written in the form

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

(26)

where in this work, the state variable ẋ(t) is

ẋ(t) =





V̇Cb

V̇Cs

V̇0



 . (27)

Obviously,

x(t) =





VCb

VCs

V0



 , (28)

with

u(t) = I, (29)

and the output y(t) is given as

y(t) = V0. (30)

This means that the output of the system is the open terminal

voltage that we wanted, as expected. Also, by comparing (37)

and (24) , it is easily noted that A = M, that is

A =





−1.51× 10−3 1.51× 10−3 0
1.6238 −1.6238 0
1.6223 0 −1.6223



 , (31)

and B = N, which is

B =





5.66× 10−6

6.08× 10−3

1.05× 10−2



 , (32)

while

C =
[

0 0 1
]

, (33)

and the last one,

D =
[

0
]

. (34)

Further, the above state space variables are transformed to

a transfer function, G(s). This is done by using ss2tf

function in Matlab, and thereby, after factorization yielding

G(s) =
0.01054s2 + 0.0171s+ 2.981× 10−5

s3 + 3.248s2 + 2.637s− 1.144× 10−18
(35)

The plot of the unit step response for the gain in (35) is given

in Fig. 2. Basically, it shows that the open circuit terminal

voltage V0 in Fig. 1 increases linearly during charging

operation in a very slow manner after transient behaviour

for a few seconds.

TABLE I
PARAMETERS FOR CELL MODEL [11], [13]

Cbk Csurface Re Rs Rt

88372.83 F 82.11 F 0.00375Ω 0.00375Ω 0.002745Ω

D. Observability of the RC Battery Model

In control theory, observability is a degree in predicting the

internal states of a system via its external outputs. As such,

for an observable system, the behaviour of the entire system

can be predicted via the system’s outputs. On the other hand,

if a system is not observable, the current values of some of

its states cannot be estimated through output signal. This

means that the controller does not know the states’ values.

In theory, the observability of a system can be determined

by constructing observability matrix Ob.

Ob =















C

CA

CA2

...

CAn−1















,

and a system is said to be observable if the row rank of Ob

is equal to n (this is also known as full rank matrix). The

ultimate rationale of such test is that if n rows are linearly

independent, then each of the n states is viewable through

linear combinations of the output y(t).
Further, by substituting all A, B, C and D values from

(31)-(34), we obtain

Ob =





0 0 1
1.6223 0 −1.6223
−2.6344 0.0024 2.6320



 . (36)

Clearly, in this case Ob is a full rank matrix, which concludes

that this system is observable.

IV. KALMAN FILTER FOR SOC ESTIMATION

As given in (??), a continuous time-invariant linear system

can be described in state variable form as

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

(37)

where

u input vector,

x is the state vector,

y is the output vector,

A is the time invariant dynamic matrix,

B is the time invariant input matrix,

C is the time invariant measurement matrix.

If we assume that the applied input u is constant during

each sampling interval, a discrete-time equivalent model of

the system will now be
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x(n+ 1) = Ad · x(n) +Bd · u(n)
y(n+ 1) = Cd · x(n+ 1)

(38)

where

Ad ≈ I+A · Tc, Bd = B · Tc, Cd = C, (39)

where I is the identity matrix and Tc is the sampling period.

As for this system, two noises are present which are additive

Gaussian noise,

w vector representing system disturbances and model

inaccuracies, and

v vector representing the effects of measurement

noise.

Both w and v have a mean value of zero and the following

covariance matrices

E[w ·wT] = Q,
E[v · vT] = R,

(40)

where E denotes the expectation (or mean) operator and

superscript T means the transpose of the respective vectors.

In usual case, Q and R are normally set to a constant before

simulation; in our case both are set to one (see Section V).

By inclusion of these noises, the resulting system is now can

be described by

x(n+ 1) = Ad · x(n) +Bd · u(n) +w

y(n+ 1) = Cd · x(n+ 1) + v,
(41)

which is illustrated in Fig. (3)

Bd
Delay 

Unit
Cd

w v

y(n+1)

y(n)x(n)x(n+1)

u(n)

Ad

Fig. 3. Discrete system model with noises w and v

A. Property of Kalman filter

An important property of Kalman filter (KF) is that it

minimizes the sum-of-squared errors between the actual

value x and estimated states x̂, given as

fmin(x) = E
(

[x− x̂] · [x− x̂]T
)

(42)

To understand the operations of KF, the meaning of the

notation x̂(m|n) is crucial. It simply means that the estimate

of x at event m takes into account all the discrete events up

to event n. As such, (43) can include such information, now

expanded as

fmin(x) = E
(

[x(n)− x̂(n|n)] · [x(n) − x̂(n|n)]T
)

(43)

In recursive implementation of KF, the current estimate

x̂(n|n), together with the input u(n) and measurement

signals y(n) are used for further estimating x̂(n+ 1|n+ 1).

B. KF Online Implementation

In the case of battery, it is well understood that only the

terminal quantities can be measured (terminal voltage V0

and current I). Assuming that battery parameters are time-

invariant quantities, the recursive KF algorithm is applied. By

applying (39) into (31)-(33), we obtain the following updated

matrices, with Tc = 1:

Ad =





0.9984 1.51× 10−3 0
1.6238 0.6238 0
1.6223 0 0.6223



 ,

Bd =





5.66× 10−6

6.08× 10−3

1.05× 10−2



 , (44)

Cd =
[

0 0 1
]

.

Note that Bd and Cd remain similar to its previous values,

as given in (32) and (33).

V. RESULTS

The program, implemented in Matlab language is given in

Appendix A to clarify the results obtained in this work. The

output of the program is given as Appendix B, hereby shorten

to save printing page. Some important results obtained in

this work are available in this part. Note that Q and R

mentioned in (40) are both set to one. The results obtained

are tabulated in Table II. From these results, the Root-

Mean-Squared (RMS) of the estimated error, which is the

error from Kalman filter is far smaller compared to the

measured error, with values of 1.0013 V and 1.92× 10−4 V

respectively. The time plot of this error from 0s to 60000s

is shown in Fig. 4, depicting very small amplitude (≈ 0.04
V) along the timeline.

TABLE II
RECORDED RMS ERROR

RMS Error Value

Measurement, y − yv 1.00136010496

Estimated (KF), y − ye 1.91859 × 10−4

0 1 2 3 4 5 6

x 10
4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time (s)

E
rr

or

Fig. 4. The voltage error recorded, Err = v(t) − v̂(t).
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A. Charging Behaviour

The charging characteristic is illustrated in Fig. 5 whereby

the initial terminal voltage V0 starts from 0 V up to

approximately 1 V (1.045 V to be exact) within 60000

seconds (which is 100 minutes). This, as expected, is a time

consuming process as in usual case it may take hours for an

aqueous battery (lead acid) to be completely charged.
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x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

C
el

l t
er

m
in

al
 V

ot
ag
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Fig. 5. Dynamic behavior of KF estimator with charge constant current of
1.53 A.

B. Discharging

For discharging process, the initial value of terminal

voltage, y0 = V0 is set to 2.2 V in the Matlab program.

The dynamic behaviour showing the discharge characteristic

is shown in Fig. 6. From this figure, it is observed that

the discharge process is similar to charging; but now with

linearly decreasing V0 slope. The open terminal voltage V0

drops from 2.2 V to 1.2 V in 60000 seconds (100 minutes);

this is similar to the charging process as it literally takes 100

minutes to reach V0 = 1 V from zero potential.

0 1 2 3 4 5 6

x 10
4
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time (s)

C
el

l t
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m
in
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 V

ot
ag

e 
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Fig. 6. Dynamic behavior of KF estimator with discharge constant current
of -1.53 A.

VI. CONCLUSION

In this work, the factors of battery aging are discussed

in details. Subsequently, we successfully obtain the state

variables of the RC model that represents a battery in

terms of mathematical derivations. The derivations come to

a conclusion that there exists four state variables relevant

to battery model. Further, based on control theories, we

successfully plotted the response of the system, depicting a

linearly increasing characteristic. With this state-estimation

model, a prominent technique known as Kalman filter is

applied with the aim of estimating State-of-Charge of Battery

Management System. From numerical results, KF is more

accurate in predicting the dynamic. This is shown by very

small RMS error of the estimated error in comparision to its

measurement error.
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APPENDIX

A. Matlab source code

format long;

%Value for resistors and capacitors

Csurface=82.11;

Cbk=88372.83;

Re=0.00375;

Rs=0.00375;

Rt=0.002745;

a=1/(Cbk*(Re+Rs));

b=1/(Csurface*(Re+Rs));

d=(Re*Rs)/(Re+Rs);

%State variable matrices

A=[-a a 0 ; b -b 0 ; (-a+b) 0 (a-b) ]

B=[a*Re; b*Re;

a* (0.5*Rs-Rt-d)+ b*(0.5*Re+Rt+d)]

C=[0 0 1 ]

D=[0]

%Transfer function

figure(1); %Figure 1

[num, den]=ss2tf(A,B,C,D,1)

G=tf(num,den)

step(G),grid;

% For Kalman filter:

% Identity matrix + diagonal element

A=[1-a a 0 ; b 1-b 0 ; (-a+b) 0 1+(a-b) ]

B=[a*Re; b*Re;

a* (0.5*Rs-Rt-d)+ b*(0.5*Re+Rt+d)]

C=[0 0 1 ]

Tc=1;

A=A*Tc;

B=B*Tc;

C=C;

Engineering Letters, 22:2, EL_22_2_05

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



% Sample time=-1 for discrete model

Plant = ss(A,[B B],C,0,-1,...

’inputname’,{’u’ ’w’},...

’outputname’,’y’);

Q = 1; R = 1;

[kalmf,L,P,M] = kalman(Plant,Q,R);

kalmf = kalmf(1,:);

kalmf

a = A;

b = [B B 0*B];

c = [C;C];

d = [0 0 0;0 0 1];

P = ss(a,b,c,d,-1,...

’inputname’,{’u’ ’w’ ’v’},...

’outputname’,{’y’ ’yv’});

% Parallel connection of outputs ye and y

sys = parallel(P,kalmf,1,1,[],[])

% Close loop around input #4 and output #2

SimModel = feedback(sys,1,4,2,1)

% Delete yv from I/O list

SimModel = SimModel([1 3],[1 2 3])

SimModel.inputname

t = [0:60000]’;

u(:) = -1.53; % Current for discharge

n = length(t)

randn(’seed’,0)

w = sqrt(Q)*randn(n,1);

v = sqrt(R)*randn(n,1);

[out,x] = lsim(SimModel,[w,v,u]);

y0=2.2; %This is initial terminal voltage

y = out(:,1)+y0; % true response,

ye = out(:,2)+y0; % filtered response

yv = y + v; % measured response

figure(2); %Figure 2

%plot(t,y,’g--’,t,ye,’b-’), grid on;

plot(t,ye,’b-’), grid on;

xlabel(’time (s)’),

ylabel(’Cell terminal Votage (V_o)’)

%Kalman filter response

figure(3); %Figure 3

plot(t,y-ye,’b-’), grid on;

xlabel(’time (s)’), ylabel(’Error’)

%Calculate Errors

MeasErr = y-yv; %Measurement error

MeasErrCov= ...

sum(MeasErr.*MeasErr)/length(MeasErr);

EstErr = y-ye; %Estimated error

EstErrCov = ...

sum(EstErr.*EstErr)/length(EstErr);

%Display onto screen

MeasErrCov %Measurement error

EstErrCov %Estimated error

B. Simulation Output (shorten to save printed space)

The output of the run is show below, hereby only the

essential components are shown.

Transfer function:

0.01054 sˆ2 + 0.01714 s + 2.981e-005

--------------------------------------

sˆ3 + 3.248 sˆ2 + 2.637 s - 1.144e-018

A =

0.99849124 0.00150875 0

1.62383794 -0.62383794 0

1.62232918 0 -0.62232918

B =

0.000005657847553

0.006089392278651

0.010542685882214

C =

0 0 1

.

.

.

MeasErrCov =1.001360104960092

EstErrCov = 1.918588914886020e-004
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