
8051 NET-ISP: Internet-Based Remote
Programmable Embedded Micro-Controller System

Yung-Sheng Chen, Min-Ta Sung, Shih-Hau Fang, and Kun-Li Lin

Abstract—Two general schemes of programming a micro-
controller unit (MCU) are integrated-circuit burner-based and
in-system programming (ISP) methods. The former requires a
physical contact with MCUs, whereas the latter requires MCUs
containing universal asynchronous receiver-transmitter (UART)
or universal serial bus (USB) interfaces. This study proposes an
Internet-based remote programming system, namely 8051 NET-
ISP. Unlike traditional methods, the proposed NET-ISP system
allows a remote user to easily update/download a program
through the Internet as well as remotely control the applicable
circuit. This system combines an embedded TCP/IP Ethernet
module and an applicable controller module so that users do not
need to physically access the system and specialized interfaces
are not required while it is being operated. The proposed 8051
NET-ISP system can incorporate MCU-based applicable circuits
and extend MCU programming from local to global access
via the Internet, thus achieving better management efficiency
and scalability, particularly when considerably large MCUs are
deployed.

Index Terms—8051 NET-ISP, Embedded System, ISP, MCU,
Micro-Controller, TCP/IP

I. INTRODUCTION

M ICROCONTROLLER units (MCUs) have low-cost
and easy-to-use features that have enabled these units

to be widely applied in various embedded systems in com-
bination with different types of sensors or communication
interfaces for controlling circuits [1]. For example, [2] pro-
posed the remote control of the position of a motor with a
low-cost MCU and an embedded Ethernet integrated circuit
(IC). [3] presneted a simple experimental system to demon-
strate internet based remote monitoring and control system.
[4] reported a detailed circuit implementation, which was
used for the automatic monitoring of a Vodafone Radiocom-
munication Base Station. For remote monitoring and control
of the Cameroon Power Network, [5] presented a multi-agent
design and implementation of an internet based platform.
Even this system is a non-MUC based system, its distributed
system is a good reference for the considered study. Many
other MCU-based remote applications are related to smart
home researches. For instance, [6] used MCUs, network
controllers, and various sensors for developing a smart home
system for environment surveillance and peripheral electrical
equipment control. On the other hand, [7] proposed smart
home surveillance through a GSM/GPRS module and digital
cameras so that a user can monitor the security of his/her
house through his/her cell phone in real-time. Another ap-
plication, which combined ZigBee for the purpose of remote

This work was supported in part by the National Science Council, Taiwan,
Republic of China, under Grant No. NSC99-2221-E-155-080.

Yung-Sheng Chen, Min-Ta Sung, and Shih-Hau Fang are with the
Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan,
ROC. (Email: eeyschen@saturn.yzu.edu.tw and shfang@saturn.yzu.edu.tw)

Kun-Li Lin is with the Graduate Institute of Networking and Multimedia,
National Taiwan University, Taipei, Taiwan, ROC.

control, was discussed in [8]. These systems combined dif-
ferent networking interfaces with programmable controllers
and may be spread all over a place for real-world applications
[9], [10], [11], [12]. However, while the modification of the
system functions is required, the MCU program also needs
to be updated.

In general, there are two typical program updating methods
for an MCU. The first requires the removal of the MCU from
its system and uses an IC burner connected with a computer
to update the MCU program. However, as physical contact
with the MCU is necessary while removing it, damage to the
package of the MCU during a repeated testing process is the
main drawback of this method. In the second approach, the
MCU itself must contain in-system programming (ISP) func-
tions, which enable direct programming by a local computer
through the connection of universal asynchronous receiver-
transmitter (UART) or universal serial bus (USB) interfaces
without the use of an IC burner. Although this method does
not require the removal of the MCU from its circuit, the
system still has to be taken out from where it is placed.
Hence, considering the previous two typical approaches of
program updating, we can conclude that system management
will become an unpleasant and high-cost task as the node
number of the distributed MCU-based embedded system
increases. The hardware constraint that general MCUs can
only be programmed with a locally connected computer shall
be eliminated for a relatively flexible application design. Fur-
ther, the management and program updating of a number of
nodes shall become considerably easy. Thus, Huang and Lai
[13] implemented an enhanced ISP system with an Ethernet
interface. They used a special UDP broadcast package to
make the MCU communicate through an Ethernet controller
with a computer in order to update the executable program.
However, they only applied a limited protocol instead of
the normal TCP/IP; hence the remote control was seemly
restricted.

In this study, we integrate an embedded TCP/IP Ether-
net module with an ISP-functioned MCU SST89E516 [14]
to implement remote in-system programming (remote-ISP)
functions. Further, the application codes programmed on
MCU AT89S51 [15] can use the Ethernet module; hence
remote control is possible. We thus named this system 8051
NET-ISP and demonstrated the prototype prior in [16]. Fig. 1
depicts the networking of several individual 8051 NET-ISP
system nodes. Each node can be separately used for different
control applications. This system provides a user with the
ability to remotely read from, write to, and erase the code
memory of the applicable MCU (A-MCU) AT89S51 through
the Internet. While the node program needs to be modified,
the user can download the program of the A-MCU for
disassembling and checking it. After the program of the A-
MCU is updated, the system will automatically execute the

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

Fig. 1. Networking of proposed 8051 NET-ISP system. An LNMS is added in each LAN and serves as an intermediate connection bridge between nodes
and remote users.

new program. The proposed system also allows the user to
remotely control the applicable circuit if the related control
functions are available.

The rest of this paper is organized as follows. Section
II introduces the networking of multiple distributed nodes.
Section III and IV describe the hardware architecture and
software framework of the proposed 8051 NET-ISP, respec-
tively. Results are presented in Section V and conclusions
are finally given in Section VI.

II. NETWORKING OF DISTRIBUTED 8051 NET-ISP
NODES

While the 8051 NET-ISP nodes are in a wide area network
(WAN), e.g. node 4 in Fig. 1, a remote user can directly es-
tablish a connection with these nodes through the Internet by
using the system-specific IP address, and remotely program
the AT89S51 MCU in the system or control the applicable
circuit. However, the number of usable IP addresses for
general public is limited. Therefore, a relatively practical
situation is to distribute these nodes into different local area
networks (LANs) integrated by routers, such as LAN 1,
LAN 2, and LAN 3 in Fig. 1. In other words, these nodes
can only use virtual IP addresses in their private networks,
thus network address translation (NAT) traversal is a serious
issue [17]. In order to let a remote user establish a connection
through the Internet with the nodes behind the routers, a
local node management server (LNMS) in each LAN that
links with several 8051 NET-ISP nodes is added to serve
as an intermediate connection bridge for the remote users
connection request; see the thick red solid path in Fig. 1.
While the remote user is connecting to node 9, he/she is
actually connecting to LNMS 3. The server will retransmit
the Internet packages from the user to node 9. In contrast,
node 9 will send the Internet packages to LNMS 3 first
instead of directly sending them to the remote user while
responding to the remote users request.

III. HARDWARE

Fig. 2 illustrates the hardware block diagram of 8051 NET-
ISP which is mainly composed of two parts, an embed-
ded TCP/IP Ethernet module and an applicable controller
module. This hardware has been realized by PCB circuit as
shown in Fig. 3. The related experiments are implemented
in the Computer Vision Laboratory of Electrical Engineering
Department at Yuan Ze University.

Fig. 2. Hardware block diagram of 8051 NET-ISP.

Fig. 3. Realization of 8051 NET-ISP.

A. Embedded TCP/IP Ethernet Module

This module mainly consists of an MCU SST89E516 [14]
(which is hereafter referred to as Ethernet (E-MCU) in order
to distinguish it from the A-MCU), an EEPROM X5045 [18],
and an Ethernet controller RTL8019AS [19]. Previous works
[20] and [21] proposed the use of RTL8019AS for equipping
an MCU and an FPGA with the Ethernet communication
ability. The Ethernet controller takes charge of receiving and
transmitting Ethernet packages, and the E-MCU with its pro-
gram is used for implementing the embedded TCP/IP stack.
As the module is set for first-time use or needs to modify
network attributes such as the IP address, MAC address, or
connection port, we have to write the network attributes into

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

the EEPROM and reset the module. After the module is
restarted, the E-MCU will access these network attributes
and write them to the Ethernet controller. Then, it will set
the Ethernet controller to the package receiving/transmitting
mode.

After the E-MCU receives a TCP package, it stores the
payload in a receiving data buffer. The application layer of
the E-MCU will handle different tasks depending on the
specific command attached at the beginning of the package
payload. If the command is to operate ISP functions to read
from, write to, or erase the code memory of the A-MCU,
the E-MCU uses its pins from P3.2 to P3.5 to produce the
ISP control and data signal. Further, if the package is for
controlling the application circuit, the E-MCU will redirect
the remote control command and send it through the serial
communication port (TXD) to the A-MCU so that the A-
MCU can handle the control contents.

B. Applicable Controller Module

In this study, we use an in-system programmable MCU
AT89S51 [15] as the A-MCU so that it can remotely update
the control functions of the application circuit. The pins of
the A-MCU from P1.5 to P1.7 and RST are used for driving
the ISP control signal sent from the E-MCU. The E-MCU
will automatically restart the A-MCU at the completion of
the ISP process. Furthermore, if the remote user programs
the A-MCU with serial communication functions, then the
user can tell the A-MCU to control the application circuit in
real-time. The control command is retransmitted by the E-
MCU through a serial port. Moreover, if the A-MCU needs to
generate any response, it can send the response data through
the serial port to let the E-MCU packet the data to be sent
back to the remote user.

Fig. 4. Operation flow illustration of the proposed software system.

IV. SOFTWARE

This study implements a Windows-based remote user
program by means of Microsoft Visual Basic with .NET
framework. The Internet communication is driven by a Sock-
ets class defined in namespace System.NET.Sockets and uses
the TCP/IP protocol. The LNMS handles the remote users
connection request. Therefore, the user can remotely program
or control the nodes that are in the same LAN as the LNMS.
The hex-code program or control commands are attached to
the payload of the TCP package. While downloading the
program from a node, the user interface will reconstruct the
sent-back data and store them in a normal hex-code program
format. The downloaded program can be disassembled with
specific disassembler software in order to ensure that the
program can be modified. The operation flow of the proposed

software system is further illustrated in Fig. 4. Here Packet 1
may consist of control words, time parameters, and 8051 hex-
coded file; whereas Packet 2 may include the system status,
A-Circuit status or the read-back hex codes in the A-MCU.
If we want to read back the program in A-MCU, the original
machine codes in A-MCU will be read first into LNM server,
in which the hex file corresponding to the original machine
codes will be converted and then transferred into the Web
server via FTP for remote user further downloading. In case
of returning the system status or A-Circuit status, LNM
server will also convert the status into a text file as well as
transfer it to the Web Server for further access. Therefore, in
this study the LNM server serves as a significant bridge to let
our 8051 NET-ISP can be used in a virtual LAN environment.
Fig. 5 shows the software framework of 8051 NET-ISP. The
related cyclic buffer operation and the description of the
software framework will be presented as follows.

Transmit
data

Transmit
system
status

Ethernet Packets

ARP IP

Reply Request ICMP

Echo
Request

Echo
Reply

TCP

Socket

Distinguish
Command

Write Program
Memory

Chip Erase

Read Program
Memory

Control Applicable
Circuit

Status
Register

Data
Register

#

&

*

%

Operation
status

Operation
status

Hex-code
program

Circuit
response

A-MCU

Serial TXD/RXD

Internet

Embedded
TCP/IP
Handler

Application
Control
Handler

Fig. 5. Software framework of 8051 NET-ISP.

A. Cyclic Buffer Operation

Refer to the data sheet of RTL8019AS [19], we de-
fine a cyclic buffer to process the Ethernet packets receiv-
ing/transmitting between the RTL8019AS and E-MCU. Let
the cyclic buffer have m pages (256 bytes/page), wPtr and
rP tr be the write and read pointer respectively for accessing
the buffer. While in writing process, the coming data will be
written into the buffer pointed by wPtr. If data size does
not exceed the page size, it will be regarded as one page to
be written. If there are n pages are written, the write pointer
will increase n, and thus wPtr ← wPtr+n. While E-MCU
is reading the data from the cyclic buffer, it is controlled
by rP tr. In order to avoid the data overriding in buffer,
the rP tr should be initially set after wPtr one page size

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

as illustrated in Fig. 6(a). Once one page data has been
received completely by E-MCU, the rP tr will increase one.
wPtr = rP tr shown in Fig. 6(b) represents all received
data have been processed by E-MCU and not any new data
exists in the buffer. If two pages new data are written into the
buffer, then wPtr will increase by 2 as depicted in Fig. 6(c).

(a) (b) (c)

Fig. 6. Illustration of the cyclic buffer operation via wPtr and rP tr. (a)
Initial setting. (b) No new data existing in buffer. (c) Two pages new data
being written in buffer.

B. Description of the Software Framework

According to the operation of designed cyclic buffer, the
polling program in E-MCU will continuously check whether
wPtr is equal to rP tr or not. If yes, it will continuously
check them. Otherwise, there exists a new packet. The
program will receive the packet and check if it is effective.
If yes, the E-MCU will access the packet data from Ethernet
controller via the RDMA (remote direct memory access)
scheme [19] and decompose it. Otherwise, the ineffective
packet is discarded. Conversely if E-MCU wants to send out
a set of data over internet, it will pack the data with a packet
header as well as CRC (cyclic redundancy check) code which
is generated automatically via the Ethernet controller.

The upper part of Fig. 5 shows the protocol implementa-
tion of embedded TCP/IP stack [22]. For an effective TCP
packet, if the target IP and MAC address are confirmed, the
payload of the TCP packet will be sent to the application
control handler for distinguishing user commands. The ap-
plication handler will execute the corresponding task based
on their definitions as shown in the lower part of Fig. 5.

The status and data register in Fig. 5 are of great signifi-
cance in our design. The status register is designed for saving
the operation status of executing “Write Program Memory”
and “Chip Erase” commands, whereas the data register is
used for saving the responses of performing “Read Program
Memory” and “Control Applicable Circuit” from A-MCU.
The contents of these two registers will be sent back to the
Embedded TCP/IP handler to compose a TCP packet, and
thus the remote user can access the ISP operation and/or
control responses.

V. RESULTS

In order to verify the functions of the proposed system,
several nodes of 8051 NET-ISP are realized such as the
photo shown in Fig. 3. They are connected as the distributed
network shown in Fig. 1 and implemented in the Computer
Vision Laboratory of Electrical Engineering at Yuan Ze
University. A simple 8-LED circuit is also realized for con-
necting to the A-MCU’s port for applicable circuit test. Fig. 7

Fig. 7. User interface developed for experiments.

shows the developed user interface for experiments. The user
interface is designed for selecting a 8051 NET-ISP node,
remotely performing ISP functions, remotely controlling the
applicable circuit, as well as setting the time of selected
node. Before performing the remote access, one 8051 NET-
ISP node should be selected first. In order to make the data
coincidence, we need to calibrate the node’s time clock,
which is realized by the DS1302 trickle-charge timekeeping
chip [23] and included in our hardware system. For the
selected node, we can set, get, and display the node’s time
via the interface. The experiments for remote ISP functions
and remote control of the applicable circuit are presented by
the following two subsections.

A. Remote ISP Functions

Refer to Fig. 7, three remote ISP functions including (1)
upload hex file and ISP, (2) erase file, as well as (3) read hex
file and download, are designed in our current user interface.
To verify the program updating functions, we prepared three
types of different LED twinkling patterns and sent them
from a local computer to an 8051 NET-ISP node through the
Internet to update the A-MCU program (use the function of
“upload hex file and ISP”). The program executed normally
(the corresponding LEDs are twinkling) each time when
the program memory of the A-MCU was written/updated.
Then we downloaded the written/updated program from
the selected 8051 NET-ISP node onto the local computer
and disassembled it with disassembler software for further
checking against the original one (use the function of “read
hex file and download”). All these experiments are correct
and normally operated. The procedure of verifying remote
ISP functions is experimentally presented in Appendix A.
When the “erase file” function is executed, the original A-
Circuit’s function will cease (all LEDs are off), the function
of “read hex file and download” can further examine that
the original program in A-MCU has been erased. In our
experiments, the erase function performs very stable.

To further investigate the operation time of the remote
ISP functions, the above three main functions (write program
memory, chip erase, read program memory) are examined
by different number of pages, where each page contains 256
bytes. The results are plotted in Fig. 8. This plot shows that,
the required time linearly increases as the number of page

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

Fig. 8. Operating time of remote ISP functions

increases for the read and write functions, whereas that is
almost unchanged for the chip erase function.

In addition, since the previous work [13] is similar to
our proposed system, some characteristics are worthy of
comparision and listed in Table I. Because the proposed 8051
NET-ISP enables the transmission control protocol, it uses
acknowledgement segments, does error checking, and thus
guarantee the reliability. Though the previous work [13] is
simpler and connectionless to achieve a higher speed, the
proposed NET-ISP system ensures a reliable and ordered
delivery of a stream of bytes from local access to remote
operation via the Internet.

TABLE I
COMPARISON BETWEEN PROPOSED NET-ISP AND PREVIOUS WORK.

Characteristic Previous work [13] Proposed NET-ISP system

Network User Datagram Transmission Control
Description Protocol Protocol

Connection Setup Connectionless Connection-oriented
Data Interface Message-based Stream-based

Reliability Unreliable Reliable
(no guarantee) (absolute guarantee)

Retransmissions Not performed Automatic retransmission
with error checking

Speed Very high High

B. Remote Control of the Applicable Circuit

In this experiment, the applicable circuit has eight LEDs
connected to the port 2 of A-MCU. The remote user interface
has eight control buttons (SW7-SW0) and eight LED indi-
cations that correspond to each LED in the 8051 NET-ISP
applicable circuit (refer to Fig. 7). Assume a prior program
for toggling a LED in A-Circuit has been burned into the
code ROM of the A-MCU via our remote ISP function, when
a button (SW3 for example) is pressed on at the remote
user interface, the corresponding LED3 at A-Circuit will
also be toggled. In addition, this node will return the LED’s
status, and the user interface will display the corresponding
LED indication so that the remote user can check if the
applicable circuit control is correct or not. Our experiments
have confirmed the feasibility of the proposed system.

VI. CONCLUSIONS

In this paper, we present a new design, 8051 NET-ISP,
which integrates embedded TCP/IP Ethernet, ISP functions

of the low-cost MCU, and serial communication to im-
plement a remote programmable and controllable system.
Such a system could be combined with various extensive
applications that need to be updated and remote controlled
simultaneously. The proposed system not only relieves the
constraint that traditional MCU programming can only be
operated near a computer, but also extends the flexibility
and applicability of MCUs by using a TCP/IP network and
serial communications. Currently, this 8051 NET-ISP is only
designed for MCU AT89S51 as an in-system programmable
system. In the future, we can apply the developed technology
to different types of ISP-based MCUs so that the applicable
circuit control functions can become relatively powerful.

ACKNOWLEDGMENT

The authors are grateful to the referees; their thoughtful
in-depth detailed comments have been very helpful in the
revision of this article.

APPENDIX A
The 8051 assembly programs are compiled by using Keil

uVision 2 [24] in our experiments. An original assembly
language for testing LED rotations is first given in Fig. 9
and is compiled into a hex file, we call it “o-hex”, as shown
in Fig. 10 for the remote ISP purpose. The hex file format
is very popular and widely used. It can also be found in the
Keil website [24].

Fig. 9. Original assembly language for testing LED rotations.

Fig. 10. Hex file of the original assembly language.

In this experiment, we specify a node to receive the hex file
via the user interface shown in Fig. 7, burn the hex codes into
A-MCU and perform the LED rotating function. In this study,
an A-Circuit having eight LEDs, connected easily to the A-
MCU, is implemented based on the circuit drawn in Fig. 11.

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

After checking this function, we download the burned hex
codes from the remote node and observe it by Keil uVision 2
tool. It is shown in Fig. 12 and named as “d-hex” to facilitate
the later discussion.

Fig. 11. Application Circuit for eight LEDs display.

Fig. 12. Downloaded hex file.

By observing the “d-hex” file, first we calculate the
checksum for each line as follows.

line 1
:1000000002000374A0F5A07D32110E0380F77E1468
10+00+00+00+02+00+03+74+A0+F5+A0+7D+32+11
+0E+03+80+F7+7E+14+68=600
line 2
:100010007FF9DFFEDEFADDF622FFFFFFFFFFFFFFC5
10+00+10+00+7F+F9+DF+FE+DE+FA+DD+F6+22+FF
+FF+FF+FF+FF+FF+FF+C5=F00
They all have the “00” checksums. It means that the

downloaded hex codes are corrected in accordance with the
definition of hex file format. Note that the third line gives
an ending codes for a hex file. Furthermore, the “d-hex” is
somewhat different to the original “o-hex” for the existence
of several “FF”. This is due to the hex burning functions
performed by ISP. While burning a hex file into a 8051
micro-computer, the unburned or unused memory is usually
kept in “FF” status. In our system, the hex codes in 8051
NET-ISP node are read by 16 bytes one line until the ending
codes of final line read completely. Based on this designation,
a hex code line should consist of 16 bytes. If it is less than
16 bytes, the unused space will be filled by “FF”. Therefore,
in theory, the function of both “o-hex” and “d-hex’ is totally
the same.

After disassembling the “d-hex” by means of Keil uVision
2, a new assembly program can be obtained as shown in
Fig. 13(a). However, by comparing this program to the
original given in Fig. 10, they are almost the same except for
some different symbols. To make the disassembled program
compilable, we can make some changes, i.e. mark the

“EQU” instructions as comments and change labels as the
program given in Fig. 13(b). After retest the new program,
all functions are verified correctly.

(a) (b)

Fig. 13. (a) The disassembled program, and (b) after some changes.

REFERENCES

[1] S. Zoican, “Networking applications for embedded systems,” in Real-
Time Systems, Architecture, Scheduling, and Application, edited by S.
M. Babamir, InTech, Chapter 1, pp. 3-22, 2012.

[2] I. Ahmed, H. Wong, and V. Kapila, “Internet-based remote control using
a microcontroller and an embedded ethernet,” in Proceedings of the
American Control Conference, vol. 2, pp. 1329-1334, July 2004.

[3] M. N. Jadhav and G. R. Gidveer, “Internet based remote monitoring
and control system,” International Journal of Advances in Engineering
& Technology, vol. 3, no. 1, pp. 542-548, 2012.

[4] F. C. Alegria, and F. A. M. Travassos, “Implementation details of an
automatic monitoring system used on a vodafone radiocommunication
base station,” Engineering Letters, vol. 16, no. 4, pp. 529-536, 2008.

[5] E. Tanyi, T. Noulamo, M. Nkenlifack, and J. Tsochounie, “A multi-agent
design and implementation of an internet based platform for the remote
monitoring and control of the Cameroon power network,” Engineering
Letters, vol. 13, no. 2, pp. 195-203, 2006.

[6] Y. Liu, “Design of the smart home based on embedded system,” in
Proceedings of the 7th International Conference on Computer-Aided
Industrial Design and Conceptual Design, pp. 1-3, Nov. 2006.

[7] Y. Zhai and X. Cheng, “Design of smart home remote monitoring
system based on embedded system,” in Proceedings of the IEEE
2nd International Conference on Computing, Control and Industrial
Engineering, vol. 2, pp. 41-44, Aug. 2011.

[8] J. Han, C.-S. Choi, and I. Lee, “More efficient home energy man-
agement system based on ZigBee communication and infrared remote
controls,” IEEE Transactions on Consumer Electronics, vol. 57, pp. 85-
89, February 2011.

[9] N. Aslam, W. Phillips, and W. Robertson, “A unified clustering and
communication protocol for wireless sensor networks,” IAENG Inter-
national Journal of Computer Science, vol. 35, no. 3, pp. 249-258,
2008.

[10] A. Colet-Subirachs, A. Ruiz-Alvarez, O. Gomis-Bellmunt, F. Alvarez-
Cuevas-Figuerola, and A. Sudria-Andreu, “Centralized and distributed
active and reactive power control of a utility connected microgrid using
IEC61850,” IEEE Systems Journal, vol. 6, no. 1, pp. 58-67, 2012.

[11] S.-H. Fang, C.-H. Wang, T.-Y. Huang, C.-H. Yang, and Y.-S. Chen,
“An enhanced ZigBee indoor positioning system with an ensemble
approach,” IEEE Communications Letters, vol. 16, no. 4, pp. 564-567,
2012.

[12] Z. Yan and J.-H. Lee, “State-aware pointer forwarding scheme with
fast handover support in a PMIPv6 domain,” IEEE Systems Journal,
vol. 7, no. 1, pp. 92-101, 2013.

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

[13] H. Huang and X. Lai, “In-system programming outer-chip flash of dsp
with Ethernet interface,” in Proceedings of the WRI World Congress on
Computer Science and Information Engineering, vol. 5, pp. 230-233,
April 2009.

[14] Data sheet, “FlashFlex MCU: SST89E516RD,” Silicon Storage Tech-
nology, Inc., 2013.

[15] Data sheet, “AT89S51 8-bit microcontroller with 4k bytes in-system
programmable flash,” ATMEL Corporation, June 2008.

[16] Y.-S. Chen, M.-T. Sung, and K.-L. Lin, “Internet-based 8051 remote
in-system programming system,” in Proceedings of the International
Conference on Machine Learning and Cybernetics, vol. 4, pp. 1638-
1643, 2012.

[17] Y.-C. Chen and W.-K. Jia, “Challenge and solutions of NAT traversal
for ubiquitous and pervasive applications on the internet,” Journal of
Systems and Software, vol. 82, no. 10, pp. 1620-1626, 2009.

[18] Data sheet, “X5045: CPU Supervisor with 4K SPI EEPROM,” Xicor
Inc., 2001.

[19] Data sheet, “RTL8019AS realtek full-duplex Ethernet controller with
plug and play function (RealPNP),” Realtek Semiconductor Corpora-
tion, May 2001.

[20] Y. Su, J. Yue, and J. Hao, “Application of RTL8019AS to Ethernet
communications node based on single chip microcomputer,” in Pro-
ceedings of the IEEE 6th Circuits and Systems Symposium on Emerging
Technologies: Frontiers of Mobile and Wireless Communication, vol. 1,
pp. 225-227, June 2004.

[21] T. Wang, C. Gong, H. Xia Li, and Y. Zhang, “A design of network
remote control system,” in Proceedings of the International Conference
on Consumer Electronics, Communications and Networks, pp. 3819-
3822, April 2011.

[22] D.E. Comer and D.I. Stevens, “Internetworking with TCP/IP: Prin-
ciples, protocols, and architecture,” vol. 1, Prentice-Hall, New Jersey,
2000.

[23] Data sheet, “DS1302 Trickle-Charge Timekeeping Chip,” Maxim
Integrated Products, 2008.

[24] 8051 Development Tools: The Vision IDE/Debugger integrates com-
plete device simulation, interfaces to many target debug adapters, and
provides various monitor debug solutions. http://www.keil.com/

Engineering Letters, 23:1, EL_23_1_01

(Advance online publication: 17 February 2015)

__

