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Abstract—It is well-known that many generalized integrals
can be expressed by the Beta function B(x, y). In this paper,
some relations between the generalized integrals and partial
derivatives Bp,q(x, y) of the Beta function B(x, y) are given.
Moreover, an algorithm for computing B(x, y) and Bp,q(x, y)
has been developed. Finally, numerical examples show that the
algorithm can be applied to compute some generalized integrals,
which can improve the rate and precision of computing the
generalized integrals.

Index Terms—Riemann zeta function, Beta function, Digam-
ma function, Hurwitz zeta function.

I. INTRODUCTION

THE Beta function B(x, y) was defined by the following
integral in [1]

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, (1)

for Rex > 0 and Rey > 0. Moreover, many generalized
integrals can be expressed by B(x, y) in [2]. In fact, many
mathematical softwares such as Mathematica, Maple and
Matlab can also be applied to achieve the closed form of
the generalized integrals. However, the calculation process is
very time-consuming. Sometimes it is very difficult to derive
the closed form for the generalized integrals. Meanwhile,
some integrals can be analytically expressed by the Riemann
zeta function by using the closed form. They can also be
calculated by calling Integrate or NIntegrate in Mathematica.

Note that the values of x and y must be non-negative real
numbers for B(x, y) in Matlab, while they may be complex
numbers in Mathematica and Maple. In Matlab, Mathematica
and Maple, B(x, y) is given as follows:

B(−n, y) = ∞, B(x,−m) = ∞, B(−n,−m) = ∞,
n,m = 0, 1, 2, · · · . (2)

and
B(−1, 12 ) = ∞, B(− 3

2 ,
1
2 ) = 0,

B(−1, 52 ) = ∞, B(− 3
2 ,

5
2 ) = π.

(3)

However, the above results are unreasonable. In order to
remedy the unreasonable results, the additional definition of
B(x, y) was given in [3] by the neutrix calculus in [4-6]. Fur-
thermore, some recurrence formulas of the partial derivatives
Bp,q(x, y) of the Beta function B(x, y) were also obtained in
[3], where Bp,q(x, y) =

∂p+q

∂xp∂yqB(x, y)(p, q = 0, 1, 2, · · ·).
The structrue of this paper is as follows. In Section 2, the

additional definition of B(x, y) and some recurrence formu-
las of Bp,q(x, y) are obtained. In Section 3, an algorithm
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for calculating B(x, y) and Bp,q(x, y) is given. In Section 4,
some relations between Bp,q(x, y) and generalized integrals
are obtained. Moreover, some numerical examples are given.
The conclusion is given in last section.

II. THE ADDITIONAL DEFINITION OF B(x, y) AND SOME
RECURRENCE FORMULAS OF Bp,q(x, y)

The following additional definition of B(x, y) and recur-
rence formulas of Bp,q(x, y) were obtained by Shang in [3].

Definition 2.1 Let m,n be integers and x, y be complex
numbers. Then
1)

B(n,−m) = B(−m,n) =
n−1∑

l=0,l ̸=m

Cl
n−1

(−1)l

l−m

=

{
t1, n = 1, 2, · · · ,m, m = 1, 2, · · · ,
t2, n = m+ 1,m+ 2, · · · , m = 1, 2, · · · , n.

(4)
where

t1 =
(−1)m(m− 1)!(n−m)!

n!
,

and
t2 =

(−1)n(m− 1)! (Hn −Hm−n−1)

n!(m− n− 1)!
.

2)

B(−n, y)
= (−1)nCn

y−1 ((y − n− 1)B0,1(y − n− 1, 1) +Hn) ,
y ̸= n+ 1, n, · · · , 0,−1,−2, · · · , n = 1, 2, · · · .

(5)
3)

B(x,−m) = B(−m,x),
x ̸= m+ 1,m, · · · , 0,−1,−2, · · · ,m = 1, 2, · · · . (6)

4)

B(−n,−m)

= −
m−1∑
i=0

(
n+ i
i

)
1

m−i −
n−1∑
j=0

(
m+ j
j

)
1

n−j ,

n,m = 1, 2, · · · .

(7)

where Hn =
n∑

l=1

1
l .

For integers q, p, n,m satisfying q, p ≥ 1 and n,m ≥ 0,
the following theorem is obtained.

Theorem 2.1 1) Let x and y be complex numbers satis-
fying x, y, x+ y ̸= 0,−1,−2, · · · . Then

Bp,q(x, y)

=
q−1∑
j=0

Cj
q−1

(
ψ(q−1−j) (y)− ψ(q−1−j) (x+ y)

)
Bp,j(x, y)

−
p−1∑
k=0

Ck
p

q−1∑
j=0

Cj
q−1ψ

(p+q−1−k−j) (x+ y)Bk,j(x, y),

(8)
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where ψ(x) is the Digamma function defined by

ψ(x) =
d

dx
ln Γ(x) = −γ − 1

x
+

∞∑
l=1

(
1

l
− 1

l + x

)
,

and

ψ(p)(x) =
dp

dxp
ψ(x)(p = 0, 1, 2, · · ·),

and γ denotes Euler-Mascheroni constant.

2) Let y be a complex number satisfying y ̸=
0,−1,−2, · · · . Then

Bp,q(−n, y) = Bq,p(y,−n)

= 1
(p+1)an+1,1(−n)

p+1∑
u=0

Cu
p+1

q∑
v=0

Cv
q

·an+1,p+q+1−u−v(y − n)Bu,v(1, y)

− 1
(p+1)an+1,1(−n)

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)

·Bu,q(−n, y)
(9)

and

Bp,q(−n,−m) = Bq,p(−m,−n)

=
p+1∑
u=0

Cu
p+1

q+1∑
v=0

Cv
q+1

· (−1)n+man+m+2,p+q+2−u−v(−n−m)Bu,v(1,1)
(q+1)(p+1)n!m!

− (−1)n

(p+1)n!

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)Bu,q(−n,−m)

− (−1)m

(q+1)m!

q−1∑
v=0

Cv
q+1am+1,q+1−v(−m)Bu,v(−n,−m)

−
p−1∑
u=0

Cu
p+1

q−1∑
v=0

Cv
q+1

· (−1)n+man+1,p+1−u(−n)am+1,q+1−v(−m)Bu,v(−n,−m)
(q+1)(p+1)n!m! ,

(10)
where

an,i(x) = di

dxi (x)n

= i!
n∑

k=i

Ci
k(−1)n−ks(n, k)xk−i, i = 1, 2, · · · ,

(11)

(x)n = x(x+ 1) · · · (x+ n− 1) =

n∑
k=1

(−1)n−ks(n, k)xk,

(12)
and s(n, k) is the Stirling number of the first kind.

3) Let x and y be complex numbers satisfying x + y =
0,−1,−2, · · · and Rex ̸= 0,−1,−2, · · ·. Then

Bp,q(x, y) = 1
(x)n(y)m

p∑
u=0

Cu
p

q∑
v=0

Cv
q

·an+m,p+q−u−v(x+ y)Bu,v(x+ n, y +m)

− 1
(y)m

q−1∑
v=0

Cv
q am,q−v(y)Bp,v(x, y)

− 1
(x)n

p−1∑
u=0

Cu
p an,p−u(x)Bu,q(x, y)

− 1
(x)n(y)m

p−1∑
u=0

Cu
p

q−1∑
v=0

Cv
q an,p−u(x)

·am,q−v(y)Bu,v(x, y),
(13)

where n satisfies 0 < Re(x+ n) < 1 for Rex ≤ 0 or n = 0
for Rex > 0 and n satisfies 0 < Re(y+m) < 1 for Rey ≤ 0
or m = 0 for Rey > 0.

Now some identities for the Digamma function ψ(x) are
obtained.

ψ(n+ x) = ψ(x) +
n−1∑
l=0

1
(l+x) ,

ψ(x− n) = ψ(x) +
n∑

l=1

1
(l−x),

(14)

ψ(k)(x) = k!(−1)k+1ζ(k + 1, x), k = 1, 2, · · · . (15)

and

ψ(k)(n+ x) = k!(−1)k+1ζ(k + 1, x)

+(−1)kk!
n−1∑
l=0

1
(l+x)k+1 , k = 1, 2, · · · .

ψ(k)(x− n) = k!(−1)k+1ζ(k + 1, x)

+k!
n∑

l=1

1
(l−x)k+1 , k = 1, 2, · · · .

ψ(k)(n) =


−γ +Hn−1, k = 0,(
ζ(k + 1)−H

(k+1)
n−1

)
·k!(−1)k+1, k = 1, 2, · · · .

ψ(k)(−n) =


−γ +Hn, k = 0,

(−1)k+1k!ζ(k + 1)

+k!H
(k+1)
n , k = 1, 2, · · · .

(16)

where H(s)
n =

n∑
l=1

1
ls (s = 1, 2, · · ·), Hn = H

(1)
n and ζ(s) =

∞∑
l=1

1
ls (s = 1, 2, · · ·) is the Riemann zeta function and ζ(s, x)

is the Hurwitz zeta function defined by

ζ(s, x) =
∞∑
l=0

1

(l + x)
s .

Moreover, the following identity of ψ(x) was also given
in [2].

ψ(pq ) = −γ − ln(2q)− π
2 cot pπ

q

+
[ q+1

2 ]−1∑
k=1

[
cos 2kpπ

q ln sinkπ
q

]
.

(17)

for q = 2, 3, · · · and p = 1, 2, · · · , q − 1.
Similarly, we have the following identities of the Hurwitz

zeta function ζ(s, x):

ζ(s, n+ x) = ζ(s, x)−
n−1∑
l=0

1
(l+x)s ,

ζ(s,−n+ x) = ζ(s, x) +
n∑

l=1

1
(x−l)s ,

ζ(s, 12 )=(2s − 1)ζ(s).

(18)

In particular, the following results were given in [7],

ζ(k, 0) =

{
γ, k = 1,
ζ(k), k > 1.

ζ(k, 12 ) =

{
γ + 2 ln 2, k = 1,(
2k − 1

)
ζ(k), k > 1.

(19)

ζ(2n+ 1, 13 )
ζ(2n+ 1, 23 )

}
= 32n+1−1

2 ζ(2n+ 1)±
√
3

2π I1, (20)

ζ(2n+ 1, 14 )
ζ(2n+ 1, 34 )

}
= 22n(22n+1 − 1)ζ(2n+ 1)± 1

2π I2,

(21)
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and

ζ(2n+ 1, 16 )
ζ(2n+ 1, 56 )

}
= 62n+1−32n+1−22n+1+1

2 ζ(2n+ 1)± 1
2
√
3π
I3,

(22)

where

I1 =
(
2n+ 2 + 32n+2

)
ζ(2n+ 2)

−2
n−1∑
l=0

32n−2lζ(2n− 2l)ζ(2l + 2),

I2 =
(
2n+ 2 + 42n+2

)
ζ(2n+ 2)

−2
n−1∑
l=0

42n−2lζ(2n− 2l)ζ(2l + 2),

I3 =
(
62n+2 − 32n+2

)
ζ(2n+ 2)

−2
n−1∑
l=0

(
62n−2l − 32n−2l

)
ζ(2n− 2l)ζ(2l + 2),

and ζ(1) =γ.
Remark 2.1 It follows from the above results that

Bp,q(x, y) certainly has a closed form for x, y = ±n, 12 ± n
and n = 0, 1, 2, · · ·. If x + y and y are rational num-
bers, then Bp,q(x, y) has a closed form expressed by (8)
and (17). Moreover, if x, y = 1

3 ± n, 14 ± n, 16 ± n and
n = 0, 1, 2, · · · , then Bp,q(x, y) may have the closed form.
Otherwise, Bp,q(x, y) does not seem to have the closed form
for non-negative integers p and q. However, Bp,q(x, y) can
always be expressed by the Hurwitz zeta function ζ(s, x).

III. THE ALGORITHM FOR CALCULATING B(x, y) AND
Bp,q(x, y)

The program BetaD[x, y, p, q, all] can be
used to calculate B(x, y) and Bp,q(x, y), where
BetaD[x, y, p, q, all] includes the following five key
subprograms: PolyGammaAmend[k, x], BetaAll[x, y],
PochhammerD[k, x], BetaD1[x, y, p, q, all] and
BetaD2[x, y, p, q, all]. In the following, we will give
the function of five key subprograms, respectively.

1) PolyGammaAmend[k, x] performs the
calculation of (14)∼(22) for x = a ± n,
a = 0, 12 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 ,

1
12 ,

5
12 ,

7
12 ,

11
12 , · · · and

n = 0, 1, 2, 3, · · ·. Otherwise, PolyGamma from Mathematica
replaces PolyGammaAmend.

2) BetaAll[x, y] performs the calculation of (4)∼(7) when
x or y = 0,−1,−2, · · · . Otherwise, Beta from Mathematica
replaces BetaAll.

3) PochhammerD[k, x] performs the calculation of (11).
4) BetaD1[x, y, p, q, all] can be used to calculate

Bp,q(x, y) by using (8) for complex numbers x and y
satisfying x, y, x + y ̸= 0,−1,−2, · · ·. All the values of
Bi,j(x, y) for i = 0, 1, 2, · · · , p and j = 0, 1, 2, · · · , q can
be displayed when the parameter all is a positive number.
However, the value of Bi,j(x, y) for i = p and j = q can
only be displayed when the parameter all is zero.

5) BetaD2[x, y, p, q, all] can be used to calculate
Bp,q(x, y) by using (9), (10) and (13), where two subpro-
grams BetaAll[x, y, all] and PochhammerD[k, x] can also be
used.

Note that the above algorithms can run for symbolic
computation in Mathematica. However, we need add a letter
”N” in the demand for numerical integration. For example,

change BetaAll to NBetaAll, then the above algorithm can
run in the Prec, where Prec denotes a public constant and
calculation precision.

IV. THE PARTIAL DERIVATIVES OF THE BETA FUNCTION
AND RELATED GENERALIZED INTEGRALS

Some scholars have shown that some generalized integrals
can be expressed by B(x, y). For example, the following
relations between B(x, y) and generalized integrals were
given in [2].∫∞

0
cosh 2yt
cosh2x zt

dt = 4x−1

z B(x+ y
z , x− y

z ),[
Re

(
x+ y

z

)
> 0, Re

(
x− y

z

)
> 0.

] (23)

∫ 1

0
tx−1(1−t)y−1

(t+z)x+y dt = B(x,y)
zy(1+z)x ,

[Rex,Rey > 0, Re(x+ y) < 1,−1 < z < 0.]
(24)

∫∞
−∞ e2yt cosh−2x(t− a)dt = e2ay

21−2xB(x+ y, x− y),

[Rex > 0, y, a are real.]
(25)

and∫∞
0

cosh−2x t cosh 2ytdt = 4x−1B(x+ y, x− y),
[Rex > |Rey| , Rex > 0.]

(26)

By (1) and (23)∼(26), the following generalized integrals
can also be expressed by Bp,q(x, y).

1) Let p and q be non-negative integers and x, y be
complex numbers satisfying q+Rex > 0 and p+Rey > 0.
Then∫ 1

0

tx−1(1− t)y−1lnpt lnq(1− t)dt = Bp,q(x, y). (27)

For example, the left integral of (27) can be calculated by
calling Integrate in Mathematica (I1) and the algorithm given
in Section 3 (B1), respectively. Now the time-consumption
of computing the left integral of (27) is shown in Table I by
different methods in Mathematica.

Table I The time − consumption ofcomputing
the left integral of (27) (Prec = 64)

x, y p, q Time(second)

− 3
2
, 1
2

4, 6
I1
B1

closed form
52.859375
0.062500

− 3
2
, 1
2

6, 6
I1
B1

closed form
118.203125, Unfinished

0.125000

3,−2 4, 6
I1
B1

closed form
109.403501
0.093601

3,−2 6, 6
I1
B1

closed form
275.372965, Unfinished

0.171601

5
2
,− 9

2
5, 5

I1
B1

closed form
130.354436
0.124801

5
2
,− 9

2
6, 6

I1
B1

closed form
130.026834, Unfinished

0.280802

Here ”Unfinished” denotes that we can not obtain the results
in running the algorithm for a long time.

From Table I, we can see that B1 method is much better
than I1 in calculating the closed form.

Moreover, the running time (unit: second) and the relative
error of computing the left integral of (27) can also be ob-
tained with different precision for numerical integration. The
comparison of the two numerical methods in Mathematica
are listed in Table II and Table III.

Table II Comparison of computing the left integral of (27) for two
numerical methods with different precision(Prec = 32 and Prec = 64)

x, y, p, q T32, r32 T64, r64

1, 1, 6, 6
NI
NB

0.046800, 10−32

0.015600, 10−32
0.109201, 10−65

0., 10−72

2, 5
3
, 4, 5

NI
NB

0.046800, 10−32

0.015600, 10−36
0.156001, 10−65

0.015600, 10−76

− 8
3
,− 4

5
, 1, 3

NI
NB

0.078001, 10−15

0.015600, 10−39
0.171601, 10−21

0.015600, 10−79

1
4
,− 7

2
, 4, 2

NI
NB

0.078001, 10−32

0., 10−35
0.312002, 10−22

0., 10−75
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Table III Comparison of computing the left integral of (27) for two
numerical methods with different precision(Prec = 128 and Prec = 256)

x, y, p, q T128, r128 T256, r256

1, 1, 6, 6
NI
NB

0.421203, 10−129

0.015600, 10−152
1.825212, 10−257

0.015600, 10−312

2, 5
3
, 4, 5

NI
NB

0.546003, 10−129

0.015600, 10−156
2.199614, 10−257

0., 10−316

− 8
3
,− 4

5
, 1, 3

NI
NB

0.358802, 10−24

0.015600, 10−159
1.014007, 10−39

0.062400, 10−319

1
4
,− 7

2
, 4, 2

NI
NB

0.592804, 10−27

0., 10−155
1.918812, 10−34

0., 10−315

Here NI and NB represent the calling NIntegrate in
Mathematica and the algorithm given in the Section 3 of
this paper, respectively. Moreover, TP and rP represent the
running time(unit: second) and the relative error with the
precision P , respectively. Comparing to NI method, Table II
and Table III show that NB method does not only improve
the accuracy up to the specified precision, but also reduces
the time-consuming effectively.

2) Let p be non-negative integers and x, y, z be complex
numbers satisfying Re

(
x+ y

z

)
> 0 and Re

(
x− y

z

)
> 0.

Then ∫∞
0

cosh(2yt) lnp cosh(zt)
cosh2x(zt)

dt

= (−1)p22x−2

z

p∑
l=0

Cl
p
lnp−l 2

2l

l∑
u=0

Cu
l Bu,l−u(x+ y

z , x− y
z ).

(28)
For example, the left integral of (28) can be calculated

by calling Integrate or NIntegrate in Mathematica (I2) and
the algorithm given in Section 3 (B2), respectively. Now the
time-consumption of computing the left integral of (28) is
shown in Table IV by different methods in Mathematica.

Table IV The time − consumption of computing
the left integral of (28)(Prec = 64)

x, y, z p T ime(second)

9
2 ,−5, 2 1

I2
B2

closed form
0.624004

0.

9
2 ,−5, 2 2

I2
B2

closed form
85.691349

0.

9
2 ,−5, 2 1

I2
B2

numerical
integral

0.093601
0.

9
2 ,−5, 2 2

I2
B2

numerical
integral

0.140401
0.

9
2 ,−4, 2 1

I2
B2

closed form
48.968714

0.

9
2 ,−4, 2 2

I2
B2

closed form
3 hours Unfinished

0.

9
2 ,−4, 2 1

I2
B2

numerical
integral

0.093601
0.

9
2 ,−4, 2 2

I2
B2

numerical
integral

0.093601
0.

Similarly, ”Unfinished” is the same notation that shown in
Table I. From Table IV, we can see that B2 method reduces
the time-consuming effectively for computing the left integral
of (28).

3) Let p and q be non-negative integers and x, y, z be
complex numbers satisfying Rex > 0, Rey > 0, Re(x+y) <
1 and −1 < z < 0. Then∫ 1

0

tx−1(1−t)y−1

(t+z)x+y (ln t− ln(t+ z))p (ln(1− t)− ln(t+ z))q dt

= z−y(1 + z)−x
p∑

j=0

(−1)p−jCj
p lnp−j(1 + z)

·
q∑

k=0

(−1)q−kCk
q lnq−k zBj,k(x, y).

(29)
Moreover, we notice that if Imz ̸= 0 or z > 0 and Rex >

0, Rey > 0, then (29) also holds. When the values of 2x and
2y are integers, the left integral of (29) must have the closed
form.

For example, using the algorithm given in Section 3 , we
can obtain the following result∫ 1

0

√
t(1−t)2

(t+z)4
√

t+z
(ln t− ln(t+ z))2 (ln(1− t)− ln(t+ z))2 dt

= 1

z3
√

(1+z)3

·



202905805568
4254271875

− 164384π2

70875
− 8π4

105
− 842151424 ln 2

40516875

+ 9088π2 ln 2
11025

+ 1774592 ln2 2
1157625

+ 443648 ln2 z
1157625

− 21536ζ(3)
1575

+
128ζ(3) ln 2

15
+

18176 ln(1+z) ln2 2
11025

+
64 ln(1+z)π2 ln 2

105

+
16 ln2(1+z) ln2 z

105
+ 2 ln(1 + z)

(
2272 ln2 z

11025
− 32ζ(3)

15

)
+

(
1211408
1157625

− 16π2

315
− 12448 ln 2

11025
+ 64 ln2 2

105

)
ln2(1 + z)

−2 ln z

(
2272π2

11025
− 210537856

40516875
+ 887296 ln 2

1157625
+

32ζ(3)
15

)
−2 ln(1 + z)

(
11608π2

33075
− 9927648

1500625
+ 5074112 ln 2

1157625

)
−4

(
1268528
1157625

− 8π2

105
− 4544 ln 2

11025

)
ln z ln(1 + z)

−2
(
32 ln 2
105

− 3112
11025

)
ln z ln2(1 + z)



.

(30)
Thus,∫ 1

0

√
t(1−t)2

(t+z)4
√

t+z
(ln t− ln(t+ z))2 (ln(1− t)− ln(t+ z))2 dt|z= 1

2

= 0.695967098480891475794771262166229065491222783786 · · · .
(31)

However, the closed form of (30) can not be obtained even
if z is a constant by calling Integrate in Mathematica. In
particular, for the left integral of (31), the error of numerical
integration always exists regardless of the calculation preci-
sion for −1 < z < 0, Rex > 0, Rey > 0 and Re(x+y) < 1.

4) Let p, q be non-negative integers and x, y be complex
numbers satisfying Rex > |y| . Then∫∞

−∞ tqe2yt cosh−2x(t− a) lnp cosh(t− a)dt

= (−1)pe2ay

21−2x

p∑
j=0

Cj
p
lnp−j 2

2j

j∑
u=0

Cu
j

q∑
k=0

Ck
q
aq−k

2k

·
k∑

v=0
(−1)k−vCv

kBu+v,j+k−u−v(x+ y, x− y).

(32)

Note that 2x + 2y and 2x − 2y are integers, then the left
integral of (32) must exist the closed form.

For example, we can obtain the following result by (32).∫∞
−∞

t3e
7t
2 ln2 cosh(t−a)

cosh
9
2 (t−a)

dt = 8
√
2e

7a
2

1157625 · 189π4(3113− 1820 ln 2)− 396900ζ(3)) + 36102372a2

−144a3(−75547 + 2450π2 + 210(341− 140 ln 2) ln 2)
+48(43892 + 434304 ln 2 + 1070394ζ(3) + 496125ζ(5))
−12a2m1 + 4π2m2 + 12 ln 2m3 + 12am4

 ,

(33)
where

m1 = 12 ln 2(299 + 420(319− 210 ln 2) ln 2
+105π2(−253 + 1680 ln 2),

m2 = 3(138142 + 105 ln 2(−3839 + 560 ln 2)) ln 2
+1698463 + +330750ζ(3),

m3 = 1410851 ln 2 + 630(121− 1890 ln 2)ζ(3)

+12 ln2 2(−107293 + 840 ln 2(11 + 35 ln 2)),

and

m4 = 6615π4 + π2(636122− 210 ln 2(2563 + 420 ln 2))

+24 ln2 2(−183139 + 210 ln 2(−253 + 420 ln 2))
+2 ln 2(2187641− 661500ζ(3)) + 3305610ζ(3)
+1885056.

However, the left integral of (33) can not be calculated by
symbolic integration and numerical integration.
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5) Let p, q be non-negative integers and x, y be complex
numbers satisfying Rex > |Rey| . Then∫∞

0
t2q cosh−2x t cosh 2yt lnp cosh tdt

= 22x−2q−2
p∑

j=0

2−jCj
p ln

p−j 2
j∑

u=0
Cu

j

2q∑
k=0

(−1)kCk
2q

·Bu+2q−k,j+k−u(x+ y, x− y).
(34)

Note that if the values of 2(x+y) and 2(x−y) are integers,
then the integral (34) must exist be closed form.

Moreover, the following integral can also be transformed
into the partial derivatives of B(x, y).∫ 1

0
tm(1−t)
1−tn dt = 1

n

∫ 1

0
tm+1−n(1−t)

1−tn dtn

= 1
n

∫ 1

0
t
m+1

n
−1

1−t dt− 1
n

∫ 1

0
t
m+2

n
−1

1−t dt

= m+1−n
n2

∫ 1

0
t
m+1−n

n −1 ln(1− t)dt

−m+2−n
n2

∫ 1

0
t
m+2−n

n −1 ln(1− t)dt
= m+1−n

n2 B0,1(
m+1−n

n , 1)
−m+2−n

n2 B0,1(
m+2−n

n , 1).
(35)

By (8) and (17), the left integral of (35) also has the closed
form for positive integers n and m.

V. CONCLUSION

Based on the additional definition of B(x, y) and some
recurrence formulas of Bp,q(x, y) given in [3], we develop
an algorithm for computing B(x, y) and its partial derivatives
Bp,q(x, y). Furthermore, numerical examples show that the
algorithm can be applied to compute some special gener-
alized integrals, which improve the rate and precision of
computing the corresponding generalized integrals.
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