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Two-grid Methods for Characteristic Finite Volume
Element Approximations of Semi-linear Sobolev
Equations

Jin-liang Yan, and Zhi-yue Zhang

Abstract—In this paper, two-grid methods for characteristic
finite volume element solutions are presented for the semi-
linear Sobolev equation. The method is based on the methods of
characteristics, two-grid method and the finite volume element
method. The nonsymmetric and nonlinear iterations are only
executed on the coarse grid (with grid size H). And the fine-
grid solution (with grid size h) can be obtained by a single
symmetric and linear step. It is proved that the coarse grid
can be much coarser than the fine grid. The two-grid methods
achieve asymptotically optimal approximation as long as the
mesh sizes satisfy h = O(H 3). As a result, solving such a large
semi-linear Sobolev equations will not be much more difficult
than solving one single linearized equation.

Index Terms—Characteristics, Two-grid method, Finite vol-
ume element method, Sobolev equation, Error estimates.

I. INTRODUCTION

HIS paper consider the following semi-linear Sobolev
equations:

c(z)ug +d(z) - Vu— V- (a(z)Vu) — V- (b(z)Vu)

= f(u,x,t), (x,t) € QxI,

u(z,0) = up(x), x € Q,

u(z,t) =0, (x,t) € 02 xT

ey

where Q C R? is a bounded domain, with boundary 9. In
this paper, we consider the problem with periodic boundary.
d(z) = (dy(x),dy(x))", I = [0,T]). T > 0 is some fixed
final time. f(u,x,t) is uniformly Lipschitz continuous with
respect to u. On the other hand, the coefficients of (1) satisfy

(a) 0<a <a(z) <a,0<by <b(z) <bg,ld|l =

\ @2 +d3 <d*,0<c; <) < e

d(z) 0 [(d(z) .
() c(x) + Oz, (c(a:) ) ‘ < Ky
0 0 H? .
(C) ag{; + aiz + Tu‘é §K27Z:112;

(d)  weL>®(0,T; W (Q)NWP(Q));
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(e) % € L? (0,7 W2 (Q)) N L (0, T; W2 () ;
(f) % € L*(0,T; L* () NH" (Q)).

where a1, as, b1, ba, d*, K1 and K, are positive constants
and p > 1,q > 2. Problems of the form (1) common-
ly arise in the flow of fluids through fissured rocks [1],
thermodynamics [2], the migration of moisture in soil [3],
and other applications. For a discussion of existence and
uniqueness results, see [4]-[8]. Various numerical treatment
of this problem can be found in [9]-[19] and their references.

The characteristic method was first introduced by Dou-
glas and Russell in [20]. And then extended by Russell
[21] to nonlinear coupled systems in two and three spatial
dimensions. The main concept of characteristic method is
to combine the time derivative and the convection term as
a directional derivative along the characteristics, leading to
a characteristic time-stepping procedure. Then, the standard
method can be applied to the problem whose form is similar
to heat equation. Comparing with standard methods, it can
use larger time steps in numerical simulation, and can
eliminate the excessive numerical diffusion and nonphysical
oscillation.

Finite volume element (FVE) method, as a type of im-
portant numerical tool for solving differential equations,
was widely used in several engineering fields, such as fluid
mechanics, heat and mass transfer and petroleum engineer-
ing. This method is also known as a box method [22],
[23] or generalized difference method [24], [25] in China.
Perhaps the most important property of FVE method is that
it can preserve the conservation laws (mass, momentum and
heat flux) on each computational element. This important
property, combined with adequate accuracy and ease of im-
plementation, has attracted many researchers to do research
[26]-[32]. The theoretical framework and the basic tools for
the analysis of FVE method have been developed in the last
two decades [26]-[32].

Two-grid method was first introduced by Xu [33]-[35] as a
discretization method for linear (nonsymmetric or indefinite)
and especially nonlinear elliptic partial equations. The basic
concept of this method is to solve a complicated problem
(nonlinear, etc.) on a coarse grid (with mesh size H) and
then solve an easier problem (linear, etc.) on a fine grid
(with mesh size h and h <« H) as correction. Later
on, the two-grid method was further investigated by many
authors, for instance, Dawson and Wheeler [36], [37] have
applied two-grid mixed finite element method and two-grid
finite difference method to a class of parabolic equations,
respectively. Wu and Allen [38] have used the two-grid mixed
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finite element method to approximate the reaction-diffusion
equations. Utnes [39] have applied this method to Navier-
Stokes equations. Bi and Ginting [40] have studied the two-
grid finite volume element method for linear and nonlinear
elliptic equations. Chen [41], [42] and Chen, Bi [43] have
applied the two-grid finite volume element method to a kind
of nonlinear parabolic equations and convection diffusion
equations, respectively.

In this paper, based on two linear conforming finite
element spaces Uy and Uj, on one coarse grid (with grid
size H) and one fine grid (with grid size h < H), we use
the two-grid characteristic finite volume element methods
to approximate the semi-linear Sobolev equations (1). We
first solve a nonsymmetric and nonlinear problem on the
coarse grid, then we use the known coarse grid solution and
a Taylor expansion to get the solution of a symmetric and
linear system on the fine grid. As shown in [33], the approach
can use coarser mesh on the coarse grid without loss of
accuracy. The outline of the paper is as follows. In Section
2, preliminaries and notations are introduced. In Section 3,
the characteristic FVE method and two-grid characteristic
FVE method are presented, respectively. The error estimates
in the H'- and L?-norm of characteristic FVE method are
demonstrated in Section 4. In Section 5, the error estimates
in the H'-norm for the two-grid characteristic FVE method
are presented.

Throughout this paper, the letter C denotes a generic
positive constant which independent of the mesh parameter
and may be different at its different occurrences.

II. PRELIMINARIES AND NOTATION

For a convex polygonal domain 2 C R?, we adopt the
standard notation W™P(Q)) for Sobolev spaces on 2 and

supply it with a norm || - || p
(> IDlp)t?, 1<p<oo,
[ullmp = Oslalsm ()
max ||D%l|co, p = 0.
0<|al<m
Define W () as the closure of C§°(§2) with respect to the
norm || - ||, p- In particular when p = 2 we write WP (Q)

and W"P(Q) as H™ () and HJ* (2), respectively. Note
that H (Q) = L?(Q) and H (Q) = {v € H' (Q);v =
0 on 00}.

Let € is a polygonal region with boundary . Divide Q
into a sum of finite number of small triangles, each triangle
is called an element and the vertexes of the triangle are called
nodes. All the elements K constitute a triangulation of Q,
denoted by T}, where h is the maximum length of all the
sides.

Now we construct a dual decomposition T} related to T7,.
Let Py be a node of a triangle, P;(i = 1,2, -+, 6) the adjacent
nodes of Py, and M; the midpoint of Py P; (Figure 1). Choose
a point Q; in an element APy P, P;1(P7 = P;) and connect
successively My, Q1,- - -, Mg, Qg, M7 to form a polygonal
region Kpx, called a dual element. The modification of the
definition is obvious when P is on the boundary. All the
dual elements constitute a new decomposition, called a dual
decomposition. (); is called a node of the dual decomposi-
tion, @; is usually chosen as barycenter or circumcenter of
the element K € T},.

Py Py Py Py

77
7 W

oYl “

/o

Py

Fig. 1. The dual element of Fy.

In the sequel we denote by j, the set of the nodes of
the decomposition T, O, =Q, \ 99 the set of the interior
nodes, and 2} the set of the nodes of the dual decomposition
Ty. For Q € j, Kg denotes the triangular element
containing Q. Let Sg and Sp; be the areas of the triangular
element K¢, and the dual element K p, respectively. We call
the mesh T3, and I} are quasi-uniform if there exists constant
c1, co,c3 > 0 independent of A such that

Clh2 S SQ S h27Q € Q;‘m (3)

coh® < Spr < esh®, Py € Q. )

The trial function space Uy, is chosen as the linear element
space related to T},

Uh = {uh S C(Q) : uh\K S Pl,VK S Th;uh|aQ = 0},

and the test space V}, is chosen as the piecewise constant
function space with respect to 7}, spanned by the following
basis functions: For any point Py €

1, PEKPJ,

Vp,(P) = { 0, elsewhere. )

For any vy, € V3,

vp = Z vn(Fo)¥p,

Pocqy,

Then we obtain Uj, =span{¢;(v) P, € Qh} and
Vi =span{v;(x) : P; € Qu} where ¢;(x) is the nodal
basis function associated with the node P;, and v;(x) is the

characteristic function of Kp, .

For any u € Hj(Q)(H?(Q2), we define an interpolation
operator IIj, : C(€2) — Uy, such that

Myu= > u(P)ei(x). (6)

PoeQ,

For any u;, € U}, we define another interpolation operator
IT; : Uy, — Vj, such that

Whun = Y un(Po)thi(x). (M

PoeQy,

By the interpolation theory we have
[un — Whunl| < Chlunll (8)
and in [31] that

M unll < Clunl- ©)
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III. THE CHARACTERISTIC FVE METHOD AND
TWO-GRID FVE METHOD

A. The characteristic FVE method

In the characteristic method, the time derivative and the
convection term of (1) are combined as a directional deriva-
tive along the characteristics direction 7 = 7(x):

o) 204 () -V = e + d(2) P o

- 5= (i + ) ).

e(2)? + d(@)]".

Then, (1) can be written as

(x)ur — V- (a(z)Vug) — V - (b(x)Vu)

— (1), (@t)e QxI, 0
w(@,0) = uo(x), =€, 1o
u(z,t) =0, (z,t) €U XTI

We define a partition of the time interval [0,7] by ¢, =
nAt,n = 0,1,2,- - -, N, with At = T/N,u}} = up(ty).
In the standard characteristic method [20], the directional
derivative along the characteristics is approximated by

n ny __ = 4n—1
A K B i
or (x — )% + Ar2
u(z, t") — u (T, "7 1)
= c(z) AL ;1D

where T = x — (Cl((;)) At.
The variational problem related to (10) is: Find u = u(-,t) €
U such that

{ (Y(x)ur,v) + ap, (ug,v) + by, (u,v) =
u(z,0) =uo(x), x€9Q,

(f (u),

(12)
where (-, -) denotes the inner product in L?((2), and

ap (u,v) = (a (z) Vu, Vo), by (u,v) = (b(z) Vu, V).

(13)
Though the trial function space U satisfies U, C U like
finite element methods, the test space Vi, ¢ Up. As in
the case of nonconforming finite element methods, this is
due to the loss of continuity of the functions in V} on
the boundary of two neighboring elements. So the bilinear
forms ay, (u,v) and by (u,v) must be revised accordingly.
For nonconforming finite element methods, the idea is to
write the integral on the whole region as a sum of the
integrals on every element K, so a (u,v) and by, (u,v) are
rewritten as

ap, (u,v) Z / z) VuVudz, (14)
KET,
by, (u,v) Z / b(x) VuVudz. (15)

KeTy,

Now ay, (u,v) and by, (u,v) are well-defined on Uy, x V},. For
the FVE methods, i.e. generalized difference methods, we
place a dual grid and interpret (14) in the sense of generalized
function, i.e. § functions on the boundary of neighboring dual
elements. Or equivalently, we take ap, (u,v) and by, (u,v) as

v),Yv e U,

the bilinear form resulting from the piecewise integration in
parts on the dual elements K7, :

/ vAudr = —
Q

+ > (Vu) -nvds.
K; €Ty V9Kp,

VuVudx
. « JK*
Ky €Ty "5 p

(16)

where |, oK p _ denotes the line integrals, in the counterclock-

wise dlrectlon on the boundary 0K p; of the dual element.
So, we have

ap, (u,v) =

/* (a(x) Vu) Vo dx

K;‘,O €Ty Py

— Z /BK* (a(z) Vu) -nuds,

Ky €Ty

A7)

/ (b(x) Vu) Vv dx
K

by (u,v) =
Ky €Ty " Ky

- > /{W (b(x) Vu) - nv ds,

Ky €Ty

(18)

Since the test space V}, is chosen as the piecewise constant
function space, so we have

ap, (u,v) = — / (a(x)Vu)-nvds, (19)
K; €Ty OK;

b (u,v) = — / (b(x)Vu) -nvds,  (20)
K Ty OK:

Then, the semi-discrete FVE formulation of (1) is: Find uy, =
up, (-, t) € Up (0 < ¢t < T) such that

(wh,r Ijon) + ap (un,e, yop) 4 by (un, I vh)
= (f(un), h'Uh) Yoy € Uy, t >0,
up(2,0) = uop(z). x €Q,

where ap (-, II5-) and by(-,II}-) are defined by, for any
up,vn, € Uy, (19) and (20), respectively. ugp is a certain
approximation to ug on Ujp. At time ¢t = t,,, we use the
backward difference quotient

2y

dpuft = (uZ — uZ_l) At (22)

to approximate uy ¢, then we get the fully-discrete scheme
of (1): Find u} € Up(n=1,2,---,N) such that

u® — -
(C(:C)hAth’ quh) + ap, (Bup, Iy vp)
+op, (up, o) = (f(up), O vs) , Yo, € Uy, t >0,
u?L = ugp. T € €,
(23)
On the other hand, from Lemma 2, we know that there exists
a unique local solution for (12) and (23)(see e.g. [24]).
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B. The two-grid characteristic FVE method

In order to present two-grid FVE method for the semi-
linear Sobolev equation (1), we introduce two quasi-uniform
triangulations of €, Ty and T}, with two different mesh
sizes H and h(H > h). We introduce the corresponding
finite element spaces Uy and Uj, which satisfy Uy C Up,.
They will be called the coarse grid and fine grid spaces,
respectively.

The basic idea of two-grid method is to use a coarse grid
space to produce a rough approximation of the solution, and
then use it as the initial guess for one Newton-like iteration
on the fine grid. This method involves a nonlinear solve on
the coarse grid and a linear solve on the fine grid space.
We present the two-grid characteristic FVE method as two
steps[40], [43]:

Algorithm 1.
Step 1: On the coarse grid Ty, find v}y, € Ug(n=1,2,---),
such that

-1
ul —u u —u'y
H H * H H *
C((B)77HH’UH +ag 775 y vy

i (uy Wygonr) = (). o)

Yog € Uy, t >0,

u%, =ugy. T €9,

(24)
Step 2: On the fine grid T}, find u} € Up(n = 1,2, - ),
such that
up — Hz_l . up — uZ_l .

(et g i) o (Mg i
+by, (uﬁ,szh)
= (i) + f () (gt = ) Tn)
Yup € Up,t > 0,
T € Q,

’LL?L = Uoh-

(25
We note that the second step of Algorithm 1 is a linear
problem but still nonsymmetric. In order to get a symmetric
system, we introduce the following bilinear forms

ac (up,vp) = / aVuy - Vo, dz,Yup, v, € Uy,  (26)
Q

be (up,vp) = / bVuy, - Vo, dz, Yun, v, € Uy, 27
Q

an,c (un, op) = — / (@Vuy) - nllj vy, ds,
oK},

K} €Ty
(28)
bh,c (un, I vp) = — / (@Vup) - nlljvp ds,
K; Ty 9Kk,
(29)

where @ = @|x = ag,b = b|x = bx and

1
aK:W/Ka(x) dx

1
- KeT
b meas(K)/Kb(x) dz,VK € T),

. Then from [29], [44], we have the following lemma.
Lemma 1: For any up,vn, € Uy, we have

an,c (un, pvp) = ac (up,vp)

bh,c (Uh, szh) = b, (uh7 Uh)

From this lemma we can see that apc(upn, H;;vh) and
bp,c(un, I vp) are symmetric. Then we obtain the second
algorithm.
Algorithm 2.
Step 1: On the coarse grid Ty, find v}y, € Ug(n=1,2,---),
such that
n =N n n—1

+bH,c (U?p H;{UH) = (f(’l/]g), H%UH) )

Yog € Uy, t >0,

u%, =ugy. T €1,

(30)

Step 2: On the fine grid T}, find u} € Up(n = 1,2,- - +),
such that

—n—1 n—1
ur —uy ul —u
(C(J;)M?HZUO + ap.c <M,H}§vh>

At At
+bp,e (upy, I vn)

= (i) + f () (wfp = ) Ton )
Yoy € Up,t >0,

u% = Ugp. T € €,

€2y
We note that the coefficient matrixes of the system in Algo-
rithm 2 are symmetric. So the system is easier to solve (e.g.
conjugate-gradient-like methods can be applied effectively).
We call these algorithms as two-grid characteristic FVE
methods.

IV. ERROR ANALYSIS FOR CHARACTERISTIC FVE
METHOD

A. Some lemmas

Lemma 2: ([29], [24]) There exist positive constants hg, «
and M such that when 0 < h < hg, the coercive property

an (un, Iup) > allun|? , Yus € Uy
and the boundness property

|an, (un, I on)| < M [uplly [lvally

hold true.

Lemma 3: ([24]) Set |[|lupl|llo = (un,ITfup)'/? and
unllls = [b(un, ITup)]*/2. Then || - [llo and ||| - [[}; are
equivalent to || - ||o and || - |1 on Uj, respectively, that is,

there exist positive constants ¢y, cy and cs, ¢4 such that

crlfunlly < Mllunllly < ez flunlly , Vun € Un.

cs flunlly < lllunlllo < callunlly, Yun € Un.
Lemma 4: ([44]) For any uy, v, € Uy, there are
lan (un, 5 vn) = an (v, Whun)| < Chlunlly [[onlly
and
(un, Myvn) = (v, un)

Lemma 5: ([24], [44]) Define an elliptic operator P}, :
C(92) — Uy, such that

ap (u — Phu,H;;’Uh) =0,V € Uy,.

(Advance online publication: 10 July 2015)
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b, (u — Ppu, I} vg) = 0,V € Up,. Rewritten (34) as
Then we have (c(z)Bse™, I Ore™) + ap (8,e™, 115 0pe™)
lu = Prully < Chlull,, +bn (", I}, 0pe™)

w(x)ﬁ — c(w)T, HZ@&")
+an (up — " 15, 0,e™) + (f () — f(u"), 11;,0,e™)

lu — Pyul| < CR? |lully, . p > 1,

u— Pyu < Ch? lnh(u + ||lu ) n—1_ 5n—1
|| h H0,00 ‘ | || HB H ||27oo + <C(l‘)p A 14 7H26t6n>
Lemma 6: (Gronwall lemma) Let ag, by, o, dy, are non- t71
negative sequence, for k > 0, and satisfy T <C(I)P *A /; AL 8te")
J J-1 J 1 o »
ay+ ’;)bkAt < ’;) apdp At + ];)OékAta dpAL < 5 + <C($)6A_:7H28t€n> , (34)

then Now we estimate (34). First
J J-1 J
ay+ Z bpAt < exp |F Z di At Z o At. by, (e, 11} Ore™)
k=0 k=0 k=0 1
= —|p en + en_l,H* en _ en—l
Lemma 7: ([43]) Let u € L>=(0.T; H*(Q)) and "~ ! = QAt[ n l )
u (T, "), where T is defined by (11), then we have +bp, (e — e (" — e )]
1
Hun_l — ﬂ"71|| <C ||u”71||1 At. > Ebh (e” + eI (e — e”fl))
1 n * n n— * n—
B. Error analysis for characteristic FVE method = 9At [bh (e", Ipe™) — by (@ Y ;e 1)}

Now we consider the error estimate for the characteristic _1
finite volume element method of (1). The error estimates in 2
the H'- and L?-norm will be given in the following Theorem By (34) and (35), we have
4.1 and Theorem 4.2.

[bn, (Ope™, TT1e™) — by, (€™, 1T} Ore™)] . (35)

Theorem 4.1: Let u and uy, be the solutions of (12) and (c(x)0se™ 115 0se™) + ap (Oge™, 115, Ope™)
(23), respectively. Under assumption (a)-(f), for At¢ small 1 . 1 s omed
enough, if u) = Pyuo with P, defined by Lemma 5, we +E [bh (e", Ihe™) = bn (6n 1he >]
have, for t,, < T, oun u” — gL

(v 5 = et — 01"

Lna<XNHu" —uplli < C(AtL+ h). (32) T t

t=ns tap (u — Opu™ 11, 0¢€™) + (f(up) — f(u™), 11,0¢e™)
where C' = C([lul| L (a2 () [[urr [l L2 (22 @) 1wl 22 (1 () Pt —pnl o
|l Loe (ws.p () ||| Loe (ws.p())) is independent of A and + | el=) AL ot
At. pn—l _ pn—l

Proof: For convenience, let ujl —u"™ = (u}} — Ppu™) — + <c(x)A, H;‘Z(?te">
(u™ — Ppu™) =: ™ — p™. Then from (12) and (23), we get ) t )
i i e —el'” * n

the following error equation at ¢, + <c(a:) A L Ore >

e — En—l . .
(c(x)At, Hhvh> + ap (Oce™, I vp,) +

5 Do (B0, TT5e") — by (€, 1194 G6)
ou™ u® — unfl
b (", Iy vp) = <1/)(CE)67_ - C(CU)T, HZ%) Multiplying by At and summing over [ from 1 to I(1 <n <
n —n—1 N) at both sides of (36), by Lemma 3 and Lemma 4, since
+ap, (uy — Opu"™, Il vp) + (c(x)p_p H?ﬂ%) e® = 0 we have

At
PR €O . Slenlf+ e o at+ e (||| At
where " ! = )t — Pl = a - Pl =1 =1
n n—1 n —]—
Letting O;e™ = “—;— and choosing v, = J;e", we obtain < Z (1/1(96)? B C(x)ul _Aitbl ! 7 H,*latel) At
n _ n—1 =1 T
(c(x)eAet, H,";@w”) + ap, (O¢e", 11}, 0re™) n
l I 179 1
+ — o', 115 0se’ ) At
+by, (", 11}, 00€™) ;ah (1 = Oued T
ou™ u -t n 111
— (v0) G cle)™ 5y — M0 o3 (et )
+ap (uff — O™, 11}, 0pe™) + (f (up) — f(u"), 11, 00€™) =1 1
n _ 5n—1 P =P * l
+ (c(x)p = ,H;;ate") . +> <C(I)Ata 115, 0re ) At
1=1

(Advance online publication: 10 July 2015)
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S el ettt For Tj, from L 5 et
i Z <C(I) N ,H;,atel> At or T3, from Lemma 5, we g
=1 n ot — pt=1 .
1 T3] < (c(x) 03 Ore > At
+= Z [bh (8tel Iy ) — by, (e 11} Ose )] At

2
=
n 7 <C o) el At
+3 0 (flup) = fh), o) At=> T, (37) Z el

=1 i=1 n

Z

At + CEZ [0set||” At

We now estimate the right-hand terms of (37) For 77, from

the results given in [21], that 2 ou
Zh‘* o At+C€Z s At
wem 1 o ag [ ul® gt 4 lou
Hwi_c T) 47 ftn_lfﬂ‘w x < C(e)h?
0% 38) Ot | oe o, mowsn )
oT2 n
E @), +0 Y [0 || At. (41)
by (9) and e-inequality =
By Lemma 5 and Lemma 7, for T, we obtain
n oul e 1 -1
ITh| < - (1/’(33)(;; - C(J/')uAiZ,Hhﬁtev ’ At Ty < ( 7p H,";atel> At
n Ol ul — it 2 n o
N L e e <c Z H T30, At
+sZ | *ateluz o <O |10 o' a
=1 =1
o (i <0 1 Ar+ =3 ol
€ € e
L2(tn—1,tn;L2(Q)) B =1 ’ ! =1 '
+C€Z Hatelﬂz At < C(e)h? ||u||2Loo(0,T;H2(Q))
l; +0= Y || At (42)
< C’ aTZ (At)? =1
n L20.T5L2 () For T, we have the similar result,
+0= Y |0 || At (39) . do1_ et
=1 |T5 S 2 <C($)N,Hzatel> At
For Ty, from the results given in [21],we get et -1 ‘ Hzatel H At
IT| < ; |an (Opu — Ui7H;at€l)| At < CZ Hel—lHl ’ H}kﬁt@l” At
= 1=1
<MD |0t — ], [Tk, At <0 S [ at+ =S e’ At 43)

=1

n n
< MC(e) Z Hatul - Ufg“i At +¢ Z ||H23t€l|ﬁ At For Ts, by Lemma 4 and the inverse estimate, we have

=1 =1
n 2 1 - * *
SMC(5)Z< / " el dt) At |T6\S§l§}|[bh (e, T0je') — by (e, 10} 0re) || At
1=1 \’t-1 .
- 2 <O hl|agel]|, [lel]], At
+cs;||atel||1m < ; 9ee'[1, fle"],
tn n
< MC(e) (/ ot || dt) (At)? <C o] e, at
0 =1
+0 3 ||oe|[; At (40) <X ||e]; at+ce Y [ At (44)
=1 =1 =1
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For T, at any point z € (), by the Taylor expansion, we
have

F) = F) = F@) g — ) = @) - o,

for some value u”™ betweenu} and u,. By assumption (c)
and Lemma 5, we have

ITr] < 37 |(F(uh) = F(uh), T 00e") | At
<> h) = )| ope' |
=1
&)Y |I7(uh) — £t At
=1

10 [ore|? At

=1

) S (I + [0 At + Ce S [jone!||* At

=1 =1

C(Z Ie! HQ At +n* H“”QLOO(O,T;WM(Q)))
1=1
+0= Y [|ore || At.
1=1
Combing the error estimates of 7;(1 < ¢ < 7) with (37), we
have

(45)

e Y | Ak €Y a2 o

=1 =1

d%u 2 tn
sc(Ha [l ) a0
T 20,502 Jo
+C{ nt 0ul +h? ||“||2Loo(0T~H2(Q))
Ot || e 0,500 ) o

+h! HuHiOO(O,T;W?’vP(Q)) >
w0 (Zuelnlmzuelu At)
=1 =1

+0 Y |0 P At + e 3 ||ae|[; At

=1 =1

(46)
Choosing proper € and kicking the two terms into the left

hand side of (46), and applying discrete Gronwall Lemma 6,
we get

le” 7 + Z H@telH2 At Y o' At

Rz —

t’”.
+ / Juee ]2 dt) (Ab?
L2(o T;L2()) 0
+c<

2
+ ||u||L°°(O,T;H2(Q))
2 2
+“||L°°(0,T;W3=P<Q))>h :

O || o 0 7w )

(47)

Then, we have

le®[l, < C(h+ At), (48)

Together Lemma 5, we have the estimate (32). [ |

Theorem 4.2: Let v and uj, be the solutions of (12) and
(23), respectively. Under assumption (a)-(f), for At small
enough, if u‘fl = Prug with P, defined by Lemma 5, we
have, for t,, < T,

max lu™ — u}|| < C(At + h?). (49)

1<n

where C' = C(||UHL°°(H2(Q))7 lweell L2 o)) lurr |22 )
l|lue || oo (ws.p(0)), U]l Loe (w3.p())) is independent of h and
At.

Proof: In (33), choosing v;, = e”

( ( )8te7l H* 7l) + ah (8t67l H* 7l) + bh (
ou' w -t

~ (05 0 e

tap (u — Opu™ I3 e™) + (f (up) — f(u"), }e™)
n n—1
P —p * m

+ <c(m)At e >

n—1 _ —n—1
+ (c(x)pAtp,HZe")

,we obtain

e, 15 e™)

(50)

For the first term of the left-hand side of (50), we have

(c(xz)0pe™, 1T e™)

= e (" — LT (e )
+c(z) (e" —e" LI (en - en_l))]

1 1 * n n—1
> EC(QJ) (en — e aHh (6 +e ))

1 1 * n—1
= a7cl@) [(e", Mie™) = ("~ e )]

1 n|2 n— 2
= 5@ (lllellls — llle HIIG) -

For the second term of the left-hand side of (50), we have

61y

ap, (Ope™, I e™)

1 n n— * n n—
= gazlon (" =" LI (€ ")
+ap, (" — "L (e" — "))

> Lah (en _ e"’_l,H}kL (en + en—l))

— 2At
1 _ . n—
n 1,Hh€ 1)}

A7 |
1
+§ [ah (8te”,

ap (€™, II7e") — ap, (e

I;e™) — ap (", 11} 0e™)] . (52)

By (50)-(52), we have

1 ni2 n—1
sazC@Ile g = llle= 1)
+ (™13 = Me" = 13)] + br (", Ie™)

n

< (w(x)%i —c(:v)uTtl IT},e )

n _ n—1
— o, 17 e™) + (c(x)pAi,HZe">
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1
+§ [an (€™, 11} 0re™) — ap, (Ore™,
+ (f (upy) = f ("), ITe™) .
By Lemma 2 and (50)-(52) multiplying A¢ and summing

over [ from 1 to n(1 <n < N) at both sides of (53), since
e% = 0 we have

IT7,e")]
(53)

Cler? + e 2+ S |le|2 at

=1
I -1
,H’,';el> At

<Z< ——cm)u_At:

+ Z ah — 9, ITje ) At
-1
+ Z < p p HZ@Z) At
n -1 —i—1
14 — P EBN)
—_— 11 At
#3 (et g i)
n al=1 _ -1
R | l A
+ ; <c(x) Az e ) t

1 n
5 ; [an (', 11;0e") — ay, (Ope!, Tjet)] At

7
+> 0 (flub) - => Qi
=1 i=1
For ()1, similar as the estimate of 77, we have

82
32

(54)

n
(AD2 4+ Ce 3 ||| A,
2(0,T5L2 () =1

Q1| < C ’

(55)
Similarly, for QJ2, we have

tn n
Q] < MC(e) ( [ b dt) (A1 + 03 el At

1=1
(56)
For ()3, we have

8 n
1Qs| < Cle)h* | = +ce || At
Bt || o 0 w2 =
(57)
For 4, we have
n 1-1 _ =11
14 —p * 1
= — I} e | At
@i =3 (et i
n -1 1-1
14 —p *
< l_zl (c(x) A7 el —e ) At
n Pl -1
Z ( p ,el> At
= Q41 + Q2. (58)
For @41, by (8), Lemma 5 and Lemma 7, we obtain
n 1-1 _ -1
4 —p *
Q41 = ; (C(I')At,nhel — @l) At

- —1—1
14 —p *
MH et — el At

<Ol pllel At

=1
< OYTR [l A O S el A

=1 =1

n
S Oh4 ||uHi°C(0,T;H2(Q)) +C€Z ||€l||iAt (59)
=1

In [20] Douglas and Russell have proved that

1—1 1—1 1—1 —1—1
P p P =p
(‘f@m l) < CHAt

<Ol +e el

|1l
-1

using this inequality and Lemma 5, we have

Qi < CS |l |F At + 23 |l at

=1 =1
4 2 - 112
< Ch* ||ull e o rawsr () + C2 D || €!]]} At.(60)
1=1
Then, there is

Q4| < Ch* ||“||2Loe(o,T;H2(Q)) +Cey HelH? At
=1

+Ch* ||U||i<>o(0,T;W3,p(sz)) - (6D
For @5, by Lemma 7 and (9), we have
al-1 _ gl-1
Q5] < < ,H;el> At
H et
< CZ e =1, e[| At
=1
<ceM [l Aoy | ar 62
=1 =1

For (g, we have

1 n
Qol < 5 |lan (¢!, 00re!) = ap (91!, i) ]| At
=1

< O hlloel llefll, At = € 3 o[ le'll, At

=1 =1
<Y || at+ ey o] At (63)
=1 =1

For ()7, we have

Qil < Z () -
i Fa
iﬂf —f)|* At ey ¢ At
=1 =1
O I + 0P+ ce 3 e A

=1

ul),H;el)’At

\ N

FEO e

n

| /\

—
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< C(Z €’ ||2 At + b Hu”QLm(o,T;W&p(Q)))
=1

+O€Z [N (64)
=1

Combing the error estimates of Q;(1 < ¢ < 7) with (54), we
have

Cllem|? + el + ¢ 3 ||e!|f; At
=1
! 1—1

<3 (v G o)
=1

ou )’ tn

<c(]5 [ ol e ) (a0
T llz0,1iL2())  Jo

2

2
Fllullzeo,1;m2(0))
Lo (0,753 (92))

H;‘Lel) At

ou
+C(H8t

1l o s+ Ce S [Je!|2 At
=1

+C (Z [¢]]” At + Ce Y [t At) . (65)
=1 =1

Choosing proper € and kicking the two terms into the left
hand side of (65), and applying discrete Gronwall Lemma 6,
we get

n
e 12 + len |12 + 3 |Je!)? At
=1
l

& o ul —at=t
<> <1/)(x)87_ — c(x)AtIIhel) At
=1

0% ||? tn
S C H2 +/ ||uttH? dt (At)2
Ot |2 0,122y Jo
oul|® 9
+of T —
Ot || Lo (0,mw.0 (0) (O
2
+ HU||L<><>(0,T;W3-,p(Q)))h4 (66)
Then we get, for all
le]| < C (At +h?), (67)
Together Lemma 5, we have the estimate (49). [ |

V. ERROR ANALYSIS FOR TWO-GRID CHARACTERISTIC
FVE METHOD

In this section, we consider the error estimates in the H!-
norm for the two-grid characteristic FVE method. For the
two-grid characteristic FVE method Algorithm 1, we have:

Theorem 5.1: Let u and uy, are the solutions of (12) and
the two-grid FVE method Algorithm 1, respectively. Under
assumption(a)-(f), and the coarse grid size H and the time
step At satisfies H 1At < C. For At small enough, if u9 =
Prug with Py, defined by Lemma 5, we have, for ¢, < T,
the following estimate

max _|[lu” —ujl|, < C (At+h+ H?).

1<n<N (68)

Proof: Once again, let u}} —u" = (u}} — Pyu™) — (u" —
Pyu™) =: " — p". Then from (12) and (30), we get the
following error equation at t,,

e — En—l . .
c(x)———— vy | +ap (0", jvp) +

At
" . ou™ u® — ﬂnfl .
b (e i) = (600) G = ) TTion )
pn _ ﬁn—l
+ap, (uy — O, I vp) + (C(x)At’ H,*Lvh>

— (f(u") = f(ufy) = [ (ugp) (up, — ), Tom)

Yoy, € Uy, (69)

Choosing vy, = 0;e™ and (69) can be written as

(c(z)0pe™, 1T} 0pe™) + ap, (O™, 11} Ope™)

u — ﬂn—l

B it v
uy — O, 113, 0pe™)

n—1
5 HZ@&")

—c(x) ,H,’;(“)te”>

+
S
=

=

Pt

(70)

By Lemma 2 and (37), we have

5 I+ 03 o' |* At 03 |lare'||; At
=1 =1

n l -1

oul u —u"

< (1/1(95)67_ - c(ac)T, H,’;(“)tel) At

+ Z anp (uff — o, Hzatel) At
1=1

n pl _ pl—l
+Z (C(l’)At,HZatel> At

=1
n -1 _ =l-1
> <C<x>pAf’“738tel) A
=1
n élfl _ 6171
+Z <C(I)At,nzat€l> At

N
Il
—

=D (™) = flufy) = f (ufp) (ufy — ),

(71)

For T1 — Ty, we can estimate them similarly as in Theorem
4.1. For the last term of the right-hand side of (71), a Taylor
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expansion about u%; yields

1 ~ n
fa™) = fufy) + f'(ug) (u™ —ufp) + §f”(U)(un —ufy)?,
for some function . Then

£y = Faiy) = ) = )
= P — uf) + o f "~ u)?

= PP + ) + 5 f @ )

So by assumption (c) and Lemma 5, we have

T <> I(F(u™) = Fluly) — f (ufy) (up — ),
=1
IT;,0e!)| At

< STNF@™) = ) = £ (u) (a — )| |39 |
=1
< C() D Nf ™) = flul) — f/(ufy) (upy — ufy)||* At
=1

+0 Y [|oie||” At
=1

<c@ Y (11 + 141

=1

+C(e) i H (ut — u%)2H2 At + Csi H&gelHQ At
=1 =1

=¢ (Z ||elH2 At +h ”uHiW(O,T;H?(Q))
=1

+C(e) En: (e ulH)2H2 At+Ce En: 0! ||* At(72)
=1 =1

So we have

e T+ one[* a3 [[one!|; At
=1

=1

02ul? tn
<c(]5 [ el e ) (a0
T l20,1522()) Jo
ou 2 2
+C H + w7 oo (0.7 12
O || o (0. mu112(00) Lo (0,T; H2())

+ el e 0.1:m2 () | B

+O(e) Xn: H (u! — uiq)2H2 At. (73)
=

For the last term of (73), we have

n n\2 2< n n (12 n nn2
(W™ —uf)™|| < —uflly e ™ — il

2
< (Il = Pl o0 + 1 Prre” =yl o)

lu™ — uy ||, (74)

where Py is defined in the same way as P} is defined by
Lemma 5. By Theorem 4.2, and the inverse estimate, we get

2
| =’
< C(H*|InH|+ H™" | Pyu® — u|)? (At + H?)?
< C(H?|InH|+ H™" (At + H?))? (At + H?)?
< C(H?|InH| At + H* [InH|

+H™ N (A)? + 2HAt + H®)?. (75)
We can choose H and At such that H—'At < C, then we
have

H(u" - u;zl)QHQ < C(At+ HY)?, (76)

with (73), we get

ety < C(AL + h + H?). 77)

| |
For the two-grid characteristic FVE method Algorithm 2, we
can have a similar result.

Theorem 5.2: Let u and uy, are the solutions of (12) and
the two-grid FVE method Algorithm 2, respectively. Under
assumption (a)-(f), and the coarse grid size H and the time
step At satisfied H *At < C. For At small enough, if
u?L = Ppug with P}, defined by Lemma 5, we have, for
t’ﬂ g T7

max_|[u" —ujl||, < C (At +h+ H?).

1<n<N (78)

VI. CONCLUSION

In this paper, we have presented the error estimates for the
two-grid FVE method and the two-grid characteristic FVE
method for a semi-linear Sobolev equation. The theorems
above demonstrate a remarkable fact about two-grid charac-
teristic FVE method: we can iterate on a very coarse grid Ty
and still get good approximations by taking one iteration on
the fine grid T} . It is proved that the coarse grid can be
much coarser than the fine grid (h < H). We can achieve
optimal approximation in H!-norm error estimate as long as
the mesh sizes satisfy h = O(H?).
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