
 

Abstract—Correction control mechanism for a class of 

spin-stabilized projectile is presented. The analyzed 

configuration couples correction part and the body part, and 

the correction part with fixed canards and sensors aims at 

trajectory correction. Formulas of the dynamic equilibrium 

angle and drift are derived, and by integrating the deviation 

motion along the trajectory the drift value can be obtained. 

The analytic solution of the deviation motion is acquired, and it 

points out that the dynamic equilibrium angle induced by 

trajectory correction is the key factor. Through studying the 

influence of correction to the dynamic equilibrium angle and 

attack angle, the correction mechanism is found. Simulation 

results show that the components of control angle in the 

vertical and horizontal planes make the projectile axis move to 

the components’ opposite directions, and produce negative 

correction control effect. 

Index Terms—correction mechanism, equation of attack 

angle, dynamic equilibrium angle, drift, spin-stability 

projectile 

 

I.  INTRODUCTION
1
 

UIDED artillery projectiles have attracted increasing 

interests over last few decades because of the hgigh 
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delivery accuracy and decreasing dispersion requirements. 

Since more sensors and control actuators are involved in, 

more complex configurations need to be considered to deal 

with the conflict between the conventional projectile design 

and new requirements. Dual spin configuration is a very 

appropriate choice to achieve two-dimension trajectory 

correction, and the conventional projectiles can be simply 

retrofitted by replacing the fuse, so this method is 

considered to be the best one to make the old projectiles 

have new lives. 

In the last few years, the dual spin configuration has been 

studied extensively, and some dual spin aircrafts have arisen. 

Regan and Smith took dual spin configuration into spin 

projectiles for trajectory correction, and proved the 

effectiveness in the terminal course correction [1]. Then US 

naval air warfare center studied the guidance integrated fuse 

(GIF) [2]. Alliant Techsystems (ATK) produced the 

Precision Guidance Kit (PGK) and the Mortar Guidance Kit 

(MGK), and the two have been armed in the US army. 

Gagnon and Lauzon compared PGK with course correction 

fuse (CCF), and they pointed out the advantages of the two, 

respectively [3]. Werent proposed a new design which used 

a set of fixed canards to control the front part to reduce the 

roll velocity and used a set of reciprocating canards to 

correct the course [4]. Wernert and Theodoulis changed the 

design, and the set of fixed canards was replaced by a set of 

reciprocating canards [5]. Wang and Shi presented another 

scheme, and a damping disk and damping rings were taken, 

which were used for longitudinal and lateral correction [6].  

Because of high reliability, taking small volume and 

supplying continuous loads, trajectory correction fuse with 

fixed canards has aroused increasing interest among 

researchers. Costello established 7-freedom rigid trajectory 

model [7], and he linearized the model to research the 

stability of projectiles [8]. Ji and Zhang studied the 

aerodynamics [9-10]. Li established a course model for 
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122mm rockets and analyzed the stability [11]. Toledo 

introduced the experiment method for a kind of 120 mm 

mortar ammunition [12]. However, to our best knowledge 

there is no literature introducing the trajectory 

characteristics of spin-stabilized projectiles during the 

course correction periods, especially the correction 

mechanism. 

This work deals with the research on the correction 

mechanism of the spin-stabilized projectiles. The dynamic 

model under control state is established in Sec. II, and 

equation of attack angle and formula of dynamic 

equilibrium angle are deduced in Sec. III. Based on the 

formulas, deviation motion of the trajectory and the 

correction control mechanism are analyzed in Sec. IV. 

Simulation results are provided to show how the correction 

control affects the impact points through controlling 

motions of projectile axis in Sec. V. Finally, conclusions are 

presented in Sec. VI. 

II.  DYNAMIC MODEL 

The trajectory correction fuse with fixed canards 

comprises of front and aft components, and the two 

components are connected by two bearings (as is shown in 

Fig. 1), which allows them spin in different directions. On 

the aft component there is a screw thread, using which the 

fuse can be fitted into the projectile. After the fuse is fitted, 

the projectile can be divided into two parts. One is named 

correction part, and the other is named body part.  

 
a) Structure of the fuse 

 

 

b) Schematic of the installation 

Fig. 1.  Two dimension course correction fuses 

 

During the flight, the two parts of the projectile spin in 

different directions due to the effort of the aerodynamic 

forces. In order to describe the motion of the projectile, 

three translational and four rotational rigid body degrees of 

freedom are introduced. The translational degrees of 

freedom are the three components of the mass center 

position vector. The rotational degrees of freedom are the 

Euler yaw and pitch angles as well as the correction part roll 

and body part roll angles. The ground surface is used as an 

inertial reference frame, which is named oxyz . 

The quasi body reference frame ox4y4z4 is introduced to 

describe the rotational motion (as is shown in Fig. 2), and 

the sequence of rotation from the inertial frame is pitch , 

yaw . The ox4y4 plane of the quasi body reference frame is 

fixed in the vertical plane, so it is convenient to be shared by 

the correction part and body part. 
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Fig. 2.  Coordinate transformation relation 

 

Equations (1-4) represent the translational and rotational 

equations of motion for a dual spin projectile. Both sets of 

translational equations are expressed in the inertial frame:  
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               (2) 

xF ,
yF and zF are components of the total force expressed 

in the inertial frame. 
xv , yv and

zv  are
 

velocity vector 

components of the composite center of mass expressed in 

the inertial frame. x , y and z  are
 

position vector 
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components of the composite center of mass expressed in 

the inertial frame.
 4y and

4z are components of the 

angular velocity vector expressed on the y and z axis of the 

quasi body reference frame.  

The two rotational equations are expressed in the quasi 

body reference frame: 

 
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 (4) 

xfM ,
xM , yM  and

 zM
 

are components of the total 

moment of both the front and aft parts expressed on the x 

axis of the quasi body reference frame. f ,
a  are roll 

angles of the front and aft part.  ,  are yaw angle and 

pitch angle, respectively. 

Loads on the composite projectile body are due to weight 

and aerodynamic forces. All the aerodynamic coefficients 

are acquired by numerical computing, and the forces as well 

as moments are presented as follows: 
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Note that the force vector 4 4 4

T

x y zF F F   presents the 

components of aerodynamic forces in the quasi body 

reference frame, and it should be transformed into a vector 

in the inertial frame. The longitudinal and lateral 

aerodynamic angles of attack are computed as follows: 

41tan
yv

v
 

 
  

 
, 

1 4tan .zv

v
   
  

       

 (5) 

When in the trajectory correction process, correction part 

is set to a roll angle relative to the inertial frame, so the 

control relationship is added as follows: 

.
0

f c

f fp

 


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
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 (6) 

III.  DYNAMIC EQUILIBRIUM ANGLE 

The projectile system is a nonlinear time varying system. 

That is to say, all the aerodynamic coefficients and 

kinematic parameters change as time goes on. Here 

coefficients frozen method is taken for formula deduction. 

In order to describe the motion of angles, the equations of 

attack angles need to be established, and some assumptions 

are invoked: 

1) The attack and sideslip angles are small in the flight, so 

that 

4yv

v
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 (7) 

2) Compared to
4xv ,

4x and
xh , the quantities 

4y ,
4z ,

4yv and 
4zv are small, so that the total velocity 
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 (8) 

Products of small quantities and their derivatives are 

negligible. 

3) The variables are changed from time t to arclength s, 

and have units of calibers of travel: 

0
d .

t

s v                  (9) 

4) The projectile is mass balanced, such that the centers 

of gravity of both the correction part and body part lie on the 

rotational axis of symmetry: 
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A. Equation of Attack Angles 

Neglecting the products of small quantities, the derivation 

of (7) is that 
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Let , , y zi r iq J J A         , the equation of attack 

angles is acquired: 

    .H iP M iPT G D             (10) 

G and D are the gravity term and control force term 

respectively, and the meaning of the symbols are as follows: 
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B. Dynamic Equilibrium Angle 

The (10) is a liner differential equation due to the use of 

coefficients frozen method, and the analytic solution can be 

obtained after the roots to the following two equations, 

whose right terms are gravity term and control force term 

respectively. 

1) Formula for dynamic equilibrium angle due to the 

gravity term 

Consider the equation as follows: 

    .H iP M iPT G              (11) 
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small [13], and the velocity changes slowly. Therefore Q  
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So a particular solution to (11) is 
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And when in the control process it gives 
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g and
g are the components in vertical and horizontal 

plane. 

2) Formula for dynamic equilibrium angle due to the 

control force term 

Consider the equation as follows: 

   H iP M iPT D .              (13) 

Using the same method, the particular solution to (13) 

gives as follows: 
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3) Particular solution to the equation of attack angles 

Let   be the general solution to (10), and we have 

   1 1 2 2

1 2 0 ,
i s i s

C e C e
    

          (15) 

1,2 1,2 1,2p i   are roots to homogeneous equation. 

From (15), we know that the motion of the attack 

angles is synthesizes of two periodic circular moments. 

Because the projectile meets the dynamic stability condition, 

the real parts of the roots are negative, and the two periodic 

circular movements will attenuate to disappear. Then only 

the particular solution
0 leaves, and the motion of the 

projectile axe will be around
0 , which is the dynamic 
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equilibrium angle. 

Taking superposition of the solutions to a linearity 

differential equation, a particular solution to (10) is shown 

as: 

0 0 0g c   
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Due to 0f  , we have 
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IV.  MECHANISM OF TRAJECTORY CORRECTION 

  Formula of the deviation motion is acquired firstly, which 

points out that the dynamic equilibrium angle induced by 

trajectory correction is the key factor. Then mechanism of 

trajectory correction and method of drift value are 

introduced. 

A.  Deviation Motion 

The point mass trajectory model is the first order 

approximation of the real trajectory, and depends on the 

gravity as well as the zero yaw axial force. In the flight, 

other aerodynamic forces and moments act on the projectile, 

and make the flight contrail diverge from the particle 

trajectory. The motion perpendicular to the point mass 

trajectory is called the deviation motion [14]. 

Assuming that the components of the deviation motion 

are yp 
and zp, so we have 
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Taking the arclength s as variable, it gives 
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v v

   
       

 
   (19) 

Substituting (17) into (19), it gives 

 0 0 2

cos
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p p y c g c
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v v
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b
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v

  
     
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        (20) 

From (20), we get 

0 d d ,za a

C C y c c

b
y iz b b i s s

v

  
      

  
      (21) 

yC and zC are the position vector components caused by 

trajectory correction in vertical and horizontal plane.  

B.  Analysis of Correction Mechanism 

Aiming to analyze the correction mechanism of the 

projectile, a step command is applied. That is to say the 

correction part stays in a fixed roll angle. Through this 

method, the angle motion is studied, and the correction 

mechanism is presented. 

From (21) we know that 
0c  is the key factor, and the 

algebraic symbols of its real part and imaginary part are the 

wsymbols of yC and zC, because  

.za a

y c

b
b b

v


   

After disposal of (14), it gives 
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    (22) 

where  
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,

.

xa a

l c c zz c
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J
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


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
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c , 
c are the vertical and horizontal components of the 

dynamic equilibrium angle causing by the control force. 

For the projectile researched in this paper, 0lB   and

0hB  , so the sign of
c ,

c is defined by the roll angle

f of the fixed canards. So it gives 

0 0 0 ,

90 0 0 ,

180 0 0 ,

-90 0 0 .

f c c

f c c

f c c

f c c

 

 

 

 

  

  

  

  

  


  


  
   

， ，

， ，

， ，

， ，

          (23) 

The causes of this phenomenon can be explained. Taking

0f  for example, when the projectile axis has the 

movement trend because of the control force, the axis will 
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deflect to the right immediately due to the gyroscopic effect 

of high speed rotating formation. After the total attack angle 

raise, the axis moves to the bottom right direction under the 

overturn moment acting. The overturn moment is 

perpendicular to the plane defined by the projectile axis and 

the velocity vector, and it takes the axis under the real axis. 

Although the projectile can move above the real axis, the 

average position is under the real axis. 

By the (21), the deviation motion is the double integration 

of the attack and sideslip angle, which is the correction 

result of the control force. The drift value can be acquired 

by integration along the trajectory, so we can get the 

analysis result as follows: 

0 0 0 ,

90 0 0 ,

180 0 0 ,

-90 0 0 .

f

f

f

f

L H

L H

L H

L H









    


    


    
     

， ，

， ，

， ，

， ，

 

where L and H are the correction values along the 

longitudinal and lateral direction. 

C． Drift Value Computing 

Deducing the two right terms of (20) respectively, it gives 

 
1

y c zf f za a

p

b b i b b v
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M iPT
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2 0 d d .
zf f za a

p y c c

b b
P b b i s s

v

   
     

  
        (25) 

1pP ,
2pP  mean the deviation motions caused by the gravity 

and control force terms. From
1pP ,

2pP , we get the drift 

formulas causing by the gravity and control force terms as 

follows: 
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1pz ,
2pz are on behalf of the draft values of the gravity and 

control force terms. We can calculate the drift values in 

small periods, then can get the drift values along the 

trajectory due to gravity and control force through 

integration. The value of trajectory drift is acquired by the 

summation of the two. 

V.  NUMERICAL EXAMPLE 

This paper takes a certain large caliber projectile as an 

example. The trajectory model and aerodynamic coefficients 

have been checked by flight experiments, and the initial 

conditions of the experiments were shown in TABLE I. 

The simulation result of the free flight is shown in Fig. 3. 

The flight of the projectile lasts 69.83 s, and the range and 

deflection are 19307.6 m and 686.1 m respectively. 

TABLE I  

Simulation initial conditions 

Mass / kg Muzzle velocity / (m/s) Spin rate of body / (r/s) 

45.5 650 210 

Elevation / ° Altitude / m Spin rate of canards / (r/s) 

45 1426 -10 

 

Fig. 3.  Simulation results under no control condition 

 

Using the initial conditions shown in TABLE I, some 

simulations are conducted under control state. The 

correction starts at 10 s after the projectile is fired, and the 

control angle would be the same value until the projectile is 

impacted.  

For example, the control angle is 0°. The drift values 

caused by the gravity and control force are in TABLE II 

where 
1pz and 

2pz mean the draft values. The largest values 
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are obtained when the projectile is near the top point of the 

trajectory, and the period is 30～40s, and the drift value 

computed using the coefficient frozen method is 703.85 m. 

The simulation drift value is 716.7 m. The error between the 

two values is 12.85 m, which is in the error range. The 

results in Tab. 2 show the effectiveness of the formula 

deducing process. 

The curves of the attack and sideslip angle are shown in 

Fig. 4. Fig. 4 a) shows that the average value of the attack 

angle depressed 0.5°compared to the no control condition 

after the course correction begins, and in Fig. 4 b) the 

average value of sideslip angle depresses 0.1°. TABLE Ⅱ 

and Fig. 4 indicate that the average position of the projectile 

axis comes to the reverse direction, and will produce 

correction in the opposite direction. 

TABLE Ⅱ 

 DRIFT VALUES UNDER CONTROL STATE 

Periods / s 
1pz / m 

2pz / m 

0～10 95.54 -- 

10～20 122.52 -11.84 

20～30 144.25 -14.68 

30～40 147.07 -15.82 

40～50 127.59 -15.12 

50～60 97.22 -13.64 

60～69.6 48.31 -7.55 

summation 
782.5 -78.65 

703.85 

 

Considering the general cases, the control angle can be set 

at any position. For example, set the control at -45°, and 

the changes of the attack and sideslip angle are shown in Fig. 

5. The projectile axis moves to the down direction in the 

vertical plane, and to the right direction in the horizontal 

plane. The results coincide with the theoretical analysis in 

section IV. 

In order to prove the analysis of the correction 

mechanism, TABLE Ⅲ shows the results under different 

control angles. It gives that the components of the control 

angle in vertical and horizontal plane would produce motion 

of the projectile and trajectory correction. But the trajectory 

correction value is in the opposite direction. 

 

      

a) Curves of the attack angle 

    

b) Curves of the sideslip angle 

Fig. 4.  Curves of attack angle and sideslip angle when the control angle is 

0°  

 

    

a) Curves of the attack angle 

    

b) Curves of the sideslip angle 

Fig. 5.  Curves of attack angle and sideslip angle when the control angle is 

-45° 
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TABLE Ⅲ 

 SIMULATION RESULTS UNDER DIFFERENT CONTROL ANGLES 

Condition Control angle/° Range/m deflection/m 

No control - 19361 691 

Control 

0 19228.6 726.7 

45 19268 652 

90 19362 625 

180 19431 615 

-90 19252.9 788.5 

-45 19326 774.582 

 

VI.  CONCLUSION 

This work presented the correction mechanism of a class 

of spin stabilized projectiles with fixed canards. Formulas of 

dynamic equilibrium angle and drift were deduced. By 

studying the angle motion of the projectile axis under 

control state, the mechanism was explored. The components 

of control angle in the vertical and horizontal planes make 

the projectile axis move to the angle opposite directions of 

components in corresponding plane, which make the forces 

and moments change. It gives that if the components value 

of the control angle is positive, the projectile axis moves to 

the opposite direction, and negative correction value of the 

impact point occurs.  
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