
 

 

Abstract—To realize accurate and reliable positioning in 
completely GPS-denied environments is the main challenge for 
land vehicles. A two-level extended Kalman filter (EKF)-based 
vehicle positioning strategy is proposed, which can fuse the 
data obtained from the radio frequency identification (RFID) 
and the in-vehicle sensors. First, the RFID-based preliminary 
positioning algorithm is developed. The received signal 
strength is used as an indicator to calculate the ranges between 
the RFID tags and reader, and then the vehicle’s location is 
preliminary calculated by using the first level EKF. Further, to 
improve the positioning performance, the improved vehicle 
motion model is established, and the second level EKF 
algorithm is designed to fuse the preliminary positioning 
results and the in-vehicle sensors information. Finally, the 
proposed strategy is evaluated through experiments. The 
results validate the feasibility and effectiveness of the proposed 
strategy. 

 
Index Terms—RFID, fusion positioning, EKF, in-vehicle 

sensors 

 

I. INTRODUCTION 

OR vehicle positioning, global positioning system (GPS) 

is the most widespread used technology [1],[2]. However, 

GPS may suffer from signal interruption or multipath [3] in 

GPS-denied environments which may decreases the 

positioning accuracy and reliability. To overcome the signal 

blockage of GPS, one common solution is that GPS is 

integrated with an inertial navigation system (INS) [4] or 

dead reckoning (DR) [5]. Owing to the measurement biases 

and integration processes, the INS and DR will accumulate 

large errors over time. These large errors may cause the rapid 

performance degradation during GPS outages. Other 

in-vehicle sensors such as vehicle motion sensors [6] can be 

used to compensate for the errors. However, the 

compensation effect is limited when GPS is in a long-time 

failure. The main reason is that the lack of the position 
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 observation to correct the errors. 

As an alternative, there has been rapid development of 

wireless location technologies [7], [8], [9] in recent years. 

Among them, Radio Frequency Identification (RFID) has 

attracted widely attention and become a possible solution to 

obtain object’s location information in indoor environment 

[10], [11].  

RFID can provide the location information in non-GPS 

environments. However, only the RFID cannot achieve high 

positioning performance for outdoor vehicle application due 

to the severe nonlinearities in vehicle operation process, i.e., 

both the accuracy and output frequency are not enough high 

to meet the requirement for many location-based applications 

In addition, RFID can only provide the position information, 

but they cannot provide the speed or attitude information 

which is also important to the location-related vehicle 

services. 

DR is a widely used vehicle positioning technology that 

uses the driving direction and speed to reckon the position of 

vehicle. DR has the advantage that it is totally self-contained. 

Consequently, it is always capable of providing the vehicle 

with an estimate of its position. However, this method suffers 

serious accumulative errors. These large errors are strongly 

time correlated and can cause the rapid performance 

degradation due to the lack of position observation. 

To overcome the disadvantages and combine the 

advantages of RFID and DR method to achieve more 

accurate and reliable positioning performance, the 

multi-sensor fusion method [12], [13] provides us a viable 

solution. Due to the complementary natures of these two 

types of sensors, the RFID can be fused with several 

in-vehicle DR sensors to realize positioning in completely 

GPS-denied areas. In other words, RFID can provide the 

position observation to correct the accumulative integration 

errors of DR, and DR can provide speed and attitude 

information of vehicle to improve the positioning accuracy 

and output frequency of RFID. However, to the author’s best 

knowledge, there has been little relevant research on the 

topic of fusion positioning specialized for vehicle by using 

RFID and in-vehicle sensors. 

II. PROBLEM DESCRIPTION AND RESEARCH METHODOLOGY 

This paper aims to propose a fusion strategy for vehicle 

positioning based on RFID and in-vehicle sensors in 

completely GPS-denied environments. This strategy adopts a 

two-step approach, namely, the preliminary positioning 

based on the RFID and then the further fusion positioning. 
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To obtain higher performance, the algorithms for both 

preliminary and fusion positioning are developed. The 

proposed fusion strategy is shown as Figure 1. 

 

The in-vehicle sensors include odometer, digital compass, 

two orthogonal accelerometers and a yaw gyro. In this paper, 

two-level extended Kalman filter (EKF) is developed to 

achieve positioning. 

In the preliminary positioning, the received signal 

strength (RSS) of RFID is employed as the indictor to 

estimate the range from the vehicle to the RFID tags. Then 

the first level EKF is employed to preliminary compute the 

vehicle’s location.  

In the further fusion positioning, the low cost in-vehicle 

sensors are integrated with the preliminary positioning 

results utilizing the second level EKF. Due to the in-vehicle 

sensors, the positioning performance can be improved, 

i.e., the accuracy and output frequency are enhanced, the 

velocity and attitude information can be provided. 

Meanwhile, to describe the vehicle motion more accuracy, an 

improved vehicle motion model is established in the fusion 

process. 

 

III. PRELIMINARY POSITIONING 

A. Range Estimation Algorithm 

It seems that the first challenge of preliminary positioning 

is how to mathematically model the nonlinear relationship 

between the RSS and the range. Theoretically, under ideal 

environments, Friis transmission equation [11] can be 

applied to model the nonlinear correlation. However, in real 

applications, this model is not satisfied due to the 

environment effect. This paper proposes a least square 

support vector machine (LSSVM) algorithm [14], [15] to 

model the relationship. Compared with the propagation 

model, the proposed LSSVM algorithm has many 

advantages, such as high precision, high generalization 

ability and strong adaptability for different environments, 

which can significantly improve the subsequent positioning 

performance. The input of LSSVM is RSS, and the output is 

the range. The training data is collected through experiments 

in different situations. The training process is off-line, and 

then the trained LSSVM is used to estimate the range 

on-line. 

Given a training set 
1
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, where kx  is input RSS 

vector, ky  is output range vector. 1,k kx y R , 1R  is the 

one-dimensional vector space. In feature space, the LSSVM 

model takes the form: 
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Due to the equality constraints: 

          ( ) , 1, ,T
k k ky x b e k N   ω                          (3) 

where ke  is the error variable and 0   is a regularization 

constant. To solve the optimization problem 

above-mentioned, the Lagrangian function is introduced: 
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where k are the Lagrange multipliers, according to Karush 

Kuhn Tucker(KKT)optimization conditions which are 

illustrated in Equation (5): 
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Eliminating ω  and ke  will yield a linear system instead 

of a quadratic programming problem: 
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NI is a N N  identity matrix. Ω  is the kernel matrix 

defined by 
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The radial basis function (RBF) has been used here as the 

kernel function ( , )K   , which is given by 
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where 
2

2kx x  is the squared Euclidean distance between 

the two feature vectors;   is the width of RBF. 

Further, the result of the LS-SVM model for function 

estimation becomes 

                  
1
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k k
k
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                                 (9) 

where k  and b  are the solutions to Equation (6). The 

design values of  and   can be determined during the 

training of LSSVM. 

After off-line training, Equation (9) can be used to on-line 

estimate the range between the tag and the reader according 

to the measured RSS. 

 
Fig. 1.  Proposed vehicle positioning strategy. 
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B. Positioning Algorithm 

The first level EKF is developed to preliminary determine 

the position of vehicle by using the estimated ranges. 

Assumed that i tags with known coordinates (xi, yi) are 

detected by the reader at the time k, and the ranges from these 

tags to the vehicle are ri. The state equation and measurement 

equation can be described as: 

          
     

      
R R R R

R R R R
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k k k

k k k

X A X W

Z h X V
                       (10) 

where k is the discrete-time step;      R =k e k n k   X  

indicates the state vector, e and n are the east and north 

coordinates of the vehicle; the state transition matrix 

R
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A  ; WR and VR are the system and measurement 

noise and their covariance matrices are QR and RR; 

   R 1 ... ir k r k    Z  is the observation vector and 

     R 1 ... ik h k h k    h  is the corresponding 

observation function, 

           
2 2

+
ii i i rh k e k x k n k y k n    ,

ir
n  denotes 

the corresponding observation noise vector with the 

assumption of the zero-mean and Gaussian distribution. 

Then the execution of EKF [16], [17] can be divided into 

time update stage and measurement update stage as follows: 

Time update: 
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Measurement update: 
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where I is an identity matrix, HR is the Jacobian matrix of the 

measurement function  R h  with respect to XR 
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Since only the RFID is employed, this algorithm can only 

provide the position information, and the positioning 

accuracy and output frequency are not high enough, i.e., the 

output frequency is always no more than 1Hz. 

 

IV. FUSION POSITIONING 

A. Vehicle Motion Model 

To describe the typical vehicle motion, an improved 

vehicle motion model is established. The state vector is 

           = e nk e k n k v k v k k   X  

where  ev k  and  nv k  denote the east and north speeds of 

the vehicle.  k is the yaw angle. The system input vector, 

i.e., the longitudinal and lateral accelerations ax, ay , and the 

yaw rate z , are measured by the accelerometers and yaw 

gyro. Defined      1 cos 1 sin 1e x ya k a k a k      and 

     1 sin 1 cos 1n x ya k a k a k      ,the motion 

model is shown as:  
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B. Fusion Algorithm 

The second level EKF is developed to fuse the data 

obtained from RFID and in-vehicle sensors for further 

positioning. Defined the observation 

vector  RFID RFID o cx y v  Z , it can be seen that Z 

comes from two sources, i.e., RFIDx  and RFIDy  are the 

estimated vehicle’s coordinates by first level EKF; ov is the 

vehicle speed measured by odometer, c  is the observed yaw 

angle from the compass.  
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where h is the observation function. pen , pnn , vn  and n  are 

the observation noise vectors. By utilizing EKF algorithm as 

equation (11)-(15), the fusion positioning can be achieved. 

 

V. EXPERIMENTS AND RESULTS 

The verification experiments were conducted in the 

simulated tunnel which was set in the outdoor open space. 

Only one experimental result is shown here as an instance 

because similar conclusions can be drawen by other tests. In 

the experiment, the output frequency of RFID hardware 

devices is 1Hz. The RSS range of tag is normalized to 0-255, 

and the maximum measured distance of tag is 9m.  
Figure 2 shows the fitting results of the relationship 

between RSS and range in outdoor test site. For comparison, 

the propagation model-based algorithm utilizing Friis 

transmission equation is also investigated. It can be seen in 

Figure 2that the LSSVM achieves better performance than 

the propagation model, which can provide the more accuracy 

range information and improve the performance of 

subsequent positioning algorithm. 

Engineering Letters, 24:1, EL_24_1_03

(Advance online publication: 29 February 2016)

 
______________________________________________________________________________________ 



 

 

Figure 3 shows the trajectories of the vehicle, and Figure 4 

illustrates the east position errors from preliminary and 

fusion positioning. For comparison, the widely used DR 

method is also investigated. Table I gives their performances, 

i.e., the output frequency, the speed and the statistics of 

Euclidean distance errors which contain the max value and 

the root mean square (RMS).  

 

 

 

 

The reference trajectory was measured by high precision 

differential GPS. Figure 3, Figure 4 and Table I show that the 

fusion positioning performance is obviously better than 

preliminary positioning and DR. Compared with DR, the 

RMS value of Euclidean distance error of the proposed 

strategy is decreased to 3.78m, i.e., about 27% accuracy 

improvement over DR. It can be attributed that the RFID can 

provide the position observation to correct the accumulate 

errors of DR. Compared with the preliminary positioning 

algorithm, the RMS value of Euclidean distance error of the 

proposed strategy is reduced to 3.78m from the value 4.47m, 

and the output  frequency is increased to 10Hz from the value 

1Hz. Meanwhile, the speed and the attitude information can 

be provided. The main reason is that the in-vehicles sensors 

can provide accurate speed and attitude information to 

enhance the positioning accuracy and reliability, 

Compared with the low-cost GPS which is most widely 

used in the vehicle, the proposed fusion positioning strategy 

has the approximation accuracy with higher frequency. 

Therefore, when GPS is completely unavailable, the 

proposed strategy can satisfy the common demand of vehicle 

positioning. 

 

VI. CONCLUSION 

In this paper, RFID is employed to locate the vehicle in 

completely GPS-denied environments. Meanwhile, the 

in-vehicle sensors are introduced to improve the 

observability of RFID. A vehicle positioning strategy based 

on two-level EKF is proposed to fuse the data obtained from 

RFID and in-vehicle sensors. Experiments were performed to 

verify the effectiveness of the proposed strategy. The 

experimental results indicate that the proposed strategy 

achieves remarkable performance improvement in 

completely GPS-denied environments.  
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