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Abstract—This paper is concerned with the factorization
approach to control systems. It is known all models do not have
both right- and left-coprime factorizations. In this paper, we
consider the models in which some plants admit and in which
some plants do not admit coprime factorization. In the case
where the plants admits only one-side coprime factorization,
it is known that the plant with additional zeros admits both
side coprime factorizations. However we show that in the case
where the plant do not admit coprime factorization, there exists
a case where the plant with any finite additional zeros cannot
admit coprime factorization. We will also consider the parallel
plants, in which one of them is plant to be stabilized. Any
stabilizable plants has some parallel plants that admit both
side coprime factorizations. We will show that this fact can
applied to stabilizable plants only, so that unstabilizable plants
is not able to construct such parallel plants.

Index Terms—Linear systems, Feedback stabilization, One-
side coprime factorization, Coprime factorization over commu-
tative rings

I. INTRODUCTION

IN the factorization approach[1], [2], [3], [4], a transfer

function is given as the ratio of two stable causal transfer

functions and the set of stable causal transfer functions forms

a commutative ring.

Since stabilizing controllers are not unique in general, the

choice of stabilizing controllers is important for the resulting

closed loop. In the classical case such as continuous-time LTI

systems and discrete-time LTI systems, the stabilizing con-

trollers can be parameterized by the method called “Youla-

parameterization”[1], [2], [4], [5], [6], [7] (also called Youla-

Kučera-parameterization). However, there exist models in

which some stabilizable transfer matrices do not have their

right- and left-coprime factorizations in general[8], [9]. In

such models, we cannot employ the Youla-parameterization

in general.

We consider the models in which some plants admit or

do not admit coprime factorization. In the case where the

plants admits only one-side coprime factorization, it is known

that the plant with additional zeros admits both side coprime

factorizations. However we show that in the case where

the plant do not admit coprime factorization, there exists a

case where the plant with any additional zeros cannot admit

coprime factorization (Theorem 5). We will also consider the

parallel plants, in which one of them is plant to be stabilized.

Any stabilizable plants has some parallel plants that admit

both side coprime factorizations. However, we will show that
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unstabilizable plants has not able to construct such parallel

plants.

II. PRELIMINARIES

In the following we begin by introducing notations used

in this paper. Then we give the formulation of the feedback

stabilization problem.

A. Notations

a) Commutative Rings: We will consider that the set

of all stable causal transfer functions is a commutative ring,

denoted by A. The total ring of fractions of A is denoted

by F ; that is, F = {n/d |n, d ∈ A, d is a nonzerodivisor}.

This will be considered to be the set of all possible transfer

functions. If the commutative ring A is an integral domain, F
becomes a field of fractions of A. However, if A is not an

integral domain, then F is not a field, because any nonzero

zerodivisor of F is not a unit.

b) Matrices: Suppose that x and y denote sizes of

matrices.

The set of matrices over A of size x × y is denoted

by Ax×y. In particular, the set of square matrices over A
of size x is denoted by (A)x. A square matrix is called

singular over A if its determinant is a zerodivisor of A, and

nonsingular otherwise. The identity and the zero matrices

are denoted by Ix and Ox×y , respectively, if the sizes are

required, otherwise they are denoted simply by I and O.

Matrices A and B over A are right-coprime over A if there

exist matrices X̃ and Ỹ over A such that X̃A + Ỹ B = I .

Analogously, matrices Ã and B̃ over A are left-coprime

over A if there exist matrices X and Y over A such that

ÃX + B̃Y = I . Further, pair (N,D) of matrices N and D
is said to be a right-coprime factorization of P over A if (i)

the matrix D is nonsingular over A, (ii) P = ND−1 over F ,

and (iii) N and D are right-coprime over A. Also, pair

(Ñ , D̃) of matrices Ñ and D̃ is said to be a left-coprime

factorization of P over A if (i) D̃ is nonsingular over A, (ii)

P = D̃−1Ñ over F , and (iii) Ñ and D̃ are left-coprime

over A. As we have seen, in the case where a matrix is

potentially used to express left fractional form and/or left

coprimeness, we usually attach a tilde ‘˜’ to a symbol; for

example Ñ , D̃ for P = D̃−1Ñ and Ỹ , X̃ for Ỹ N+X̃D = I .

B. Feedback Stabilization Problem

The stabilization problem considered in this paper follows

that of Sule in [10] and Mori and Abe in [11] who consider

the feedback system Σ [3, Ch.5, Figure 5.1] as in Figure 1.
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Fig. 1. Feedback system Σ.

For further details the reader is referred to [3], [11]. Through-

out this paper, the plant we consider has m inputs and n
outputs, and its transfer matrix, which itself is also called

simply a plant, is denoted by P and belongs to Fn×m.

Definition 1: Define F̂ad by

F̂ad = {(X,Y ) ∈ Fx×y ×Fy×x |
det(Ix +XY ) is a unit of F ,
x and y are positive integers}.

For P ∈ Fn×m and C ∈ Fm×n, the matrix H(P,C) ∈
(F)m+n is defined by

H(P,C) =

[
(In + PC)−1 −P (Im + CP )−1

C(In + PC)−1 (Im + CP )−1

]
(1)

provided (P,C) ∈ F̂ad. This H(P,C) is the transfer matrix

from [ ut
1 ut

2 ]t to [ et1 et2 ]t of the feedback system Σ. If (i)

(P,C) ∈ F̂ad and (ii) H(P,C) ∈ (A)m+n, then we say that

the plant P is stabilizable, P is stabilized by C, and C is a

stabilizing controller of P .

It is known that W (P,C) defined below is over A if and

only if H(P,C) is over A:

W (P,C) :=

[
C(In + PC)−1 −CP (Im + CP )−1

PC(In + PC)−1 P (Im + CP )−1

]
.

(2)

This W (P,C) is the transfer matrix from u1 and u2 to y1
and y2. Then, we have

H(P,C) = Im+n − FW (P,C),

where

F =

[
O In

−Im O

]
.

The matrix F is unimodular; in fact,

F−1 =

[
O −Im
In O

]
,

which is over A. Thus, W (P,C) can be expressed in terms

of F and H(P,C):

W (P,C) = F−1(Im+n −H(P,C)).

Here we define the causality of transfer functions, which

is an important physical constraint, used in this paper. We

employ the definition of causality from Vidyasagar et al.[4,

Definition 3.1] and Mori and Abe[11].

Definition 2: Let Z be a prime ideal of A, with Z 6= A,

including all zerodivisors. Define the subsets P and Ps of F
as follows:

P = {n/d ∈ F |n ∈ A, d ∈ A\Z},
Ps = {n/d ∈ F |n ∈ Z, d ∈ A\Z}.

A transfer function in P (Ps) is called causal (strictly

causal). Similarly, if every entry of a transfer matrix over F
is in P (Ps), the transfer matrix is called causal (strictly

causal).
It should be noted that when using “a stabilizing con-

troller,” we do not guarantee the causality. However, in

the classical case of the factorization approach, once we

restrict ourselves to strictly proper plants, it is known that

any stabilizing controller of strictly causal plant is causal

(cf. Corollary 5.2.20 of [3], Theorem 4.1 of [4], and Proposi-

tion 6.2 of [11]). One can see, in fact, that many practical

systems are strictly causal. On the other hand, including

noncausal stabilizing controllers seems to make the theory

easy and simple in the mathematical viewpoint. From these

observations, we have accepted the possibility of the non-

causality of stabilizing controllers in the parametrization.

III. PREVIOUS RESULTS

The first results below are for only one of right- and left-

coprime factorizations, which were considered in [12].

Theorem 1 (Theorem 1 of [12], [13]): If there exists

a right-(left-)coprime factorization of the plant P ∈ Pn×m,

then the plant [P t Om×m]t ∈ P(m+n)×m (the plant

[P On×n] ∈ Pn×(m+n) has both right- and left-coprime

factorizations.

Theorem 2 (Theorem 2 of [12], [13]): Let S(P ) and

S(Diag(P,Oy×x)) denote the sets of stabilizing controllers

of the plants P and Diag(P,Oy×x), respectively. Then the

following equation holds:

S(P ) = {[ Im Om×x ]C[ In
Oy×n ] | C ∈ S(Diag(P,Oy×x))}.

By using Theorems 1 and 2, we have the following theo-

rem and Corollary.

Theorem 3 (Theorem 3 of [12], [13]): Suppose that there

exists a right-coprime factorization (N,D) over A of

the plant P ∈ Pn×m with Ỹ N + X̃D = Im. Let

(Ñ ′, D̃′) be a left-coprime factorization over A of the plant

[P t Om×m ]t ∈ P(m+n)×m with Ñ ′Y ′ + D̃′X ′ = Im+n.

Then all of the stabilizing controllers of the plant P are

of the form

(X̃ −RÑ ′)−1([ Ỹ Om×m ] +RD̃′)][ In On×m ]t (3)

with X̃ − RÑ ′ nonsingular, where R is a parameter matrix

of Am×(m+n).

Corollary 1 (Corollary 1 of [12]): Suppose that there ex-

ists a left-coprime factorization (Ñ , D̃) over A of the plant

P ∈ Pn×m with ÑY + D̃X = In. Let (N ′, D′) be a right-

coprime factorization over A of the plant [P On×n ] ∈
Pn×(m+n) with Ỹ ′N ′ + X̃ ′D′ = Im+n.

Then all of the stabilizing controllers of the plant P are

of the form

[ Im Om×n ](
[
Y t On×n

]t
+D′R)(X −N ′R)−1 (4)

with X −N ′R nonsingular, where R is a parameter matrix

of A(m+n)×n.

In [14], we considered the parallel plants, in which one of

them is the plant P to be stabilized. Here we do not consider

whether or not P admits coprime factorization. Even under

this situation, we have the following result.
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Fig. 2. New plant Diag(F, P ).

Theorem 4 (Theorem 2 of [14]): Let P be a causal plant

of Pn×m and let F be a transfer matrix of Fm′
×n′

(m′, n′ ≥
0). Assume that Diag(F, P ) admits a doubly coprime factor-

ization(cf. Figure 2). Let (N1, D1) and (D̃1, Ñ1) be a right-

and a left-coprime factorizations of Diag(F, P ) such that

Ỹ1N1 + X̃1D1 = Im+n′ , Ñ1Y1 + D̃1X1 = Im′+n, (5)

where Y1, Ỹ1 ∈ A(m+n′)×(m′+n), X1 ∈ A(m′+n)×(m′+n),

X̃1 ∈ A(m+n′)×(m+n′). Then, we have

H(P ) = {H ∈ Ĥ(P ) | H is nonsingular} (6)

=

{
H := V

[
Im′+n −N1(Ỹ1 +R1D̃1)

D1(Ỹ1 +R1D̃1)

−N1(X̃1 −R1Ñ1)

D1(X̃1 −R1Ñ1)

]
V t

∣∣∣∣∣ R1 ∈ A(m+n′)×(m′+n), H is nonsingular

}
(7)

where

V =

[
On×m′ In On×n′ On×m

Om×m′ Om×n Om×n′ Im

]
.

Conversely, once we have H(P ), it is also easy to obtain

the set S(P ) as

S(P ) =

{
H−1

22 H21 ∈ Fm×n

∣∣∣∣∣

[ n m

n H11 H12

m H21 H22

]
∈ H(P )

}

(8)

(Lemma 2 of [15]). This implies that obtaining S(P ) and

obtaining H(P ) are equivalent to each other.

IV. EXAMPLE AND COUNTEREXAMPLES

A. Example and Counterexamples of Theorem 1

Let us consider the model in [3, 8.1.73]. Then the set A
of stable causal transfer functions is defined as A = C(S2),
that is, the set of all continuous real-valued functions on S2,

where S2 denotes the unit sphere in R
3.

Then let A = [n1 n2 d] ∈ A1×3, where we set A(·) equal

to the unit outward normal vector at x, for each x ∈ S2. Then

we have n2
1 + d21 + d2 = 1 but A cannot be complemented.

We now let P be

P =
[
n1

d
n2

d

]
. (9)

Then P have the left coprime factorization (Ñ , D̃):

ÑY + D̃X = I1,

where Ñ = [n1 n2], D̃ = [d], Y [n1 n2]
t, and X = [d].

However P does not admit the right coprime factorization.

We consider P of (9). Recall that it admits the left

coprime factorization but does not admit the right coprime

factorization.

We now apply Theorem 1 to the plant P . Then new plant

P ′ = [P 0 ] admits both side coprime factorization as

follows:

Ñ ′Y ′ + D̃′X ′ = I1, Ỹ ′N ′ + X̃ ′D′ = I3, (10)

where

Ñ ′ =
[
n1 n2 0

]
,

D̃′ =
[
d
]
,

Y ′ =
[
n1 n2 0

]t
,

X ′ =
[
d
]
,

N ′ =
[
−dn1 −dn2 n2

1 + n2
2

]
,

D′ =



−1 + n2

1 n1n2 dn1

n1n2 −1 + n2
2 , dn2

n1 n2 2d− d3 − dn2
1 − dn2

2


 ,

Ỹ ′ =
[
−dn1 −dn2 n2

1 + n2
2

]t
,

X̃ ′ =



−1 + n2

1 n1n2 n1

n1n2 −1 + n2
2 n2

dn1 dn2 d


 .

We can apply Corollary 1 to obtain the parametrization of

stabilizing controllers of P . By the straightforward calcu-

lation, the set of all stabilizing controllers of P based on

Corollary 1 is as follows:

1

d+ dn1r1 + dn2r2 − r3 + d2r3
×

[
n1 − r1 + n2

1r1 + n1n2r2 + dn1r3
n2 + n1n2r1 − d2r2 − n2

1r2 + dn2r3

]
,

where R = [r1 r2 r3]
t ∈ A3×1 is the parameter matrix.

From here, we consider another example, Anantharam’s

example. Anantharam [8] considered the case A =
Z[
√
−5] = {u + v

√
−5 |u, v ∈ Z}, where Z denotes the

set of integers (This ring [16, pp.134–135] is isomorphic to

Z[x]/(x2 + 5) and is an integral domain but not a unique

factorization domain. In fact, 6 ∈ Z[
√
−5] has two factor-

izations, 2 · 3 and (1 +
√
−5) · (1 −

√
−5)). He showed

that a single-input single-output plant p = (1 +
√
−5)/2

does not admit a coprime factorization but is stabilizable

and c = (1−
√
−5)/(−2) is a stabilizing controller.

Let P ′ = [p O1×x]. This is adding a zero matrix from the

right side of the plant. We will show that this cannot admit

coprime factorization yet with any x.

Let n = 1 +
√
−5 and d = 2 with p = n/d. Then F =

[n O1×x d]. The module generated by this F is not free.

Thus P ′ cannot admit right-coprime factorization.

Next, we consider

G =




n O1×n

d O1×(n−1)

0 d O1×(n−2)

0 0 d O1×(n−3)

· · ·
0 0 0 0



.
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The minors of this G consist of 0, 1+
√
−5 and 2. Thus, the

module generated by G is not free. Thus P ′ cannot admit

left-coprime factorization.

Analogously, considering P ′′ = [p O1×x]t, we have that

P ′′ cannot admit right- and left-coprime factorizations.

By combining these results, we have the following:

Theorem 5: Let A = Z[
√
−5] and p = (1 +

√
−5)/2.

Then for any non-negative number n, the matrix
[

p O1×n

On×1 On×n

]

cannot admit right- and left-coprime factorizations.

By these examples, we can say that if the plant has one

side coprime factorization, then by finitely adding zeros,

the added plant admits both right- and left-coprime fac-

torizations. However, if the plant does not have coprime

factorization, then even the plant added zeros does not have

coprime factorization in general.

B. Example and Counterexamples of Theorem 4

V. EXAMPLE

Let us consider Example 3.4 of [11]. In this example, A
is equal to R[d2, d3], where d denotes a unit delay operator.

The impulse response of a transfer function being stable is

finitely terminated and does not have the unit delay.

Here, we consider the following plant:

P =



2 + d2

1− d2

1− d3

1 + d2
1− d2

1− d3


 . (11)

This plant P admits neither right- nor left-coprime factoriza-

tion.

Now, we consider the following transfer function:

F =
1 + d3

1− d2
. (12)

Then, Diag(F, P ) admits a right- and a left-coprime factor-

izations (N1, D1) and (Ñ1, D̃1) with Ỹ1N1 + X̃1D1 = I3
and Ñ1Y1 + D̃1X1 = I3, where

N1 =
1

2




0 1 + d3 1 + d2 + d4

4 + 2d2 1− d2 −1− d3

2 + 2d2 1− d2 −1− d3


 ,

D1 =
1

2



0 1− d2 1− d3

2 0 0
0 1− d3 −1− d2 − d4


 ,

Ỹ1 =
1

2



−1 + d2 3− d2 + d3 + d5

3− d3 −1− 2d2 − 2d4 − d6

1− d2 3 + 3d2 − d3 − d5

−2 + d2 − 2d3 − d5

2 + 3d2 + 3d4 + d6

−6− 3d2 + 2d3 + d5


 ,

D̃1 =
1

2




1 + d3 −2 −1 + d2

−1− d2 − d4 0 1− d3

1− d3 0 1− d2


 ,

Ñ1 =
1

2




0 2 0
1 + d3 0 −1 + d2

1 + d2 + d4 0 1 + d3


 ,

D̃1 =
1

2




0 2
1− d2 1 + d2 − d3 − d5

1− d3 −1− 2d2 − 2d4 − d6

−2
−2− d2 + 2d3 + d5

2 + 3d2 + 3d4 + d6


 ,

Y1 =
1

2



0 3− d3 1− d2

4 −2 0
0 −1− d2 − d4 3− d3


 ,

X1 =
1

2




0 −1− d2 − d4 1− d3

−4− 2d2 3 + 2d2 + d3 −1 + d2

−2− 2d2 1 + 2d2 + d3 −1 + d2


 .

Finally, since m′ = n′ = 2 and m = n = 3, the number

of parameters is 25. On the other hand, the method of [15]

(also [17]) requires 36 parameters.

The set H(P ) of P can be given as in (7). As an example,

letting R be as follows:

R =




0 1 0
0 7− 4d2 0

−3 + d4 0 0


 ,

we obtain a stabilizing controller C of P , based on (8), as

follows:

C =

[
−4 0
d21 d22

]
−1 [

8 −8
c21 c22

]
,

where

d21 = −6− 6d2 − 4d4 + 2d6 + 2d8,

d22 = 7− 11d2 − 9d3 + 4d4 + 11d5 + 2d6 − 4d7,

c21 = 9 + d2 − 12d3 − 8d4 − 2d5 + d6 + 12d7

+ d8 + 2d9 − 4d10,

c22 = −12 + 7d2 + 24d3 + 12d4 − 8d5 − 8d6

− 14d7 + 3d8 − 2d9 + 4d10.

As we shown that by considering the parallel plants, we

can obtain the extended plants that admits doubly coprime

factorization. However, we need to say that Theorem 4

assumes that Diag(F, P ) admits a doubly coprime factor-

ization. This means that F is, in fact, stabilizable. If the

original plant P is unstable, there never exist F such that

Diag(F, P ) admits a doubly coprime factorization. This is

stated as following theorem:

Theorem 6: Let P be a causal plant of Pn×m. For any

transfer matrix F of Fm′
×n′

(m′, n′ ≥ 0), Diag(F, P ) does

not admit doubly coprime factorization if and only if P is

unstabilizable.

VI. CONCLUSION AND FURTHER WORKS

In this paper, we have given some examples and coun-

terexamples of previous results. We have also shown that in

the case where the plant do not admit coprime factorization,

there exists a case where the plant with any additional zeros

cannot admit coprime factorization.

We will investigate the explicit criteria for the stabilizabil-

ity, the stability, and the minimal number of parameters for

the parametrization of stabilizing controllers.
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