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Critical Exponent for Nonlinear Parabolic
Equation and System with Spatio-temporal
Fractional Derivatives

Brahim Tellab and Kamel Haouam

Abstract—In this paper we discuss the existence of a critical
exponent of Fujita type for the Cauchy problems with a
nonlinear fractional equation

Do +(=A)" (u™ ) =juf +f (x.t).(x.t)eQ;
1)
u(x,0)=u,(x)=0,x eR",

where a € ]0,1[ pBe ]0, 2[ and the Cauchy problem with

a nonlinear parabolic fractional system

Dot + (=) (u™) = [" +f (x,t),(x.t)eQ,
Dojtv +(—A)7/2 (v”’):|u|q +9(x.t),(x,t)eQ;
u(x,0)=u,(x)=0,x eR",
v(x,0)=v,(x)=0,x eR",

with 0<a,6 <1land O0<y, <2

Index Terms—Fractional derivatives, test-function,
critical exponent.

@

I. INTRODUCTION

RACTIONAL calculus is a mathematical analysis field

where notions of integrals and derivatives of arbitrary
order are used or applied. Establishment of sufficient and
necessary conditions for local and global existence of
solutions of fractional derivatives equations is a subject of
topicality and it is the interest of many authors, so it was
found so much in literature. See for example [2], [3], [4],
[5], [8], [°], [12], [13], [15] and [20].

In this paper we follow idea treated in reference cited
above by adding a function f (X ,t) to the term which
wefind habitually in the second term in a standard form as
lu|” or h(x,t)ul” and discuss the influence (the impact)

of the last added function on conditions leading to a
nonlinear evolution parabolic equations and systems with
spatio-temporal fractional derivatives.

In fact, in his pioneering paper [3], Fujita considered the
following Cauchy problem
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“P(xt)eRY xR =Q,
u(x,0)=a(x)=0x eR",

where O < p. If p, =2/N (cfor critical), he proved that:

U, =Au +u

Mmif 0<p=<p and a(x0)>0 for some X,. then any
solution to this Cauchy problem blow-up in a finite time.

(1) If p > p,, then there exist solutions on Q as well as
solutions which existon R" x(0,T ) for some finite T,
but not on Q. (For this p, not all solutions are global, inde-

ed if %j L

p+1
cannot be global [11].
The critical case p = p,, was decided later by Hayaka-

2
Vu,| dx —

J.‘N u,dx <0 ), the solution

wa [7] for N =1,2 and by Kobayashi, Sirao and Tanaka
[22] for N >3.

Later on Nagasawa and Sirao [12], Sujitani [20] and
Guedda and Kirane [4] considered the problem

u, +(—A)ﬁ/2 u)=c(x,t)u["",(x,t) eQ,
u(x,0)=u,(x)>0,x e R",

Nagasawa and Sirao have taken ¢ (X,t) =c(X), Sujitani
c(x,t) =1, while Guedda and Kirane [4] studied the case
c(x,t)=c(t). The method of proofin [12] is
probabilistic while in [4] and [19], the approach analytic in a

more recent paper, Guedda and Kirane [5] extended the
previous results to the equation:

u, +(=A)"? ) =h(x,t)u

L) eQ,
h(x,t)=0 (t“|x|p) for large [x|.

Fin_ally, Kirane and Qafsaoui [8] treated the more general
equation:
u, +(—A)ﬁ/2 ™) +a(x,t).vu® =f (x,t)lu
(x,t) eQ,

which covers in particular the equation considered by S.Q.
Zhang [21]

where

1+p
L

1+p

u —AU")=x|"t*u

(X, 1) eQ
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To ensure that the problem (1) is well posed, the fractional
derivative has been interpreted in the Caputo sense [14]
(also cf. [16] for a justification of the choice of Caputo
derivatives for a nonlinear ordinary differential equation
with fractional derivatives).

Our theorems are reduced to the assertion on the nonexis-
tence of solutions. If an existence result of solutions to the
Cauchy problem holds, then the nonexistence of solutions
means that every nonnegative solution blow-up in finite
time.

To have an idea about its posed problems, one is referred
to the important contributions [1], [6], [10], [12], [16], [18],
[21].

Results that we obtain for the following equations and
systems can be considered as extension of results founded in
the previous referenced paper.

Part one concern with the following Cauchy problem

Dou+(-A)" (U™ ) =uf +f (x,t),(x t)eQ,
u(x,0)=u,(x)=0,x eR",
Where D;}t denotes the time-derivatives of arbitrary or

ae ]O,l[ in the sense of Caputo see [14], (—A)ﬁ/2 where

pe ]0, 2[, is the g-fractional power of the Laplacian (—A)

3 (J¢ 30)(9))(x.0),

-1 . .
Its inverse.

defined by ( A)ﬁ/zv (x,t)=

where 3 denotes the Fourier transform and 3

Q, =R" ><(O T ) L. (QT ,dth) Is the space of functions
v :QT — R such that LMPdth < o0, forall compact K in

Q-
Remark 1: When « =1, # =1, the problem (1) is reduced

to the classical heat one.

In part two, attention is paid to the evolution system in
order to extend result of one equation to a coupled system
which that looks like a reaction-diffusion one

ﬂ/z( ) M +f (x,t),(x,t)eQ;
Dow + (=) (v ) =luf +g (x,t).(x.t) eQ,
u(x,0)=u,(x)=0x eR",

v(x,0)=v,(x)20,x e R",

Remark 2: Well position of the problem (1) and (2) is ensured if
the fractional derivative has been considered in the Caputo sense
[14] (also cf. [19] for a justification of the choice of Caputo
derivatives for a nonlinear ordinary differential equation with
fractional derivatives).

Remark 3: Nonexistence of solutions means that every
nonnegative solution blows-up in finite time.

DU +(-A

Il. PRELIMINARIES

Some definitions of fractional derivatives needed for
further work are given follows:
Definition 1: Left and right Riemann-Liouville derivatives

for ¢ e L"(0,T ), are defined respectively as follows

. d ¢ ¢o)

Pof) = r-a)dt J (t —a)“d ’

o d ¢ ¢(o)
and Dy dlt)= rl-a)dt Io (t —a)“d ¢

the symbol T" is the usual Euler gamma function. .
The Caputo derivative is given by

@ e ¢ (0) :
Do) = T_o)dt J.O do. SO one can write
« 1 9(0) ¢ g't)
Pu 9 )= F(l—a)|: t° +I° t o) da}'

and DS, f (t) = o +f f (o) da:l

ol
FQ-a)LT -t)* " (o-t)
This lead to a relation between Caputo and Riemann-
Liouville derivative and it is written as

Dy #(t) =Dy, [#() —4(0)].

Also integration by parts gives:

jOTf ®)(Dg,9 )t =J‘OT(Dt°;rf )t)g ()t

Now we present some definitions concerning weak formulations
to problems (1) and (2).

Definition 2: If we denote by Q, a set such that

. =(0,T )xR",
weak solution to problem (1) defined on Q, ,0 <T < oo,
if uel} (Q;)and

LT u, (x )D,‘;qu(x t)dxdt +LT |u|p¢>(x t)dxdt
+ o (OF (x,t)axat
ZI (u )m (—A)ﬂ/zgﬂ(x,t)dxdt

+.[ uD/’ ¢ (x,t)dxdt

a function u e Ly, (Q; ) isa local

®)

Defmltlon 3: Also we can define weak formulation for a system
(2)on Q; suchthat Q =(0,T )xR" as

Jo, 2 I (x )t + . Ty (x,t)ot
+L o (X, 1) (x,t)dxdt
- J‘Qm (u )m (—A)ﬁ/Z o, (x,t)dxdt

+-|‘QW uDl’;TR 2] (X it )dth

and

J.QwvO (X D, (Xt )dxdt + J.ow ', (x,t )dxdt

+]. 0 (x,1) g (x,t)dxc
s ®)
=), (V) (-A)" @ (x,t)dxdt

+I quR(pz(X ;t)dxdt.

4)
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In the two definitions cited in the above we define a test function
1) eCf:tl (QT ) such that q)(X t ) =0, and we suppose that

integrals to be convergent.
Remark 4: If T =+o0, the solutions of problems (1) and
(2) are said to be global.

IIl.  AIM AND RESULTS
Now we can announce our first result as.
Theorem1:Let N >1, 1<m < p and

f+amN
aN +p(1-a)’

then the problem (1) does not admit nontrivial global weak
solution.

Proof: Contradiction is the game on which is based the
demonstration of the theorem 1.
Suppose that U is nontrivial nonnegative solution which exi-

_[Q f (x,t)xdt =0. If: 1<p<p, =

sts globally in time. That is U exists in (O,T ) for any arbi-

trary T  >=0. Let T and R be two real numbers such that
A(p-1)

0<TR Vetom) <T".

Let ¢eC; (R, ), adecreased function such that:

1 if 0<y <],
¢(y)={ | ’

and 0<¢g <1
0 if y22,

We choose  ¢(X,t)=¢| ——— | suchthat

J

p/p-m ¢7m/p7m

(_A)ﬁ/2 ®

I ‘Dw‘/’

In order to estimate the right-handed side of the relation (3)
on sz/ﬂ , we use Young inequality and then we find for the

< 400 and

-

PP 4 oo,

conjugate exponents p/mand p/p—m,

[, () (-a)" et

TR0
()" 0" ((-a)" p) " aat

:JQ

"z

: ©
<e J.sz/e lu|” pdxdt
()], |2y o g et
R0
Similarly
J‘QTRZ/" KL ¢dth
=JQ up® (Dt“ (o)(zf]/pdxdt
r%/0
(7
p
<¢ J‘QTRZ/H lu|” pdxdt
+C (&) j D ¢ " o P,

For & enough smaII, (3), (6) and (7) gives:

J, foddt+] u pdxdt
2l -

sc @), [
+ jQT

Now we set qo(X,t):(p(Ry,RZ/QT)ZZ()’:T)

with the variables change

p/p-m

™" dxdt ®)

o
DI/TRz/”(D ®

-p’/pdxdt).

R0

2
t=R%r, X =Ry, “odyd 7

and define the set QQ as
Qz{(y,r)eRN XR+,|y|2+T€ -<2}.

In inequality (8), we estimate the first term of the left side, i.e.

dxdt =R

~p/p-m
.[Q (—A)ﬂ/z(p " @ ™" "dxdt. We know that
TRZ/H
o o 0
Ago:—(g+—(§+ ....... + (20 and
Xy X, Xy
0 %) 0
ox, oy, ox, R oy,
az(p_a[awj i ayl( aylj
6X12 X, \ OX, ayl oy, OX,
2 2
:izxa;g :R'Zxa—ﬂg.
R™ oy, Y,
Similarly calculus gives
2 2 2 2
a(sz’Zxaﬂg ........ a(é)zR’Zxa—é{
oX, ) OX oy
82 8 o
then, Ap=——+—+....... (é)
oX
0 o o°
R(_% iz, .. _%j
ayl ayz ayN

Ap=R7?Ay. Sowe have
Bl2 -p Bl2 _— N
(—A) =R (—A) - Substitution gives:

p/p-m

IQ (—A)ﬁ/z(p o """ dxdt
=%/0
" 2
:j R #P/eom (—A)”/Z;(p/p o "R dydr (o)
“RPT f (=) A gy,

Now, passing to the second term in the left side of inequality

8), i.e.
IQTRv
and from definition of fractional derivatives, we obtain
(o2
o(o)

-1 TRY?
r(1- a)dt'[ (o-t)°

P/Pdxdt

o
Dt/TRZ/”¢ ®

Df}TRw = (10)

(Advance online publication: 18 May 2016)



Engineering Letters, 24:2, EL._24 2 05

Make the following variables change o =UR %7 then so lim c |U |p(Pdth =0. (13)
A A i ) R > R
do=R 2/‘gdu. Substitution of the last changes(ln)(lo) gives: Using expression (3) we get
-1 1 d eu 2/6 P m B2
D* o= — R*’du j f¢+j |u|¢sj lu] " |(=A)"* p|dxdt
t/TRY? _ 2/6 r 2/0 2/6 _\* Q2o Q.20
F(l OC)R dT (R U_R T) / TR/ (14)
_1 1 1 2/9 d 2/0 |U | ‘D /TR 2/6 ¢7Pth .

“T(-a)RTR™ T dr

R L o(u) du
F(l—a)dr g (u—r)a

.[T o(u) du
o)

= R'Z“/ODT/T;(
So

a -p'/p
J.sz/o Dt/TR2/0¢ ¢ dxat

2
_ —2ap'/6 a P '/ N+
_LR D% A 9P PR Cdyd (11)
_zap'+N+g o ’
=R 7 [ D5 4| " dyd
Equate the two powers of R in (9) and (11) we find
_pp _2ap’ o, 2a(p-m)
p-m 0 A(p-1)
Substitute (9) and (11) in (8) it come
p

J.sz/ef o+ J'QTRZ/G u|’p<CR”, (12)
where,
C =C (g)x

p/p-m " o and
JQ{(—A)mcD o "’ +\D,ﬂz\p¢”/"}dydt,

L Bp-1)
p—m a(p- m)

Remark that from the last expression come the valid critical
exponent for the equation (1), which is

L +amN
Ppp=—"—"—7"7"—.

aN +p(1-a)
For the last value we can distinguish two cases
First case:

For <0, ie, p<p,, letting R going to +oo, and

N xR f +J‘g”xg, u

and this lead to contradiction with the hypothesis

IN f >0.
RN xR,
Second case:

For =0, ie., p=p,, the relation (12) become

J.Q f(p+.|.Q 2H|u|pg0$C, ie., IQ »

so convergence of the integral I

while applying (12) one get I

|u|p¢)SC,

R0
|u @ is ensured.

Now if we put
C, ={(x,t)eR" xR, :R* <[x[+t" 2R},

By Holder inequality, we arrive to the next expression
m s/2
ul |(-A ‘dxdt =
Jo Jl|-a)"0

moom/p|(_

J.QTRZ/” |u | ¢ ‘( A
) m/p

('[sz/ﬂ lu| (pdxdtj x

UQ (—A)ﬂ/Z(/?‘p/p_m(Dm/pmdxdtj
TR0

Under another form of writing, the last expression become
I ju|” ‘( N go‘dxdt<
R/

m/
(o)

( —A)ﬁ/z 7 2 "P"dyd T)pm/p .
Q.
Apply in second time Holder inequality, we get
u |‘Dt/ go‘dxdt
S~

_I u@ﬂp
 o2/0

< U%z/e ul? (p)w “ y

i.e.

I » ul|p v 0 ®

(I ul’ ) (I g2« "/pdydr)pm/p

0, ={(y,7r)eR" xR, 1<y [+ <2},
by substitution of (15) and (16) in (14) it come

jowfw Lw o<
(Lot o) " <{f,Jear
(o) (1o o o apae)

Applying (13) to the last expression and let R — 400 we

)ﬂ/z (0‘ go’”‘/"dxdt <

p-m/p

(15)

p/p-m

D‘Zﬂ/ﬂ (p‘ o Y Pdxdt

, p-m/p
P /"dxdtj

o’
I/TRZ/H ¢

oldxdt

(16)

Where

/p-m p-m/p
M gy f)

get IN - f +I |u <C, then, LNfo <0,
this is a contradiction with hypothesis J.‘N & f =0, and this
ends the proof [

(Advance online publication: 18 May 2016)
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IV. SYSTEM OF FRACTIONAL EQUATIONS

In this section we are interested by solving problem (2)
concerning system which containing parabolic fractional equations
as

Dot +(=A)"* (u™) =" +f (x,t),(x.t)eQ,
Dow +(=A)"* (v" ) =[uf +g (x.t).(x.t) eQ,

with initial conditions
u(x,0)=u,(x)=0, v(x,0)=v,(x)=0x eR",
0<a,060<1,0=<y,<2, and f,
function verifying

IQTf (x,t)dxdt >0 and J.QT g

Now we are able to cite our second result
Theorem2: Let N >1, 1<m < p.If

where g are two

(x,t)dxdt > 0.

1<N <max
2 2
L - IOV S (.
q P9 P P9
m(p—m)5+(q—m)a ' m(q—m)a+(p—m)5
Pay qs pa s Py

Then the system (2) does not admit local nontrivial weak solution.
Proof: We proceed always by contradiction. Put

ek fh)
?; (x.,t)=¢ R | 1=12

where R >0, 6, :ﬁ and 6,

a
equality to the weak formulations (4) and (5), it come

Qrr u i (_A),B/z b <

(5 bre) ([, )"

and
j ‘Dt/TR (01‘ -
m/q

([, o) " ([, ol e

Consequently

Jo Wlo+f, fo.<(f, br fpz)m/q- A, a7)

where

= ( [, 2" e
+(_|.Q D

the same way give us the next estimate

-[Qm ul ¢, +IQTR g, = (J-Qm M (pl)m/p .B. (18)

Where

= % Applying Holder in-

ofa-m o \dTM/
P, . )

q/q-m

2

0 oo )qm/q

q/a-m
-

-m/q-m )q_m/q

(o) " " g )pm/p
2 1

TR

B :(j
+(J.Q Dt‘;rR ®,

Using inequalities (17) and (18) we can erte

IQTRMpcoﬁmef% ( uf’ %)

g[(j% wPa)” .B}
- ( [ bPe) "

2

+([, Va) ”“I fp<B".A 9

p/p -m _m/p m)p

B™9. A. so

([ b (/71)

also

mZ

(LJ“'q‘/’Z)lpq (I ul %) qu gg, <A™"B (0)

" Using the variables changes t = Rz, X = Ra/ﬁy, in A and

t =Rz, X =R, then with the help of (19) we can arrive to

the estimate

(IQTRh’Ip(ol)lpq +(LTR|\,|P¢1)W IQTRf ¢ <c(R

(L. |V|<01) - -

(I |V|p¢’1) qu- f g <CR [mll+|2j,(21)
where

|, =52 (éN +1j, 1, :a—ﬂ(ﬁN +1).
p \7 qQ \p

ml,
When —=+1,

) )m/q R

>0, we found the critical value for the first

equation of the system (2).
mé [ mzj
—ta-|1-—
q Pq
N < .
m(p—m)5+(q -m)a
pPay ap

Similarly with using (20) we obtain the second critical value for
the second equation of (2)

2
ma+5_(1_mj
p pPq

m(q—m)a+(p—m)5'
pq s Py

Under the above conditions (critical value) and letting R going to
400 in (21), we get

(I, I\/Icﬂl) +([ ) p“I fg, <0 24

with the same method and considering the condition

(22)

N <

(23)

(Advance online publication: 18 May 2016)



Engineering Letters, 24:2, EL._24 2 05

ml, +1, >0, wegetalso
p
P _m’
(Lm lu |q¢72) P +(ij lu |“¢2) e Lﬂ 9o, <0. (25)

Inequality (24) leads to contradiction IQ f <0, and inequality

leads to contradiction I g <0 which mean that the system (2)

Qre

can not admit local weak solution other the trivial one.

Remark 5: Both the two critical values can be presented as
mentioned in theorem 2
1< N <max
2 2
q Pq p Pq
m(p—m)§+(q -m)a ' 'm(q —m)a+(p—m)5
pPay ap pgp Py
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