
 

 

Abstract— In this paper, a model for analyzing each U.S. 

Equity sector’s risk contribution (VaR ratio), the ratio of the 

Value-at-Risk of a sector to the Value-at-Risk of the system 

(S&P 500 Index), with vine Copula-based ARMA-GARCH (1, 

1) modeling is presented. Vine copula modeling not only has the 

advantage of extending to higher dimensions easily, but also 

provides a more flexible measure to capture an asymmetric 

dependence among assets. We investigate systemic risk in 10 

S&P 500 sector indices in the U.S. stock market by forecasting 

one-day ahead VaR and one-day ahead VaR ratio during the 

2008 financial subprime crisis. Our evidence reveals vine 

Copula-based ARMA-GARCH (1, 1) is the appropriate model 

to forecast and analyze systemic risk. 

 
Index Terms—Copula, Time Series, GARCH, Systemic Risk, 

Value-at-Risk 

 

I. INTRODUCTION 

he definition of systemic risk from the Report to G20 

Finance Ministers and Governors agreed upon among the 

International Monetary Fund (IMF), Bank for International 

Settlements (BIS) and Financial Stability Board (FSB) [3] 

that is “(i) caused by an impairment of all or parts of the 

financial system and (ii) has the potential to have serious 

negative consequences for the real economy”. Furthermore, 

“G-20 members consider an institution, market or instrument 

as systemic if its failure or malfunction causes widespread 

distress, either as a direct impact or as a trigger for broader 

contagion.” A common factor in the various definitions of 

systemic risk is that a trigger event causes a chain of bad 

economic consequences, referred to as a “domino effect”. 

Given the definition of systemic risk quoted above, 

measuring systemic risk is done by estimating the probability 

of failure of an institute that is the cause of distress for the 

financial system. Therefore, we only consider the Value-at-

Risk ratio of a sector to the system (S&P 500 Index), which 

interprets the sector risk adds to the entire system.  

Girardi and Ergun [10] modify the CoVaR methodology, 

proposed by Adrian and Brunnermeier [1], by using the 

dynamic conditional correlation GARCH, while Hakwa et al. 

[11] also modified the methodology based on copula 

modeling. We extend their concepts and present vine Copula-

based ARMA-GARCH (1, 1) VaR measure into a high 

dimensional analysis in systemic risk.  

Sklar [22] introduced the copula, which describes the 
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dependence structure between variables. Patton [18] defined 

the conditional version of Sklar’s theorem, which extends the 

copula applications to the time series analysis. Otani and Imai 

[17] presented a basket CDSs pricing model with nested 

Archimedean copulas. However, multivariate Archimedean 

copulas are limited in that there are only one or two 

parameters to capture the dependence structure. Joe [12] 

introduced a construction of multivariate distribution based 

on pair-copula construction (PCC), while Aas et al. were the 

first to recognize that the pair-copula construction (PCC) 

principal can be used with arbitrary pair-copulas, referred to 

as the graphical structure of R-vines [14]. Furthermore, 

Dissmann et al. [7] developed an automated algorithm of 

jointly searching for an appropriate R-vines tree structures, 

the pair-copula families and their parameters. Accordingly, a 

high dimensional joint distribution can be decomposed to 

bivariate and conditional bivariate copulas arranged together 

according to the graphical structure of a regular vine. Besides, 

Rockinger and Jondeau [19] was the first to introduce the 

copula-based GARCH modeling. Afterwards, Lee and Long 

[15] concluded that copula-based GARCH models 

outperform the dynamic conditional correlation model, the 

varying correlation model and the BEKK model. In addition, 

Fang et al. [8] investigated that using Akaike Information 

Criterion (AIC) as a tool for choosing copula from a couple 

of candidates is more efficient and accurate than the 

multiplier goodness-of-fit test method. 

The purpose of this paper is to present an application of the 

estimation of systemic risk in terms of the VaR/ES ratio by 

using vine copula-based ARMA-GARCH (1, 1) model, and 

the result provides the important conclusion that the method 

is a real-time and efficient tool to analyze systemic risk. 

This paper has four sections. The first section briefly 

introduces existing research regarding systemic risk. The 

second section describes the definition of the VaR/ES ratio, 

and outlines the methodology of vine Copula-based GARCH 

(1, 1) modeling. The third section describes the data and 

explains the empirical results of VaR/ES ratio. The fourth 

section concludes our findings. 

II. METHODOLOGY 

A. Risk Methodology 

The definition of Value-at-Risk (VaR) is that the maximum 

loss at most is (1 − 𝛼) probability given by a period [20]. 
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People usually determines 𝛼 as 95%, 99%, or 99.9% to be 

their confidence level. In this study, we use the Copula-based 

ARMA-GARCH (1, 1) methodology to obtain the VaR from 

each sector. We denote 𝑉𝑎𝑅1−𝛼
𝑖→𝑗

 ratio, the sector 𝑖′𝑠  risk 

contribution to the system 𝑗  (S&P 500 index) at the 

confidence level 𝛼, by 

𝑉𝑎𝑅1−𝛼
𝑖→𝑗

 𝑟𝑎𝑡𝑖𝑜 =
𝑉𝑎𝑅1−𝛼

𝑖

𝑉𝑎𝑅1−𝛼
𝑗

 

The higher 𝑉𝑎𝑅1−𝛼
𝑖→𝑗

 ratio interprets the sector is the risk 

provider to the system. In addition, the methodology can be 

easily extended from VaR ratio to an expected shortfall (ES) 

ratio. 

 

B. Univariate ARMA-GARCH Model 

Engle is the first researcher to introduce the ARCH model, 

which deals with the volatility clustering, usually referred to 

as conditional heteroskedasticity. Bollerslev [4] extended the 

ARCH model to the generalized ARCH (GARCH) model. 

Chen and Khashanah [5] implemented ARMA (p, q)-

GARCH (1, 1) with the Student’s t distributed innovations for 

the marginal to account for the time-varying volatility, 

whereas the Student’s t distributed innovations cannot 

explain the skewness. Therefore, we employ ARMA (p, q)-

GARCH (1, 1) with the skewed Student’s t distributed 

innovation can then be written as [9] 

𝑟𝑡 = 𝜇𝑡 + ∑ 𝜑𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜖𝑡−𝑗

𝑞

𝑗=1

+ 𝜖𝑡 , 

𝜖𝑡 = 𝜎𝑡𝑧𝑡 , 

𝜎𝑡
2 = 𝛾𝑡 + 𝛼𝑡𝜎𝑡−1

2 + 𝛽𝑡𝜖𝑡−1
2  

where 𝑟𝑡 is the log return, 𝜇𝑡 is the drift term, 𝜖𝑡 is the error 

term, and the innovation term 𝑧𝑡  is the skewed Student’s t 

distribution. The skewed student’s t density function can be 

expressed as  

𝑝(𝑧|𝜉, 𝑓) =
2

𝜉 +
1
𝜉

{𝑓 (
𝑧

𝜉
) 𝐼[0,∞)(𝑧) + 𝑓(𝜉𝑧)𝐼(−∞,0](𝑧)} 

where 𝜉  is the asymmetric parameter, and 𝜉 = 1  for the 

symmetric Student’s t distribution. 𝑓 is a univariate pdf that 

is symmetric around 0, such that 𝑓(𝑠) is decreasing in |𝑠|, 
and 𝐼𝑆  is the indicator function on 𝑆 . In addition, an 

overwhelming feature of Copula-based ARMA-GARCH 

model is the ease with which the correlated random variables 

can be flexible and easily estimated. 

 

C. Sklar’s theory 

Sklar’s Theorem [22] states that given random 

variables 𝑋1, 𝑋2, … , 𝑋𝑛  with continuous distribution 

functions 𝐹1, 𝐹2, … , 𝐹𝑛 and joint distribution function 𝐻, and 

there exists a unique copula 𝐶  such that for all 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛 

𝐻(𝑥) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))  

If the joint distribution function is 𝑛-times differentiable, 

then taking the nth cross-partial derivative of the equation: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =
𝜕𝑛

𝜕𝑥1 … 𝜕𝑥𝑛

𝐻(𝑥)

=
𝜕𝑛

𝜕𝑢1 … 𝜕𝑢𝑛

𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)) ∏ 𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

= 𝑐(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)) ∏ 𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

 

where 𝑢𝑖 is the probability integral transform of 𝑥𝑖.  

For the purpose of estimating the VaR or ES based on time 

series data, Patton [18] defined the conditional version of 

Sklar’s theorem. Let 𝐹1,𝑡  and 𝐹2,𝑡  be the continuous 

conditional distriubtions of 𝑋1|ℱ𝑡−1 and 𝑋2|ℱ𝑡−1, given the 

conditioning set ℱ𝑡−1 , and let 𝐻𝑡  be the joint conditional 

bivariate distribution of (𝑋1, 𝑋2|ℱ𝑡−1). Then, there exists a 

unique conditional copula 𝐶𝑡 such that  

𝐻𝑡(𝑥1, 𝑥2|ℱ𝑡−1) = 𝐶𝑡(𝐹1,𝑡(𝑥1|ℱ𝑡−1), 𝐹2,𝑡(𝑥2|ℱ𝑡−1)|ℱ𝑡−1) 

 

D. Parametric Copulas 

Joe [13] and Nelsen [16] gave comprehensive copula 

definitions for each family. 

(1) The bivariate Gaussian copula is defined as: 

𝐶(𝑢1, 𝑢2; 𝜌) = 𝛷𝜌(𝛷−1(𝑢1), 𝛷−1(𝑢2)) 

where 𝛷𝜌 is the bivariate joint normal distribution with linear 

correlation coefficient 𝜌  and 𝛷  is the standard normal 

marginal distribution.  

(2) The bivariate student’s t copula is defined by the 

following: 

𝐶(𝑢1, 𝑢2; 𝜌, 𝜈) = 𝑡𝜌,𝜈(𝑡𝜈
−1(𝑢1), 𝑡𝜈

−1(𝑢2)) 

where 𝜌  is the linear correlation coefficient and 𝜈  is the 

degree of freedom. 

(3) The Clayton generator is given by 𝜑(𝑢) = 𝑢−𝜃 − 1, its 

copula is defined by  

𝐶(𝑢1, 𝑢2; 𝜃) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−
1
𝜃 ,  

with 𝜃 ∈ (0, ∞) 

(4) The Gumbel generator is given by 𝜑(𝑢) = (− 𝑙𝑛 𝑢)𝜃 , 

and the bivariate Gumbel copula is given by  

𝐶(𝑢1, 𝑢2; 𝜃) = exp (−[(− 𝑙𝑛 𝑢1)𝜃 + (− 𝑙𝑛 𝑢2)𝜃]
1
𝜃), 

 with 𝜃 ∈ [1, ∞) 

(5) The Frank generator is given by 𝜑(𝑢) = 𝑙𝑛(
𝑒−𝜃𝑢−1

𝑒−𝜃−1
), and 

the bivariate Frank copula is defined by  

𝐶(𝑢1, 𝑢2; 𝜃) = −
1

𝜃
𝑙𝑜𝑔 (1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
),  

with 𝜃 ∈ (−∞, 0) ∪ (0, ∞) 

(6) The Joe generator is 𝜑(𝑢) = 𝑢−𝜃 − 1 , and the Joe 

copula is given by 

𝐶(𝑢1, 𝑢2) = 1 − (𝑢1̅̅ ̅𝜃 + 𝑢2̅̅ ̅𝜃 − 𝑢1̅̅ ̅𝜃𝑢2̅̅ ̅𝜃)
1
𝜃 ,  

with 𝜃 ∈ [1, ∞) 
(7) The BB1 (Clayton-Gumbel) copula is given by  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = (1 + [(𝑢1
−𝜃 − 1)𝛿 + (𝑢2

−𝜃 − 1)𝛿]
1
𝛿)

−1
𝜃 ,  

with 𝜃 ∈ (0, ∞) ∩ 𝛿 ∈ [1, ∞) 

(8) The BB6 (Joe-Gumbel) copula is  
    𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = 

1 − (1 − exp {−[(−𝑙𝑜 𝑔(1 − 𝑢1̅̅ ̅𝜃))𝛿 + (− 𝑙𝑜𝑔( 1 − 𝑢2̅̅ ̅𝜃))𝛿]
1
𝛿})

1
𝜃, 

 with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ [1, ∞) 
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(9) The BB7 (Joe-Clayton) copula is given by  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = 

1 − (1 − [(1 − 𝑢1̅̅ ̅𝜃)−𝛿 + (1 − 𝑢2̅̅ ̅𝜃)−𝛿 − 1]−
1
𝛿)

1
𝜃 , 

 with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ [0, ∞) 

(10) The BB8 (Frank-Joe) copula is  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = 
1

𝛿
(1 − [1 −

1

1 − (1 − 𝛿)𝜃
(1 − (1 − 𝛿𝑢1)𝜃) (1 − (1 − 𝛿𝑢2)𝜃)]

1
𝜃),  

with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ (0,1] 
 

E. Vine Copulas 

Even though it is simple to generate multivariate 

Archimedean copulas, they are limited in that there are only 

one or two parameters to capture the dependence structure. 

Vine copula method allows a joint distribution to be built 

from bivariate and conditional bivariate copulas arranged 

together according to the graphical structure of a regular vine, 

which is a more flexible measure to capture the dependence 

structure among assets. It is well known that any multivariate 

density function can be decomposed as  

𝑓(𝑥1, … , 𝑥𝑛) = 

𝑓(𝑥1) ∙ 𝑓(𝑥2|𝑥1) ∙ 𝑓(𝑥3|𝑥1, 𝑥2) ∙∙∙ 𝑓(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)  

Moreover, the conditional densities can be written as 

copula functions. For instance, the first and second 

conditional density can be decomposed as 

𝑓(𝑥2|𝑥1) = 𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2)) ∙ 𝑓2(𝑥2), 

𝑓(𝑥3|𝑥1, 𝑥2) = 𝑐2,3|1 (𝐹2|1(𝑥2|𝑥1), 𝐹3|1(𝑥3|𝑥1)) ∙ 𝑓3(𝑥3|𝑥1)

= 𝑐2,3|1 (𝐹2|1(𝑥2|𝑥1), 𝐹3|1(𝑥3|𝑥1))

∙ 𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3)) ∙ 𝑓3(𝑥3) 

After rearranging the terms, the three dimensional joint 

density can be written as 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐2,3|1 (𝐹2|1(𝑥2|𝑥1), 𝐹3|1(𝑥3|𝑥1))

∙ 𝑐1,2(𝐹1(𝑥1), 𝐹2(𝑥2))

∙ 𝑐1,3(𝐹1(𝑥1), 𝐹3(𝑥3)) ∙ 𝑓1(𝑥1) ∙ 𝑓2(𝑥2)
∙ 𝑓3(𝑥3) 

Bedford and Cooke [2] introduced canonical vine copulas, 

in which one variable plays a pivotal role. The summary of 

vine copulas is given by Kurowicka and Joe [14]. The general 

𝑛-dimensional canonical vine copula can be written as 

𝑐(𝑥1, … , 𝑥𝑛)

= ∏ ∏ 𝑐𝑖,𝑖+𝑗|1,… ,𝑖−1(𝐹(𝑥𝑖|𝑥1, … , 𝑥𝑖−1), 𝐹(𝑥𝑖+𝑗|𝑥1, … , 𝑥𝑖−1))

𝑛−𝑖

𝑗=1

𝑛−1

𝑖=1

 

Similarly, D-vines are also constructed by choosing a 

specific order for the variables. The general 𝑛-dimensional 

D-vine copula can be written as 
𝑐(𝑥1, … , 𝑥𝑛)

= ∏ ∏ 𝑐𝑗,𝑗+𝑖|𝑗+1,… ,𝑗+𝑖−1(𝐹(𝑥𝑗|𝑥𝑗+1, … , 𝑥𝑗+𝑖−1), 𝐹(𝑥𝑗+𝑖|𝑥𝑗+1, … , 𝑥𝑗+𝑖−1))

𝑛−𝑖

𝑗=1

𝑛−1

𝑖=1

 

 

Dissmann et al. [7] proposed that the automated algorithm 

involves searching for an appropriate R-vine tree structure, 

the pair-copula families, and the parameter values of the 

chosen pair-copula families based on AIC, which is 

summarized in Table 1. 

 

 

 

 

 

TABLE I 

SEQUENTIAL METHOD TO SELECT AN R-VINE MODEL HE COEFFICIENTS OF 

TAIL DEPENDENCY 

Algorithm. Sequential method to select an R-Vine model 

1. Calculate the empirical Kendall’s tau for all 

possible variable pairs. 

2. Select the tree that maximizes the sum of absolute 

values of Kendall’s taus. 

3. Select a copula for each pair and fit the 

corresponding parameters based on AIC. 

4. Transform the observations using the copula and 

parameters from Step 3. To obtain the 

transformed values. 

5. Use transformed observations to calculate 

empirical Kendall’s taus for all possible pairs.  

6. Proceed with Step 2. Repeat until the R-Vine is 

fully specified. 

 

F. Tail dependence 

Tail dependence looks at the concordance and 

discordance in the tail, or extreme values of 𝑢1  and 𝑢2 . It 

concentrates on the upper and lower quadrant tails of the joint 

distribution function. Given two random variables 𝑢1~𝐹1 and 

𝑢2~𝐹2 with copula 𝐶, the coefficients of tail dependency are 

given by [6] [13] [16]  

𝜆𝐿 ≡ lim
𝑢→0+

𝑃[𝐹1(𝑢1) < 𝑢|𝐹2(𝑢2) < 𝑢] = lim
𝑢→0+

𝐶(𝑢, 𝑢)

𝑢
, 

𝜆𝑈 ≡ lim
𝑢→1−

𝑃[𝐹1(𝑢1) > 𝑢|𝐹2(𝑢2) > 𝑢] = lim
𝑢→1−

1 − 2𝑢 + 𝐶(𝑢, 𝑢)

1 − 𝑢
 

where 𝐶  is said to have lower (upper) tail dependency 

𝑖𝑓𝑓 𝜆𝐿 ≠ 0 (𝜆𝑈 ≠ 0) . The interpretation of the tail 

dependency is that it measures the probability of two random 

variables both taking extreme values shown as table 2 [6] [13] 

[16]. 
TABLE II 

THE COEFFICIENTS OF TAIL DEPENDENCY 

Family Lower tail dependence Upper tail dependence 

Gaussian * * 

Student's t 2𝑡𝜈+1(−√𝜈 + 1√
1 − 𝜃

1 + 𝜃
) 2𝑡𝜈+1(−√𝜈 + 1√

1 − 𝜃

1 + 𝜃
) 

Clayton 2−
1
𝜃 * 

Gumbel * 2 − 2
1
𝜃 

Frank * * 

Joe * 2 − 2
1
𝜃 

BB1 (Clayton-
Gumbel) 2−

1
𝜃𝛿 2 − 2

1
𝛿 

BB6 (Joe-

Gumbel) 
* 2 − 2

1
𝜃𝛿 

BB7 (Joe-

Clayton) 2−
1
𝛿 2 − 2

1
𝜃 

BB8 (Frank-

Joe) 
* 2 − 2

1
𝜃  𝑖𝑓 𝛿

= 1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

Note: * represents that there is no tail dependency. 
 

G. Estimation method 

Generally, the two-step separation procedure is called 

the inference functions for the margin method (IFM) [13]. It 

implies that the joint log-likelihood is simply the sum of 

univariate log-likelihoods and the copula log-likelihood 

shown is as below. 
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log 𝑓(𝑥) = ∑ 𝑙𝑜𝑔𝑓𝑖(𝑥𝑖) + 𝑙𝑜𝑔𝑐(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))

𝑛

𝑖=1

 

Therefore, it is convenient to use this two-step procedure to 

estimate the parameters by maximum log-likelihood, where 

marginal distributions and copulas are estimated separately.  

III. DATA AND EMPIRICAL FINDINGS 

A. Data Representation 

We use indices prices instead of other financial 

instruments or financial accounting numbers. One of the main 

reasons is that an index price could reflect a timely financial 

environment in contrast to financial accounting numbers that 

are published quarterly. Furthermore, indices can easily be 

constructed and tell us which sector contributes more risk to 

the entire market. Standard and Poor separates the 500 

members in the S&P 500 index into 10 different sector 

indices based on the Global Industrial Classification Standard 

(GICS). All data is acquired from Bloomberg, sampled at 

daily frequency from January 1, 1995 to June 5, 2009. We 

separate the sample into two parts, the in-sample estimation 

period is from January 1, 1995 to December 31, 2007 (3271 

observations) and the out-of-sample forecast validation 

period is from January 1, 2008 to June 5, 2009 (360 

observations). The summary statistics of these indices is 

listed in table 3 as well as the statistical hypothesis testing. 

The statistical hypothesis testing for the unit-root based on 

Augmented Dickey-Fuller (ADF) test, and the result shows 

that the values of 1 in ADF test rejects the null hypothesis of 

a unit root in a univariate time series. The results of Jarque-

Bera (J-B) test reject the distributions of returns are 

normality, and the results of Engle’s ARCH test show that 

indices’ returns present conditional heteroscedasticity at the 

5% significance level. In addition, we assign the identify 

numbers to each sector. 

 
TABLE III 

THE SUMMARY STATISTICS OF THE IN-SAMPLE AND STATISTICAL 

HYPOTHESIS TESTINGS 

ID Sector Mean Sigma Skew Kurt 
ADF 

test 
J-B test ARCH test min / Max 

1 
S5FINL Index 

Financials 
0.04% 1.41% 0.073 6.078 1 1 1 -8.04%/8.39% 

2 
S5INFT Index 

Technology 
0.04% 1.99% 0.183 6.775 1 1 1 -10.01%/16.08% 

3 

S5COND Index 

Consumer 

Discretionary 

0.03% 1.24% -0.147 8.231 1 1 1 -10.33%/8.47% 

4 
S5ENRS Index 

Energy 
0.06% 1.39% -0.089 4.648 1 1 1 -7.21%/7.94% 

5 
S5HLTH Index 

Health Care 
0.04% 1.21% -0.180 7.097 1 1 1 -9.17%/7.66% 

6 
S5INDU Index 

Industrials 
0.04% 1.18% -0.227 7.410 1 1 1 -9.60%/7.21% 

7 
S5UTIL Index 

Utilities 
0.02% 1.12% -0.409 9.608 1 1 1 -9.00%/8.48% 

8 
S5CONS Index 

Consumer Staples 
0.03% 0.97% -0.233 9.905 1 1 1 -9.30%/7.59% 

9 
S5MATR Index 

Materials 
0.03% 1.31% 0.036 5.929 1 1 1 -9.12%/6.98% 

10 

S5TELS Index 

Telecommunication 

Services 

0.02% 1.44% -0.100 6.674 1 1 1 -10.32%/8.03% 

11 S&P 500 Index 0.04% 1.07% -0.136 6.438 1 1 1 -7.11%/5.57% 

 

B. Results for the marginal models 

We estimate the parameters of p and q by minimizing 

Akaike information criterion (AIC) values for possible values 

ranging from zero to five. Table 4 lists the parameters which 

are estimated by minimum AIC values, and the statistical 

hypothesis testings for residuals are based on the Jarque-Bera 

(J-B) test and the Engle’s ARCH test. The result shows that 

using the skewed Student’s t innovation distribution for the 

residual term is appropriately fitted to the return data because 

the degree of freedom is usually smaller than 15 and the result 

of Jarque-Bera test rejects the null hypothesis of normality. 

In addition, the asymmetric parameter 𝜉 is around one. Using 

GARCH (1, 1) model is appropriate because the result of the 

Engle’s ARCH test of residuals shows no conditional 

heteroscedasticity, and parameter β is usually larger than 0.9, 

which indicates the conditional volatility is time-dependent. 

 
TABLE IV 

THE ESTIMATION OF THE IN-SAMPLE PARAMETERS AND STATISTICAL 

HYPOTHESIS TESTINGS FOR EACH MARGINAL 
 1 2 3 4 5 6 7 8 9 10 11 

p 2 4 3 4 5 4 3 5 4 5 5 

q 2 2 4 3 4 5 4 4 4 5 5 

𝜑1 1.6256 1.7689 -0.4612 1.6198 -0.7028 1.2286 1.0204 0.1458 1.4902 0.3616 0.6979 

𝜑2  -0.7665 -0.9974 -0.3371 -1.5609 -0.5651 -0.0331 -0.6161 0.6418 -0.9572 1.0907 1.2852 

𝜑3  * 0.0734 0.6153 0.6348 -0.1623 -1.1187 -0.2893 -0.5944 -0.0752 -0.9842 -1.0651 

𝜑4 * -0.0482 * -0.0689 -0.5042 0.6068 * -0.4466 0.5080 -0.6221 -0.6927 

𝜑5 * * * * -0.0843 * * -0.0693 * 0.5777 0.5499 

𝜃1 -1.6273 -1.753 0.4946 -1.6470 0.7178 -1.2266 -1.0108 -0.1831 -1.4455 -0.3846 -0.7344 

𝜃2 0.7492 0.9615 0.2787 1.5377 0.5228 -0.0115 0.5790 -0.6619 0.8624 -1.0992 -1.3215 

𝜃3 * * -0.6871 -0.5938 0.0663 1.1439 0.3364 0.6157 0.1714 0.9956 1.1208 

𝜃4 * * -0.0937 * -0.6008 -0.5825 -0.0258 0.4600 -0.5652 0.6238 0.7330 

𝜃5 * * * * * -0.0552 * * * -0.6223 -0.6187 

𝜇 0.0007 0.0007 0.0005 0.0007 0.0005 0.0007 0.0004 0.0005 0.0006 0.0005 0.0006 

γ 9.3e-07 8.4e-07 1.1e-06 1.4e-06 8.1e-07 1.2e-06 1.5e-06 6.1e-07 1.5e-06 8.0e-07 6.3e-07 

𝛼 0.0741 0.0570 0.0723 0.0577 0.0602 0.0689 0.0934 0.0582 0.0677 0.0471 0.0688 

𝛽 0.9240 0.9420 0.9214 0.9214 0.9357 0.9231 0.8953 0.9359 0.9268 0.9497 0.9278 

𝜉 0.9644 0.9118 0.9099 0.9099 0.9441 0.9353 0.8907 0.9672 1.0048 1.0009 0.8932 

𝜈 8.5060 12.6200 9.2451 9.2451 7.6553 9.5213 9.2638 7.5744 8.9202 8.2249 8.1142 

LLH 9863 8789 10259 9597 10273 10365 10662 11020 9901 9725 10686 

AIC -19737 -17554 -20492 -19169 -20516 -20700 -21298 -22010 -19774 -19419 -21339 

J-B test 1 1 1 1 1 1 1 1 1 1 1 

ARCH test 0 0 0 0 0 0 0 0 0 0 0 

 

C. Results for the copula models 

After the estimation of each marginal, we consider the set 

of standardized residuals from the ARMA-GARCH (1, 1) 

model and transform them to the set of uniform variables. 

Table 5 provides the correlation matrix of the transformed 

residuals and the result of the Kolmogorov-Smirnov (KS) 

test. The result of the Kolmogorov-Smirnov test is 0, and it 

fails to reject the null hypothesis that the distribution of 

transformed residuals and the uniform distribution are from 

the same continuous distribution at the 5% significance level. 
TABLE V 

THE PEARSON CORRELATION MATRIX AND KOLMOGOROV-SMIRNOV (KS)  
TEST FROM THE IN-SAMPLE DATA 

ID / 

Correlation 
1 2 3 4 5 6 7 8 9 10 11 

1 1 0.5571 0.7549 0.4038 0.5928 0.7836 0.4678 0.5911 0.6099 0.5626 0.8564 

2 0.5571 1 0.6483 0.2574 0.3833 0.6529 0.2455 0.2849 0.4191 0.5132 0.8089 

3 0.7549 0.6483 1 0.3974 0.5692 0.8167 0.3997 0.5564 0.6474 0.5786 0.8699 

4 0.4038 0.2574 0.3974 1 0.3945 0.4631 0.4699 0.3987 0.5007 0.3306 0.5255 

5 0.5928 0.3833 0.5692 0.3945 1 0.6056 0.4011 0.6595 0.4448 0.437 0.6954 

6 0.7836 0.6529 0.8167 0.4631 0.6056 1 0.4579 0.6008 0.7216 0.5716 0.8934 

7 0.4678 0.2455 0.3997 0.4699 0.4011 0.4579 1 0.433 0.4022 0.3785 0.5048 

8 0.5911 0.2849 0.5564 0.3987 0.6595 0.6008 0.433 1 0.5085 0.4254 0.6388 

9 0.6099 0.4191 0.6474 0.5007 0.4448 0.7216 0.4022 0.5085 1 0.422 0.6771 

10 0.5626 0.5132 0.5786 0.3306 0.437 0.5716 0.3785 0.4254 0.422 1 0.6902 

11 0.8564 0.8089 0.8699 0.5255 0.6954 0.8934 0.5048 0.6388 0.6771 0.6902 1 

KS test 0 0 0 0 0 0 0 0 0 0 0 

 

Due to our benchmark using the Student’s t copula, the 

parameters are the correlation matrix shown in table 5 and the 

degree of freedom 9.1334. Table 6 shows that using vine 

copula-based model has a better performance than using the 

Student’s t copula-based model based on AIC values, and the 

evidence supports that vine copula-based model is an 

appropriate method to apply to high-dimensional modeling. 

 
TABLE VI 

THE ESTIMATION FOR THE COPULA MODELS FROM THE IN-SAMPLE DATA 

 Number of parameters Log-likelihood AIC 

Gaussian copula 55 15662 -31213 
t copula 56 16578 -33044 

Vine copula 99 16762 -33326 

 

The catalogue of pair-copula families includes elliptical 

copulas such as Gaussian and Student’s t, single parameter 
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Archimedean copulas such as Clayton, Frank, and Gumbel, 

as well as two parameter families such as BB1, BB6, BB7, 

and BB8. All various copulas we implement are in the 

VineCopula library in R [21]. 

 

D. Results for the Copula VaR/ES and Copula 𝑉𝑎𝑅/𝐸𝑆 

ratio 

We empirically examine which sector dominates more risk 

contributions on systemic risk with 10,000 Monte Carlo 

simulations using vine Copula-based ARMA-GARCH (1, 1) 

modeling. The results of residuals, fitted by ARMA-

GARCH(1, 1) with the skewed student’s t innovations, are 

shown in figure 1. The results of the worst 5% return loss are 

not surprising and are shown in figure 2. As seen in figure 2 

and figure 3 below, we realize that the financial sector caused 

more risk distribution during the subprime crisis from 2008 

to 2009, while the consumer staples sector is the major risk 

receiver. The results present that this measure is a simplified 

and efficient methodology to analyze systemic risk. 

 

 
Fig. 1.  The scatter plot of residuals 

 

 
Fig. 2.  The one-day ahead worst 5% return loss for each sector index 

 

 
Fig. 3.  The one-day ahead VaR at the 95% confidence level 

 
 

Fig. 4.  The one-day ahead VaR ratio at the 95% confidence level 

IV. CONCLUSION 

The evidence in our paper shows that not only that vine 

Copula-based ARMA-GARCH (1, 1) has a better 

performance than the Gaussian and the Student’s t copula-

based ARMA-GARCH (1, 1) based on AIC values, but also 

that using the skewed student’s t innovations is much more 

appropriate than using the student’s t innovations. 

In addition, using vine Copula-based ARMA-GARCH 

model to forecast Copula VaR and Copula VaR ratio, we 

develop a real-time and useful way with sector indices data. 

Moreover, the VaR/ES ratio provides the information of the 

risk contribution from each sectors.  This approach is very 

general and can be tailored to any underlying country and 

financial market easily. 
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