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Abstract—Localization and tracking of mobile robots is an
important issue for many industrial applications. The paper
presents an inexpensive solution for indoor localization of
mobile robots. Global localization is realized by interpreting the
received signal strength indicator (RSSI) of RFID tags, which
are integrated in the floor and detected by the reader. The
paper presents two algorithms for fusing RFID signal strength
measurements with odometry based on Kalman filtering. The
paper presents experimental results with a Mecanum based
omnidirectional mobile robot on a NaviFloor® installation,
which includes passive HF RFID tags. The experiments show
that the proposed algorithms provide a better performance
compared to the same algorithms which consider the detection
of the tags only.

Index Terms—RFID, RSSI, Mobile Robot, Localization, Pose
Estimation, Constrained Kalman Filter

I. Introduction

INEXPENSIVE global localization of mobile robots is
an important issue for many industrial applications and

object of current research activities. Global localization is
the process of estimating position and heading (pose) of a
mobile robot in a cartesian space, without knowledge of
the initial pose of the robot. A possible solution for global
localization is the usage of auto-ID technology as artificial
landmarks. Kiva Systems (now Amazon Robotics) uses 2D
bar codes on the floor, which can be detected with a camera
by the robots [1]. These bar codes specify the pathways and
guarantee accurate localization. Drawbacks of this solution are
the risk of polluting the bar codes and the need for predefined
pathways, which restrict the movements of the robots.

Another possible solution for global localization is the
usage of RFID technology as artificial landmarks. Passive
RFID technology is often used in logistics and warehouse
management for object identification and tracking. Typically
the field of application is defined by the detection range of
the RFID tags, which depends on the operation frequency.
Usually LF or HF technology is used for self-localization of
mobile systems (reader localization) and UHF technology is
used for object identification in logistics applications [2] and
service robotics [3].

The basic idea of using passive RFID tags as artificial
landmarks for self-localization of mobile systems is not new.
LF RFID tags are used to mark a predefined pathway for
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Fig. 1. Floor installed RFID tags for localization of mobile robots

navigation of Automated Guided Vehicles (AGVs) in industry
since more than two decades [4].

A known disadvantage of using LF RFID tags for vehicle
navigation is the speed limitation of the vehicles caused
by the low data transfer rate of LF tags. Also LF tags are
comparatively expensive and the ground must be prepared
with holes for these tags [5]. Owing to the cost of installation
and material, the tags are installed on the pathway of the
vehicles only.

An inexpensive and much more flexible option is the usage
of a grid of floor installed standard HF RFID tags. This allows
free navigation of vehicles without the need of predefined
pathways. The cost of a passive tag is less than 0.2e. A
commercially available product, which employs passive HF
RFID tags in a floor is the NaviFloor® manufactured by
Future-Shape. Technical details of the NaviFloor® can be
found in Sec. V-A. Fig. 1 shows three omnidirectional mobile
robots in our lab together with the NaviFloor® installation.
The RFID tags illustrated in the picture are embedded in the
floor and are not visible in reality.

The main contribution of this paper is the extension of the
localization algorithms we have developed in [6] and [7], so
that they fuse the RSSI from RFID readings with odometry.
The proposed algorithms require a RFID reader with the
capability of measuring the RSSI received from detected
RFID tags. Our experimental results show that the evaluation
of the received signal strength increases the accuracy of the
proposed algorithms.

The rest of the paper is organized as follows: In Sec. II
the localization problem using floor installed RFID tags
is defined. Sec. III presents related work. The proposed
localization algorithms are developed in Sec. IV. In Sec. V the
experimental setup including NaviFloor® and RFID reader
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is described. Experimental results are presented in Sec. VII.
Finally, the conclusions are given in Sec. VIII. This paper
extends the work presented in [8].

II. Problem Formulation

We consider the problem of global localizing a robot in a
known environment. In this context, global localization means
that the initial pose of the robot is not known a priori. The
robot is equipped with a RFID reader and moves over a floor
with n RFID tags. The position of the tags is known a priori.
The robot moves in 2D space, the pose of the robot (position
and heading) in the world frame is defined as x = (x, y, θ)T in
the configuration space (C-space) C, which is a subset of R3.
C = R2×S1 takes into account that θ±2π yields to equivalent
headings (θ ∈ [0, 2π)). If a tag Ti ∈ {T1, . . . ,Tn} with position
ti = (xi, yi)T (defined in the world frame) is in range of the
reader antenna, it is detected by the robot. The area where
a tag can be detected by the reader is the detection area A.
The reader receives a signal strength, when it detects a RFID
tag. The received signals strength indicator (RSSI) becomes
larger, when the overlap of the reader antenna and the tag
antenna increases. We assume that the distance of the reader
antenna to the ground is always constant. Furthermore, it is
assumed that the RSSI is measured in discrete increments
j ∈ {0, . . . ,m}, where 0 is the lowest signal strength and m is
the highest value. For every possible RSSI increment j an
area A j can be described, where this value can be received.
The detection areas may have an overlap. The detection areas
can be described in the antenna frame, which is in a fixed
position in the robot frame. Size and shape of A j depend
on the reader antenna, the tag type and the distance between
them and is the same for all tags. The position of a tag in
the antenna frame zi = ( xA

i, yA
i)T can be described by

zi = h(x, ti), (1)

where x is the pose of the robot and ti is the position of the
tag Ti, both defined in the world frame.
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Fig. 2. Position of RFID tag in world frame ( xW
i, yW

i)T and in antenna
frame ( xA

i, yA
i)T. The detection area A j is marked in gray.

Fig. 2 shows the position of a RFID tag in the world frame
and in the antenna frame. The rotation angle between the
antenna frame and the world frame depends on the heading
of the robot (θ) and the constant alignment of the antenna
(ϕ) with respect to the robot frame.

h(·) can be defined by a homogeneous transformation in
2D:

z̃ = TA
W(x) · t̃, (2)

where the transformation matrix

TA
W(x) = TA

R · TR
W(x)

consists of the constant transformation from robot frame into
antenna frame TA

R = f (xA, yA, ϕ) and the transformation
from world frame into robot frame TR

W, which depends on
the pose of the robot TR

W = f (x) with x = (x, y, θ)T:

TR
W =

 cos θ sin θ −x cos θ − y sin θ
− sin θ cos θ x sin θ − y cos θ

0 0 1

 ,
TA

R =

 cosϕ sinϕ −xA cosϕ − yA sinϕ
− sinϕ cosϕ xA sinϕ − yA cosϕ

0 0 1

 ,
z̃ and t̃ are homogeneous coordinates in 2D (x, y, 1)T.

When detecting tag Ti with RSSI j, the position zi =

( xA , yA )T must be inside the detection area A j:

p(zi ∈ A j|Ti,RSSI = j) = 1 (3)

RSSI readings j outside of A j do not arise, owing to the
short range of HF RFID technology. Therefore, the RSSI
reading j from tag Ti can be treated as detection that zi ∈ A j.

Bayesian filtering is a solution for estimating the pose of
a robot using RFID readings and odometry. Aim of the pose
estimation using RFID readings is to obtain the probability
density p(xk |Ti,RSSI = j, xk−1,uk) = p(xk |zi ∈ A j, xk−1,uk),
where uk is the odometry of the robot obtained from wheel
encoders. This can be achieved by applying a Bayesian filter:

p(xk |zi ∈ A j, xk−1,uk) =
p(zi ∈ A j|xk)p(xk |xk−1,uk)

p(zi ∈ A j)
(4)

where p(zi ∈ A j|xk) is the probability of measuring Ti with
RSSI j at the pose x in time step k and p(xk |xk−1,uk) is
the motion model of the mobile robot. Due to the highly
non-Gaussian probability distribution of RFID tag readings,
usually Particle Filters (PF) are used for this purpose. In a PF,
the probability density of the pose estimate is approximated
by a set of particles. Every particle in the set represents a
weighted hypothesis of the pose x. This enables the filter to
handle non-Gaussian and multimodal distributions. After a
tag is detected, every particle in the set is distributed through
function (1) and weighted with probability (3). Main drawback
of the PF is the computational expense associated with it,
because only large particle counts lead to good pose estimates.
Thus, there is some effort to replace the PF with methods
based on Kalman filtering.

A RFID measurement can be interpreted as a quantized
measurement of a position, which may depend on the headings
of the robot. The quantization depends on the size of A j and
can be modeled by quantization noise. This interpretation
leads to a localization algorithm, which is based on Quantized
Kalman filtering [6]. In order to reduce the number of tags
needed in the grid, the size of the grid and therefore the
detection area has to be relatively large. If the detection area
compared to the grid size is small, the chance of detecting a
tag while traveling over the grid decreases, which reduces the
localization accuracy. Main drawback of Quantized Kalman
filtering is the large quantization noise for large detection
areas, which leads to low estimation accuracy.

A different interpretation of a RFID measurement Ti is
that the pose of the robot falls in a constrained region in
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the C-space C. This detection region Ri ⊂ C is defined by
the position of the tag ti = (x, y)T in the world frame, the
placement of the antenna with respect to the robot frame

TR
W and the shape of the detection area A j in the antenna

frame. The detection region Ri can be interpreted as an
extension of the 2D detection area A j to the 3D C-space of
the robot. This means that the position of the robot falls in
a bounded area, which depends on the heading of the robot.
This interpretation leads to a localization algorithm, which
is based on Constrained Kalman filtering [7]. In this paper
both algorithms are extended to support RSSI measurements.

III. RelatedWorks

In order to allow free navigation of mobile robots, some
research on RFID localization using a grid of floor-installed
RFID tags has been done. Kodaka et al. apply a PF for pose
estimation of a mobile robot using floor based RFID tag and
odometry [9]. Mi and Takahashi localize an omnidirectional
vehicle using a RFID system with multiple readers [10]. They
compare configurations with different numbers of readers
and tag densities [11]. They develop a likelihood function
of tag detection which is suitable for localization using
PF. As mentioned above, main drawback of the PF is the
computational expense associated with it. Thus, there is some
effort to replace the PF with methods based on Kalman
filtering. Choi et al. propose the fusion of ultrasonic sensors,
odometry and readings of HF RFID tags, which are integrated
in the floor [12]. This localization algorithm is based on
Kalman filtering but needs additional sensors and mapping
of the environment. Lee et al. have developed a Gaussian
measurement model for UHF RFID tags embedded in the floor,
which is suitable for Kalman filtering [13]. Its application in
a Kalman filter has less computational expense but provides
not the same localization accuracy as a PF.

There is also some research on UHF tags at walls or
ceilings for self-localization of mobile robots. DiGiampaolo
and Martinelli have developed a Quantized Extended Kalman
Filter algorithm for localization on mobile robots using UHF
RFID tags at the ceiling [14]. Boccadoro et. al. propose a
Constrained Kalman filter for global localization of mobile
robots using UHF RFID technology and odometry [15]. In
that research, the tags are placed at the walls in an indoor
environment. As in this paper, their proposed algorithms are
based on Constraint and Quantized Kalman filtering. Since
wall placed UHF tags provide a different detection behavior
than floor placed HF tags, their localization algorithms are
different to the algorithms proposed in this paper. Levratti et.
al. present a localization algorithm for robotic lawnmowers
based on the Constrained Kalman filter proposed in [15]. It
merges odometry with UHF RFID tags, which are placed at
the borders of the working area [16].

The usage of HF tags in the floor for self-localization has
some advantages over usage of long range UHF technology at
the walls or the ceiling. Usually the detection area is smaller
and therefore the localization accuracy is better compared to
long range UHF technology. HF RFID technology behaves
different from long range UHF RFID technology, that is
investigated in the research mentioned above, and therefore
needs different modeling. In particular, floor placed HF RFID
tags have a nearly binary detection characteristic, where the

detection area depends mainly on size and shape of the
reader’s antenna.

There is some research on technical aspects of self-
localization using HF RFID tagged floor like antenna design
[5], [17], antenna placement on the vehicle, [18], [19], tag
placement on the floor [20], and optimal detection range of
the reader [21].

IV. Proposed Localization Algorithms

This section describes the pose estimation in three dif-
ferent types of Bayesian filters. A Bayesian filter for robot
localization needs a motion model of the robot and a sensor
model of its measurements. The proposed algorithms are
independent of the motion model. For experimental evaluation,
we use an omnidirectional robot with Mecanum wheels. In
this section, the sensor model of RFID readings and the
proposed algorithm for measurement update of the Bayesian
filters are described. As mentioned before, usually PFs are
deployed in RFID localization algorithms, because of the
highly nonlinear and quantized measurements by the RFID
reader. A PF will be used as benchmark for our proposed
localization algorithms based on Kalman filtering.

A. Quantized Kalman Filtering

In this section, the Quantized Kalman filter we have
proposed in [6] and [7] is extended to RSSI measurements.
The detection of a tag can be considered as a quantized
measurement of a position. The center of the detection areaA j

defines the position measurement in the antenna frame. The
size of A j is a measure of the uncertainty in the measurement
and can be modeled as quantization noise. After detecting
the tag Ti with RSSI j, the predicted measurement is defined
by ẑi = h(x̂k, ti, 0).

The Gaussian-Fit Algorithm proposed by Curry [22, p.
23–25] is applied to nonlinear Kalman filtering. The first
and second moment of p(zi|zi ∈ A j) are needed in the
measurement update of a nonlinear KF. For notational
convenience let

µ j = E(zi|zi ∈ A j) , Σ j = cov(zi|zi ∈ A j).

Mean µ j and covariance Σ j of the detection area A j can
be calculated in advance using numerical integration (see
[6]). These calculations are necessary for every possible
RSSI measurement j. Beside this quantized nature of RFID
measurements there are additional sources of uncertainty:
• Communication delay between the RFID reader and the

tag: This delay is caused by the limited data rate of the
air interface and the collision avoidance procedure for
multi tag readings.

• Communication delay between the control system and the
RFID reader: This delay is caused by the processing time
of the reader and the limited data rate on the interface
to the reader.

• Variations in tag placement: Due to production tolerances
and manual placement, the position of the RFID tags
may differ from the regular grid.

The uncertainty in the tag placement can be treated as Gaus-
sian noise. The communication delays causes additional noise
that depends on the speed of the robot. These uncertainties
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can be modeled with a random variable vk. It is assumed that
vk ∼ N(0, Rk).

Before the measurement update is performed, the inno-
vation of the measurement Ti with RSSI j is checked. If
ẑi = h(x̂k, ti, 0) ∈ A j, the detection of Ti is predicted and the
innovation is zero (the detection of Ti gives no additional
information). Thus, no measurement update is performed.
The measurement update is performed only, if ẑi < A j. The
described algorithm can be applied to the measurement update
of any nonlinear Kalman filter. The application of the standard
EKF algorithm leads to:

Kk = Pk HT
k

(
Hk Pk HT

k + Vk(Rk + Σ j)VT
k

)−1
(5)

x̂+
k = x̂k + Kk (µ j − h(x̂k, ti, 0)) (6)

P+
k = (I − Kk Hk)Pk (7)

where Kk is the Kalman gain, x̂+
k and P+

k are the estimated
pose and its covariance after the RFID measurement update,
Hk = ∂h

∂x (x̂k, ti, 0) and Vk = ∂h
∂v (x̂k, ti, 0).

B. Constrained Kalman Filter

In this section, the Constrained Kalman filter we have
developed in [7] is extended to handle RSSI measurements.
A RFID measurement with RSSI j gives the information
that a tag Ti with the position ti is inside of the detection
area A j of the reader. Additional measurement noise caused
by communication delays and tag misplacement due to
production tolerances are modeled with the random variable
vk. It is assumed that vk ∼ N(0, Rk). With this additional
uncertainty, the measurement function (1) can be extended:

zi = h(x, ti, v), (8)

When the RFID tag Ti is detected with RSSI j, the position
zi must be inside the detection area A j. This implies, that
the pose of the robot must be inside the detection region
x ∈ Ri, j, with Ri, j ⊂ C. The detection region Ri, j is defined
by the position of the tag ti = (x, y)T in the world frame,
the placement of the antenna with respect to the robot frame
and the shape of the detection area A j in the antenna frame
(see Sec. II). This information can be interpreted as a noisy
nonlinear state inequality constraint [23].

In order to define the state constraints of the robot, we
define a nonlinear function

di, j = g(zi, j) (9)

that describes the distance of the tag Ti to the border of A j,
where

g(zi, j)

≤ 0 if zi ∈ A j

> 0 else
(10)

A nonlinear state inequality constraint can be transformed
into a nonlinear state equality constraint [24], since two cases
can occur:

1) The inequality is satisfied and so do not have to be
taken into account.

2) The inequality is not satisfied. Then, the equality
constraint has to be applied.

Owing to the uncertainty in RFID measurements, we treat
the (soft) equality constraint as a noisy measurement:

g(zi, j) = g(h(x, ti, v), j) = 0 (11)

1) If the inequality constraint (10) is satisfied, no mea-
surement update of the Kalman filter is applied.

2) If a tag Ti is detected but g( ẑi, j) > 0, then we apply a
measurement update g( ẑi, j) = 0 in every time step k
until the constraint is satisfied.

3) If the tag is not longer detected, but the pose estimate
persists in Ri, j, which means that g(h(x̂k, ti, 0), j) < 0,
then we apply a measurement update g(x̂k, j) = 0 again
in every time step k until the constraint is satisfied.

Every measurement update moves the pose estimate in
direction of the border of Ri, j. This algorithm is applicable
for any RFID equipment, where the border of the detection
area can be described by a nonlinear function (11). If more
than one tag can be detected at a moment, the constraints of
all detected tags have to be considered simultaneously. The
described algorithm can be applied to any nonlinear Kalman
filter, e.g. the well known Extended Kalman Filter (EKF).

The application of the proposed algorithm to the measure-
ment update of an EKF leads to

Kk = PkGT
k

(
Gk PkGT

k + Vk RkVT
k

)−1

x̂+
k = x̂k − Kk g(h(x̂k, ti, 0), j)

P+
k = (I − KkGk)Pk (12)

where Kk is the Kalman gain, x̂+
k and P+

k are the estimated
pose and its covariance after the RFID measurement update,
Gk =

∂g
∂x (x̂k, ti, 0), Vk =

∂g
∂v (x̂k, ti, 0) and Rk is the covariance

matrix of the uncertainty vk ∼ N(0, Rk).
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Fig. 3. Visualization of Constrained EKF

Fig. 3 shows results from a simulation and demonstrates
the working principal of the Constrained Kalman filtering. For
simplification it is assumed that the reader antenna is mounted
in the center of the vehicles frame ( TA

V = I). Furthermore,
it is assumed that the RFID reader measures always the
same RSSI value while detecting the tag. In the simulation,
the detection area A j is described by a circle with radius
r = 45 mm. In this case, the detection region Ri of the tag Ti

has a cylindric shape in the state space of the vehicle. The
projection of Ri onto the 2D working area is a circle with
radius r and center at ti.

The vehicle moves from position (0, 0) in y direction
with ẏ = 100 mm/s. The sample time for the motion update
(odometry) is T = 3 ms, the update time of the RFID reader is
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TRFID = 21 ms. The pose estimated by odometry is corrupted
by noise and is shown as blue curve. The real trajectory is
shown in red, the estimate in green. A RFID tag T1 is placed
at x1 = 0 mm, y1 = 250 mm. After the tag T1 is detected, the
constraint g(h(x̂k, t1, 0) ≤ 0 is checked. Since the constraint is
not satisfied, a measurement update is applied, which moves
the pose estimate to the border of R1. This update is repeated
in every time step k until the constraint is satisfied. If the
constraint is satisfied, while the vehicle is moving through
the detection region, no measurement updates are applied.
After the estimated pose leaves R1, measurement updates
are applied in every time step k until the tag is not longer
detected. This moves the estimated pose x̂k in direction of
the border of R1 again. The correction of x̂k depends on its
covariance matrix Pk and the shape of A. Thus, there is a
small remaining pose error in x direction.

C. Particle Filter

As mentioned before, usually PFs are deployed in RFID
localization algorithms, because of the highly nonlinear and
quantized measurements by the RFID reader. A PF will be
used as benchmark for our proposed localization algorithms
based on Kalman filtering.

In the motion update of a PF, all particles are sampled
with a random generator and distributed through the motion
model of the robot. The measurement update in a particle
filter is straight forward (see also [9]). After the robot
has detected a RFID tag, each particle xn

k is distributed
through the measurement function zn

i = h(xn
k , ti, 0) and then

weighted with the associated probability (wn = p(Ti|zn
i )),

which depends onA j and therefore on the detected RSSI. The
measurement noise can be modeled with a normal distribution
vk ∼ N(0, Rk).

If no particle falls inside the detection area (
∑

wn ≈ 0), the
particle set has to be reinitialized. In this case, the particles are
uniformly distributed in the detection region Ri. Otherwise,
the particle set is normalized and resampled.

D. Global Localization

A Kalman filter has to be initialized with a rough initial
pose estimate of the robot. Since a RFID reading provides
no information about the heading of the robot, at least
two different RFID tags have to be detected to initialize
a Kalman filter. This initial procedure is a kind of map-
matching between the initial local map of the robot processed
by odometry and the global map including the positions of
the tags. The heading can be estimated after detecting two
different RFID tags (Ti, T j):

θ̂k = θl
k + atan2(∆y,∆x) − atan2(∆yl,∆xl), (13)

where θl
k is the local heading while detecting the second tag,

∆x = x j − xi, ∆y = y j − yi are the distances between the
detected tags and ∆yl,∆xl are the distances of the trajectory
traveled in the local map. θl

k has to be considered, because
an omnidirectional robot can move in any direction without
changing its heading. The estimation of θ̂k is very rough,
because ∆x ∆y are quantized with the grid size of the RFID
tags.

V. RFID Sensor Setup
A. NaviFloor®

The NaviFloor® is a glass fiber reinforcement in which
passive HF RFID tags are embedded. The NaviFloor®

underlay is shipped in rolls including a map of the RFID tags
for simplification of the installation [25]. The NaviFloor® is
specially developed for installation beneath artificial flooring.
It is pressure-resistant up to 45 N/mm2 and withstands even
heavy indoor vehicles like fork lift trucks.

We have installed a NaviFloor® in our robotics lab. The
RFID tags are installed in a grid of 25 cm. The whole
installation includes nearly thousand RFID tags. The tags
embedded in the NaviFloor® have a rectangular shape 45 mm
× 45 mm. NXP chips I-CODE SLI are integrated in the tags.
The tags are compliant to ISO 15693 and communicate in
the 13.56 MHz HF band.

B. RFID Reader

The reader used in our experiments is a “KTS SRR1356
ShortRange HF Reader” with an external antenna with the
rectangular shape 80 mm × 80 mm. We have mounted the
reader at a distance of 15 mm to the floor. At this distance,
the detection areas of the reader have circular shapes. The
reader measures RSSI in 8 increments, all detection areas A j

can be modeled with a circular shape but a different radius
r j:

TABLE I
radius of detection area depending on measured RSSI

RSSI 0 1 2 3 4 5 6 7

radius in mm 105 100 95 90 80 60 50 40

The RFID tags in the floor are placed in a regular grid
of 250 mm. Thus, at most one RFID tag can be detected
at any moment. The reader is mounted in the center of the
robot frame ( TA

R = I). Thus, the heading of the robot has no
impact on the reading region Ri. In case of our experimental
setup, the border of the detection area can be modeled

g(h(xk, ti, vk)) =

√
(xk − xi + vx)2 + (yk − yi + vy)2 − r j (14)

where xi, yi is the position of Ti in world frame, xk, yk is the
position of the robot (center of the robot frame), r j is the
radius of the detection area A j at RSSI j and vk = (vx, vy)T

is the measurement noise. In oder to apply the measurement
update g(xk, vk) to an EKF its Jacobians are needed:

Gk =
∂g
∂x

(x̂k, ti, 0) = (15)(
xk−xi√

(xk−xi)2+(yk−yi)2

yk−yi√
(xk−xi)2+(yk−yi)2

0
)
,

and
Vk,i =

∂gi

∂v
(x̂k, ti, 0) = Gk,i (16)

Mean and covariance of the detection areas A j are needed
for the Quantized Kalman filter. In case of a circular shape,
µ j is the center of the circle in the antenna frame and

Σ j =

 r2
j

4 0

0
r2

j

4


where r j is the radius of A j.
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VI. MotionModel forMobile Robot withMecanumWheels

In this section, a motion model for omnidirectional vehicles
with Mecanum wheels is derived, which is suitable for poses
estimation using an Extended Kalman Filter (EKF). The mo-
tion model is based on experiments with our Mecanum driven
omnidirectional vehicles and extends the work presented in
[26]. An omnidirectional vehicle is able to move in any
direction and rotate around its z-axis at the same time. The
motion models found in literature are limited to mobile robots
with two degrees of freedom. The motion model is based
on odometry measurements obtained from wheel encoders.
Odometry can be treated as controls, because most vehicle
control systems control the movements of the vehicle in
a closed position control loop based on odometry. In this
case, the command values of the control loop correspond
directly to odometry. The movements of the vehicle are
corrupted by disturbances caused by mechanical inaccuracies
such as uneven floor, wheel slippage and inaccuracies in the
speed control of the wheels that lead to coupling errors. This
disturbances will be treated as process noise.

r

φ̇2 φ̇1

φ̇4

xR

yR

b

a
φ̇3

Fig. 4. Omnidirectional vehicle with Mecanum wheels

The vehicle is equipped with Mecanum wheels and
electronic drives, which provide three degrees of freedom.
The omnidirectional vehicle possesses four motor driven
Mecanum wheels. The wheel configuration of the mobile
system is shown in Figure 4. The velocities in the vehicle
(robot) frame (ẋR, ẏR, θ̇) are a function of the four wheel
velocities ϕ̇1 . . . ϕ̇4:

ẋR
ẏR
θ̇
ϕ̇e

 = J


ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

 , J =
r
4


1 1 1 1
−1 1 −1 1

1
a+b

−1
a+b

−1
a+b

1
a+b

4
r

4
r − 4

r − 4
r

 (17)

where r is the radius of the wheels, a and b are given by
the dimension of the vehicle (see Figure 4). An angular error
velocity ϕ̇e , 0 causes a coupling error of the wheels and
thus additional wheel slippage. Eqn. (17) is used in the
operating system of the vehicle to execute odometry. The
inverse equation transforms velocities in vehicle frame into
the wheel velocities: 

ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

 = J−1


ẋR
ẏR
θ̇
ϕ̇e

 (18)

Eqn. (18) is used in the operating system of the vehicle
to control the speeds in vehicle frame. The control variable
ϕ̇e can be used to force the coupling error ϕe to zero [27].
For more details about the kinematics of the vehicle refer to
[28], [29].

Velocities in the vehicle frame can be transformed into the
world frame, if the heading θ of the vehicle is known.

ẋR = R(θ) ẋW, ⇒ ẋW = R−1(θ) ẋR (19)

with ẋW =

ẋW
ẏW
θ̇

 , ẋR =

ẋR
ẏR
θ̇

 ,
R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Between two time steps of odometry it is assumed, that the
omnidirectional vehicle moves on a straight line while it
rotates from θk−1 to θk at the same time (see Figure 5).
To simplify calculations, this movement is divided into
three independent movements. First a rotation ∆θ/2, than
a translation (∆x, ∆y) without rotation and finally again a
rotation ∆θ/2.

xR
θk−1

yR

θk
yW

xk−1 xk xW

yk−1

yk

Fig. 5. Movement of an omnidirectional vehicle

The movements described in directions of the vehicle frame
can be calculated with (17) as:

∆xR
∆yR
∆θ
∆ϕe

 = J


∆ϕ1
∆ϕ2
∆ϕ3
∆ϕ4

 (20)

With these movements, the new pose in world frame xk =

(xk, yk, θk)T can be calculated based on the pose before the
movement (xk−1):

xk = xk−1 + ∆xR cos
(
θk−1 + ∆θ

2

)
−∆yR sin

(
θk−1 + ∆θ

2

)
yk = yk−1 + ∆xR sin

(
θk−1 + ∆θ

2

)
+∆yR cos

(
θk−1 + ∆θ

2

)
θk = θk−1 + ∆θ

(21)

A. Uncertainty Modeling

The movements of the vehicle are corrupted by noise
caused by mechanical inaccuracies. Experiments with the
omnidirectional vehicle show that the noise is mainly caused
by slippage of the Mecanum wheels. Since the slippage
of the wheels depends on the rotational speed of the free
spinning rollers, the uncertainty depends on the direction of
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the movement in vehicle frame. Therefore, it is assumed that
the movements of the vehicle in vehicle frame are corrupted
by independent noise εi:

∆x̂R = ∆xR + εx , ∆ŷR = ∆yR + εy , ∆θ̂R = ∆θR + εθ (22)

Furthermore, it is assumed that the noise εi is normally
distributed with zero mean εi = N(0, σ2

i ). The standard
deviation σi is proportional to the displacement in the vehicle
frame and changes in the coupling error ∆ϕe:σx

σy

σθ

 =

α
x
x α

y
x αθx αe

x
αx

y α
y
y αθy αe

y
αx
θ α

y
θ αθθ αe

θ



∆xR
∆yR
∆θR
∆ϕe

 (23)

The parameters α j
i are vehicle-specific constants, which have

to be identified by experiments.
With the additional noise, the motion model can be

described as follows:

xk = f (xk−1,uk,wk), with xk =

xk

yk

θk

 , (24)

uk =


∆xR
∆yR
∆θR
∆ϕe

 , wk =

εx

εy

εθ


xk = xk−1 + (∆xR + εx) cos

(
θk−1 +

∆θ+εθ
2

)
−(∆yR + εy) sin

(
θk−1 +

∆θ+εθ
2

)
yk = yk−1 + (∆xR + εx) sin

(
θk−1 +

∆θ+εθ
2

)
+(∆yR + εy) cos

(
θk−1 +

∆θ+εθ
2

)
θk = θk−1 + ∆θ + εθ

(25)

B. Linearization

In order to use the motion model in an EKF, f (•) has to
be linearized. In the prediction step of the EKF, the estimated
pose of the vehicle

x̂k = f (x̂k−1,uk, 0) (26)

and the covariance of the pose

Pk = Φk Pk−1Φ
T
k + WkQkWT

k , (27)

can be calculated based on f (•) and its Jacobians Φk and
Wk:

Φk =
∂ f
∂x

(x̂k−1,uk, 0) = (28)1 0 −∆xR sin θ′k−1 − ∆yR cos θ′k−1
0 1 ∆xR cos θ′k−1 − ∆yR sin θ′k−1
0 0 1

 ,
with θ′ = θk−1 +

∆θ

2

Wk =
∂ f
∂w

(x̂k−1,uk, 0) = (29)cos θ′ − sin θ′ − 1
2 ∆xR sin θ′ − 1

2 ∆yR cos θ′

sin θ′ cos θ′ 1
2 ∆xR cos θ′ − 1

2 ∆yR sin θ′

0 0 1

 .

The process covariance matrix

Qk =

σ
2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (30)

can be calculated using (23).

C. Motion Sampling Algorithm

Eqn. (25) can be used to develop the motion sampling
algorithm, which is needed by the Monte Carlo localization
procedure. Algorithm 1 shows the sequence of calculations
to sample the particles.

Algorithm 1 Motion sampling algorithm
1: sample_motion_model(xk−1, uk)

2:

σx

σy

σθ

 =

α
x
x α

y
x αθx αe

x
αx

y α
y
y αθy αe

y
αx
θ α

y
θ αθθ αe

θ

 · uk

3: ∆x̂R = ∆xR + sample(σx)
4: ∆ŷR = ∆yR + sample(σy)
5: ∆θ̂ = ∆θ + sample(σθ)
6: θ̂′ = θk−1 + ∆θ̂/2
7: xk = xk−1 + ∆x̂R cos θ̂′ − ∆ŷR sin θ̂′

8: yk = yk−1 + ∆ŷR cos θ̂′ + ∆x̂R sin θ̂′

9: θk = θk−1 + ∆θ̂
10: return xk = (xk, yk, θk)T

VII. Experimental Results

We have made several experiments with one of our omnidi-
rectional robots in our lab on the NaviFloor® installation. The
measurements of the RFID reader and the wheel encoders
are stored in a file and evaluated off-line with Matlab.

Fig. 6 shows comparative results of one experiment. The
experimental data are the same as presented in [7] but
evaluated with the extended algorithms presented in this paper.
The robot moves a rectangle path 1.5 m × 3 m in clockwise
direction with constant heading (θ = 100°). The path is
transverse to the grid with an angle of 10°. The path starts
and ends near tag position (x = 1750 mm, y = 4500 mm). All
estimators are started after detecting the second tag (1750 mm,
4750 mm) (see Sec. IV-D). Hence, after global localization,
the estimated heading is parallel to the grid (θ̂ = 90°). Since
odometry (magenta curve) is performed without measurement
update, its position estimate differs much from real path (black
curve). After detecting additional tags, all filters correct the
estimated heading and therefore the direction of movement.
The blue curve in Fig. 6 shows, that the PF needs the least
way length to correct the misalignment. After detecting the
fifth tag, both KFs corrects the pose estimate and follow
the real path. The Quantized EKF with RSSI measurement
(QRSSI, green curve) tends to force the position estimate
into direction of the center of detected tags. The Constrained
EKF with RSSI measurement (CRSSI, red cure) is able to
follow the real path with a smaller deviation than the QRSSI.
Table II compares the root mean square error (RMSE in mm)
of the described filters with the estimators QEKF, CEKF,
PF1000 presented in [7].
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Fig. 6. Comparative results of one experiment

TABLE II
Comparative results of proposed estimators

algorithm QEKF QRSSI CEKF CRSSI PF1000 PFRSSI

RMSE 39.4 36.8 29.5 25.4 ∼ 30 ∼ 25

runtime 0.27 0.29 0.29 0.31 85.4 90.5

All estimators provide a better accuracy if the RSSI
measurements are included in the algorithm. The accuracy
of the proposed Constrained EKF is similar to a PF with
high particle count (1000 particles). A PF with a low particle
count (100 particles) has a much lower accuracy than both
KF variants (see [7]). Owing to the particle sampling with
random numbers, the RMSE for both PFs differ with every run.
Further experiments confirm this accuracy of the evaluated
filters. The CRSSI outperforms the QRSSI in most cases and
provides a similar performance than a PF with high particle
count.

Table II compares the duration for one motion plus
measurement update of the filters in Milliseconds. The
durations are measured with Matlab R2014b on a PC with
Intel Core i7-2600 CPU 3.40 GHz. The measured durations
show that a PF with high particle count is not able to run
in real time even on a high speed PC. Fig. 7 shows the
Cumulative Distribution Function (CDF) of th localization
errors.
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Fig. 7. Cumulative Distribution Function (CDF) of localization errors

VIII. Conclusions

In this paper, we have developed two localization algorithm
based on Kalman filtering that fuses sensory data from wheel
encoders with RFID RSSI measurements. The Quantized
Kalman filter assumes RFID readings as quantized measure-
ments of the robot position. The quantization noise depends
on the RSSI of the RFID reading. The Constrained Kalman
filter assumes the RFID readings as a noisy constraint of
the robot’s pose. This constraints depend on the RSSI of the
RFID reading. The application of the proposed algorithms
is possible for any RFID equipment which measures the
RSSI from detected RFID tags. The localization accuracy of
the Constrained EKF is similar to a PF but with much less
computational expense. The accuracy of the Quantized EKF
is slightly lower than the Constrained EKF. The accuracy
of both localization methods is sufficient for most industrial
applications.

The localization concept is suitable for small and inexpen-
sive mobile robots, since the robots must be equipped with an
inexpensive and small HF RFID reader only. The installation
of the RFID infrastructure causes the highest expense for this
localization method, but since passive RFID technology is
used, the infrastructure is free of maintenance costs.
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