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Abstract—The well-known proportional navigation guidance 

(PNG) often produces unwished guidance command for the 

entire flight so that big overload is needed. In this paper, we 

proposed a new adaptive proportional-derivative guidance 

(APDG) law for the guidance of mortar projectiles in the 

horizontal plane. An example trajectory and Monte Carlo 

simulations are simulated to verify the effectiveness of APDG. 

The result of the example trajectory and the Monte Carlo 

simulations indicates that the APDG is effective in eliminating 

error due to launch perturbations and atmospheric wind. 

 

Index Terms—Guided mortar projectiles, proportional 

navigation guidance, adaptive proportional-derivative guidance 

 

I.  INTRODUCTION 

IRING accuracy of the guided projectiles can be 

dramatically improved by outfitting with a suitable 

trajectory correction system. The commonly used executive 

organs are impulse thrusters [1]-[2], drag brakes [3], inertial 

loads [4], and canards [5]-[7]. 

Research and development on the guidance and control of 

guided munitions has been going on for decades.  Rogers has 

presented a design of a canard-controlled mortar projectile 

using a bank-to-turn concept. The smart mortar is equipped 

with a set of two reciprocating fixed-angle roll canards and a 

set of two reciprocating fixed-angle maneuver canards, and an 

active control system is designed to perform trajectory 

corrections. Monte Carlo simulations demonstrate that the 

control system is effective in reducing dispersion error [5]. Yi 

Wang has presented the correction control mechanism for a 

class of spin-stabilized projectile through studying the 

influence of correction to the dynamic equilibrium angle and 

attack angle [6]. Spagni has characterized the system 

equilibrium point manifold in terms of a minimal vector of 

scheduling variables for a class of reciprocating 
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canard-guided artillery munitions, giving rise to a discussion 

concerning the canard size and position for maneuverability 

optimization [7]. PNG is widely used in various types of 

guided munitions due to its computational simplicity [8], and 

many scholars have proposed a variety of modified forms of 

proportional navigation law for different needs or constraints 

[9]-[11]. However, the well-known PNG often produces 

unwished guidance command for the entire flight so that big 

overload is needed. In this paper, we proposed a new adaptive 

proportional-derivative guidance law for the guidance of 

mortar projectiles with canards. 

The outline of the paper is as follows: Sec.II presents the 

trajectory model of the guided mortar projectile. Sec.III 

presents the adaptive proportional-derivative guidance law. 

Sec.IV describes the simulation result, and conclusion is 

provided in Sec.V. 

  II.  MODELING 

The schematic of the guided mortar is shown in Fig. 1. The 

projectile weight, mass center location from the nose tip, 

diameter, pitch inertia, and roll inertia is 15.0 kg, 0.387 m, 

120 mm, 0.70 kg·m
2
, and 0.0261 kg·m

2
, respectively.  

 

Fig. 1.  Schematic of the guided mortar projectile 

 

Fig. 2 shows schematic of forces on the guided mortar 

projectile. The forces applied on the guided mortar projectile 

including weight force and aerodynamic force. The deflection 

angle of canards is adjusted to change the aerodynamic force 

for trajectory correction in flight. 
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Fig. 2.  Schematic of forces on the guided mortar projectile 

 

In Fig. 2,   is the attack angle, G  is the weight force, F  is 

the aerodynamic force. 

The numerical simulation is based on a rigid body six 

degree of freedom model typically utilized in flight dynamic 
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analysis of mortar projectiles [12]. The translational kinetic 

differential equations are given by 
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The applied forces in (1) consist of weight force (G), and 

aerodynamic force (F), expressed in aero-ballistic reference 

frame. V , v , and   are the velocity, trajectory azimuth 

angle, and trajectory incline angle, respectively. 

The rotational kinetic differential equations are given by  
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The applied moments in (2) contain contributions from 

steady air loads, denoted by M , and unsteady air loads, 

denoted by M  , expressed in quasi-body reference frame. 

4 4 4
, ,x y zJ J J  are components of the transverse moment of 

inertia.
4 4 4
, ,x y zw w w are components of the angular rate vector,  

  is the Euler roll angle.  

The translational kinematic equations are given by 
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Where x , y , z  are position vector components of the 

center of mass, expressed in the inertial reference frame. 

The rotational kinematic equations are given by  
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Where   is the pitch angle, and   is the yaw angle. 

The angles in (1) - (4) have the relation expressed in (5). 
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Where   is the attack angle,   is the sideslip angle. 

Equations (1) - (5) constitute the rigid body six degree of 

freedom model for the guided mortar projectile, which can be 

solved by the fourth-order Runge-kutta algorithm. 

  III.  METHODOLOGY 

The motion relationship model of the projectile and target 

is established in the horizontal plane. As shown in Fig. 3, T  is 

the target position, M  is the projectile position, mx and mz  

are position vector components of the projectile, mv  is the 

projectile velocity, xmv  is the longitudinal velocity, and zmv  is 

the horizontal velocity.  

The APDG scheme is shown in (6). 
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Where U  is the required overload in horizontal plane, nt  is 

the total flight time of the nominal trajectory, and t  is the 

flight time. pk  is the proportional factor, which is set as 1 in 

this paper. dk  is the derivative factor, which is adaptive to the 

change of the flight time. The application progress of the 

APDG is shown in Fig. 4. 

The application progress of the APDG is: 

1) Ground computer calculates the nominal trajectory, and 

gets the total flight time nt . 

2) Operations personnel loads the total flight time nt  to the 

onboard computer.  

3) The guidance system gets real-time derivative factor dk  

through subtracting the real-time flight time t  from the total 

flight time nt  of the nominal trajectory. 

T

X

Z

( , )m mM x z

mv

zmv

xmv

 

Fig. 3.  Relation schematic between the mortar projectile and the target 
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Fig. 4.  Application process of APDG 

 

The control method of the canards used in the guided 

mortar projectile is letting the deflection angle of canards 

follows a sinusoidal signal of the projectile roll angle, as 

shown in (7). 
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Where t  is the canards deflection angle, 0  is the amplitude 

of canards deflection angle,    is the canards control phase, 

  is the roll angle, k  is coefficient, U  is the required 

overload in longitudinal plane.  

IV.  SIMULATIONS AND DISCUSSION 

A. Nominal trajectory 

A nominal trajectory is simulated around which 

perturbations were studied. The launching elevation angle, 

launching azimuth angle, and initial velocity are 78.6 deg, 

-0.11 deg and 280 m/s, respectively. The trajectory, spin rate 

and velocity profile are presented in Fig. 5. The range of the 

nominal trajectory is 2000 m, and the cross range is 0 m with 

apogee at 2863 m. The spin rate changes at the range of 22.7 

rad/s to 36.8 rad/s after 10 s. The velocity decreases gradually 

during 0 s to 22.4 s, gets the minimum value of 48.6 m/s, then 

increases gradually after 22.4 s, and the velocity before 

impact is 211 m/s. 

B. Example Trajectory 

An example trajectory is simulated to verify the 

effectiveness of APDG. The longitudinal plane is set as 

uncontrolled to stand out the trajectory performance of APDG 

in the horizontal plane. The control start time is set as 10 s. 

The uncontrolled trajectory and controlled trajectory are 

simulated using the perturbed value of initial conditions 

shown in Table I.  

Fig. 6 shows the trajectory response obtained using the 

APDG. The figure shows an uncontrolled trajectory and an 

APDG controlled trajectory. The horizontal impact point 

error is 144.3 m in the uncontrolled case. Fig. 6 demonstrates 

that the APDG controlled trajectory is successful in reducing 

the horizontal impact point error, recording the controlled 

horizontal impact point error of less than 1 m, compared with 

the horizontal impact point error of 144.3 m for the 

uncontrolled case. 

Fig. 7 plots the canards deflection histories of the 

controlled trajectory with APDG. The amplitude of canards 

deflection angle maintains at 15 deg during 10 s to 13.6 s, and 

reduces gradually after 13.6 s. The control phase maintains at 

90 deg in most of time.  
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Fig. 5.  Nominal trajectory 
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TABLE I  INITIAL CONDITIONS FOR EXAMPLE SIMULATION 

State Unit 
Unperturbed 

value 

Perturbed 

value 

Launching elevation 

angle 
deg 78.6 78.6 

Launching azimuth 

angle 
deg -0.11 -0.92 

Initial velocity m/s 280 280 

Wind m/s 0 2 

Wind direction deg 0 270 
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Fig. 6.  Deflection vs. Range 
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Fig. 7.  The canards deflection histories with APDG 

 

C. Dispersion Analysis 

The robustness of APDG to handle initial errors and wind 

is studied by comparing the uncontrolled and controlled 

dispersions for individual errors and the combination of these 

errors. The nominal firing case described in Table I is used as 

reference. The initial azimuth angle errors and wind are added 

as perturbations. The azimuth angle errors are normally 

distributed with a standard deviation of 0.4 deg, and the wind 

is normally distributed with a standard deviation of 2.0 m/s.  

200 Monte Carlo simulations are performed and presented 

below as dispersion plots for each studied set of error 

combinations. The results for standalone azimuth angle errors 

and wind are presented in Fig. 8 and Fig. 9 with statistics 

presented in Table II and Table III. The results for the 

combinations of errors are presented in Fig. 10 with statistics 

presented in Table IV.  

TABLE II STATISTICS FROM 200 MONTE CARLO SIMULATIONS WHERE 

PERTURBATIONS ON WIND WERE ADDED 

State 
Uncontrolled Controlled 

Mean Std. Dev. Mean Std. Dev. 

Deflection (m) -0.57 26.30 -0.88 5.10 

Range (m) 2000.09 0.77 1999.81 0.71 

 

TABLE III STATISTICS FROM 200 MONTE CARLO SIMULATIONS WHERE 

PERTURBATIONS ON AZIMUTH ANGLE WERE ADDED 

State 
Uncontrolled Controlled 

Mean Std. Dev. Mean Std. Dev. 

Deflection (m) 3.05 68.07 -1.21 5.51 

Range (m) 2000.11 0.55 1999.93 0.44 

 

TABLE IV STATISTICS FROM 200 MONTE CARLO SIMULATIONS WHERE 

PERTURBATIONS ON AZIMUTH ANGLE AND WIND WERE ADDED 

State 
Uncontrolled Controlled 

Mean Std. Dev. Mean Std. Dev. 

Deflection (m) -6.15 71.86 -2.11 6.28 

Range (m) 2000.05 0.98 1999.55 1.18 

 

The impact point dispersion results from perturbations on 

azimuth angle errors and wind in Tables II-IV and figures 

8-10 show a great decrease in the standard deviation of the 

deflection. From the impact point dispersion results it can be 

known that the APDG is effective in eliminating error due to 

launch perturbations and atmospheric wind. 
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Fig. 8.  Dispersion with wind 
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Fig. 9.  Dispersion with azimuth angle errors 
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Fig. 10.  Dispersion with azimuth angle errors and wind 

 

To further analyze the expected accuracy of the proposed 

guidance law, the standard deviation of deflection was 

evaluated for a set of nominal elevation angles. In Fig. 11 the 

standard deviation of deflection is presented based on 100 

Monte Carlo runs for each elevation angle. The azimuth angle 

errors and wind are normally distributed with a standard 

deviation of 0.4 deg and  2.0 m/s, respectively.  
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Fig. 11.  Standard deviation of deflection as a function of elevation angle 

As shown in Fig. 11, the effectiveness of the proposed 

guidance law is degraded for very low elevation angles. This 

can also be seen in Fig. 12 where the impact of the individual 

errors on the accuracy is displayed. The standard deviation of 

deflection for unguided mortar projectiles increases as the 

elevation angle increases, while the standard deviation of 

deflection for guided mortar projectiles decreases as the 

elevation angle increases. The results indicate that the 

proposed guidance law has better guidance performance for 

the large elevation firing cases. 
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Fig. 12.  Standard deviation as a function of elevation angle for standalone 

azimuth angle errors and wind 

 

V.  CONCLUSION 

An APDG law is put forward for the guidance of the guided 

mortar projectiles in the horizontal plane in this paper. The 

horizontal velocity and horizontal position are taken as the 

control variables, and the derivative factor is adaptive to the 

change of the flight time. The simulation of an example 

trajectory was done to verify the effectiveness of the APDG. 

The Monte Carlo simulations indicate that the APDG is 

effective in eliminating error due to launch perturbations and 

atmospheric wind, and the proposed APDG has better 

guidance performance for the large elevation firing cases. 
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