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Abstract— A numerical method based on Legendre wavelets 

is proposed for fractional partial differential equations. 

Legendre wavelets operational matrices of fractional order 

integration and fractional order differentiation are derived. By 

using these matrices, each term of the problem was converted 

into matrix form. Lastly, the equation was transformed into a 

Sylvester equation. The error estimation of the Legendre 

wavelets method is given in Theorem 5.1. Three numerical 

examples are shown to demonstrate the validity and 

applicability of the method. 

 
Index Terms— Fractional partial differential equation, 

Legendre wavelets, Operational matrix, Sylvester equation, 

Error analysis 

 

I. INTRODUCTION 

N science and engineering, many dynamical systems can 

be described by fractional-order equations [1-3]. These 

dynamical systems generally originates in the fields of 

electrode-electrolyte [4], dielectric polarization [5], 

electromagnetic waves [6], viscoelastic systems [7] etc. 

Various materials and processes have been found to be 

described using fractional calculus. Anomalous diffusion has 

been discussed in various physical fields [8-10]. The features 

of anomalous diffusion include history dependence, 

long-range correlation and heavy tail characteristics. These 

features can be accommodated well by using fractional 

calculus. In order to model these phenomena, fractional 

derivatives and fractional partial differential equations were 

proposed. Nowadays, fractional partial differential equations 

have been employed as a powerful tool in complex 

anomalous diffusion modelling. 

  Apart from modelling aspects of these fractional partial 

differential equations, the numerical solution techniques are 

rather more significant aspects. Various numerical methods 

and approaches are available to solve linear and nonlinear 

fractional partial differential equations. Some analytic 
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methods are proposed. However, numerical methods are in 

demand since it is difficult to obtain analytic solutions for 

each and every fractional partial differential equation 

originating from real life problems. Until now, to the best of 

the author’s knowledge, the main approach for solving 

fractional partial equations were the finite difference method 

[11, 12], Laplace transform method [13], and generalized 

differential transform method [14]. These approximations are 

valuable for researchers and scientists. 

This research considered a class of fractional partial 

equations: 

( , )
u u

f x y
x y

 

 

 
 

 
.                                                              (1) 

such that 

(0, ) ( ,0) 0u y u x  .                                                                  (2) 

where ( , )u x y x   and ( , )u x y y   are fractional 

derivatives, ( , )f x y is the known continuous function, 

( , )u x y is the unknown function, and 0 , 1   . 

 

II. LEGENDRE WAVELETS 

Legendre wavelets ( )nm x are expressed as follows [15] 
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2
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        （3） 

where 1,2, ,k  ˆ 2 1n n  , 11,2, ,2kn  , 

0,1, , 1m M  is the degree of the Legendre polynomials 

and M is a fixed positive integer; ( )mP x are Legendre 

polynomials of degree m . 

For any function, 2( ) [0,1)f x L may be given by the 

Legendre wavelets as 

1 0

( ) ( )nm nm

n m

f x c x
 

 

 .                                                           (4)  

where ( ), ( )nm nmc f x x , and , is the inner product of 

( )f x and ( )nm x . 

If the infinite series in Equation (4) is truncated, then 
12 1

1 0

( ) ( ) ( ).

k M
T

nm nm

n m

f x c x C x

 

 

                                                 (5) 

where C and ( )x are 1ˆ 2km M column vectors 
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For simplicity, Equation (5) is rewritten as 
ˆ

1

( ) ( ) ( ).
m

T

i i

i

f x c x C x


                                                        (8) 

where 
i nmc c , 

i nm  . The index i is determined by the rel

-ation ( 1) 1i M n m    .  

Therefore, the vectors can also be written as 

1

1 2 1

ˆ2 (2 1) 1
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Similarly, the function ( , )u x y over [0,1) [0,1) can be 

expressed as follows 
ˆ ˆ

1 1

( , ) ( ) ( ) ( ) ( ).
m m

T

ij i j

i j

u x y u x y x U y 
 

                                  (11) 

where [ ]ijU u and ( ), ( , ), ( )ij i ju x u x y y  . 

Theorem 2.1
[16] Any function ( )f x , defined over [0,1] , is with 

bounded second derivative, say ( )f x M  , can be expressed 

as the sum of Legendre wavelets, and the series converges 

uniformly to the function ( )f x .That is 

1 0

( ) ( ).nm nm

n m

f x c x
 

 

  

where ( ), ( )nm nmc f x x , and , is the inner product of 

( )f x and ( )nm x . 

Theorem 2.2
[17]

 If a continuous function ( , )u x y defined over 

[0,1) [0,1) has bounded mixed fourth partial 

derivative
4

2 2

( , )u x y
M

x y




 
, then the Legendre wavelets 

expansion of ( , )u x y converges uniformly to it. 

 

III. OPERATIONAL MATRICES OF INTEGRATION AND 

DIFFERENTIATION FOR LEGENDRE WAVELETS 

3.1 Fractional Calculus 

Definition 1. The Riemann-Liouville fractional integral 

operator of order 0   of a function is defined as [13] 

1

0

1
( ) ( ) ( ) , 0.

( )

x

J f x x f d    


  
                             (12)  

0 ( ) ( ).J f x f x                                                                         (13) 

Definition 2. The fractional differential operator in Caputo 

sense is defined as 

( )

10
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, ;
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        (14)  

The Caputo fractional derivative of order  is also given 

by ( ) ( )r rD f x J D f x  , where rD is the usual integer 

differential operator of order r . The relation between the 

Caputo operator and Riemann-Liouville operator is given as 

follows: 

( ) ( ).D J f x f x                                                                   (15) 

1
( )

0

( ) ( ) (0 ) , 0.
!

kr
k

k

x
J D f x f x f x

k

 






                                     (16) 

 

3.2 Fractional Order Operational Matrix of Integration and 

Differentiation for Legendre Wavelets. 

This section simply presents the operational matrix of 

fractional integration of Legendre wavelets [15]. 

Firstly, the basis set of block pulse functions is 

considered. These functions, defined over [0,1) , are given as 

follows [18] 

1, ( 1) ;
( )

0, .
i

ih x i h
b x

otherwise

  
 


                                                      (17) 

Note: ˆ0,1,2, , 1i m  and is a positive integer value for 

m̂ and 
1

ˆ
h

m
 .  

Let ˆ0 1 1( ) [ ( ), ( ), , ( )]T

mB x b x b x b x . Accordingly, suppose  

 ( ) ( ).J B x F B x                                                               (18) 

where F is the fractional integration block pulse operationa

l matrix [18], where 

ˆ1 2 1

ˆ1 2

ˆ 3

1

0 1
1

.0 0 1
( 2)
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m

m

m
F h 
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 










 
 
 
 

   
 
 
 

 

Here, 1 1 1( 1) 2 ( 1)k k k k          , ˆ1,2, , 1k m  . 

There is a relationship between the Legendre wavelets and 

block pulse functions [19] 

( ) ( ).x B x                                                                         (19) 

where ˆ0 1 1[ ( ), ( ), , ]mx x     ,
ˆ

i

i
x

m
 , ˆ0,1, , 1i m  . 

Legendre wavelets fractional integration operator J  satisfies 

( ) ( ).J x P x                                                                    (20) 

where P is the Legendre wavelets fractional integration 

operational matrix . Equation (18) and Equation (19) result in 

( ) ( ) ( ) ( ).J x J B x J B x F B x                                    (21)  

Using Equation (20) and Equation (21),  

( ) ( ) ( ).P x P B x F B x                                                     (22)  

Then, matrix P is as follows 
1.P F                                                                                (23) 

The fractional derivative of order  in the Caputo sense of 

the vector ( )x can be expressed as 

 ( ) ( ).D x Q x                                                                   (24) 

where Q is the ˆ ˆm m  Legendre wavelets operational matrix 

of fractional differentiation. Due to the relationship in 

fractional calculus, Q P I   , matrix Q can easily be 

acquired by inverting matrix P . 

The fractional order integration and differentiation of the 

function t  are selected to verify the effectiveness of matrix 

P and Q . The fractional order integration and 

differentiation of ( )u t t  are obtained as follows: 

1(2)
( )

( 2)
J u t t 





 

and 1-(2)
( )

(2- )
D u t t 







.                                                         

When ˆ0.5, 32m   , comparative results for the 

fractional integration and differentiation are shown in Fig. 1 

and Fig. 2, respectively. 
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Fig. 1. 1/2 order integration of ( )u t t . 

 
Fig. 2. 1/2 order differentiation of ( )u t t . 

 

IV. SOLUTION OF THE FRACTIONAL PARTIAL DIFFERENTIAL 

EQUATION 

Consider the fractional partial differential equation 

Equation (1) in section 1. If it is assumed the function 

( , )u x y in terms of Legendre series, it can be written as 

Equation (11).  

Then the following can be obtained: 

( ( ) ( )) ( )
( )

[ ( )] ( ) ( )[ ] ( ).

T
T

T T T

u x U y x
U y

x x x

Q x U y x Q U y

  
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 

      
   

   

     

                      (25) 
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y
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

   


 

 
    



                          (26) 

The function ( , )f x y of Equation (1) may also be written as 

( , ) ( ) ( ).Tf x y x F y                                                        (27) 

where ˆ ˆ,[ ]i j m mF f  .  

Substituting Equation (25), Equation (26) and Equation (27) 

into Equation (1), then 

( )[ ] ( ) ( ) ( )

( ) ( ).

T T T

T

x Q U y x UQ y

x F y

    

  
                                   (28) 

Dispersing Equation (28) by points ( , )i jx y , 

ˆ1,2, ,i m and ˆ1,2, ,j m , then 

[ ] .TQ U UQ F                                                                    (29) 

Equation (28) is a Sylvester equation. The Sylvester equation 

can be solved easily using Matlab2011a. 

 

V. ERROR ANALYSIS 

In this part, error analysis of the method is employed. Let 

ˆ ( , )mu x y

x
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




be the following approximation 
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( , )u x y

x
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Theorem 5.1 Let the function ˆ ( , )mu x y

x








obtained using 

Legendre wavelets be the approximation of
( , )u x y

x
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




, and 

( , )u x y has bounded mixed fractional partial 

derivative
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Proof.  
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The Legendre wavelets coefficients of function ( , )u x y are 

defined by 
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Let ˆ2k x n t  .By changing ˆ2k x n t  and
1

2k
dx dt , then 
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By solving this equation,  
4

1 1

2 21 1

ˆ ˆ
( , ) , ( ) ( ) .

2 2
ij m mk k

n t n s
u A k m u t s dtds

t s

 

 
 

 

  

   
  

   
   

where 
5 1 2 2

1 1
( , ) .

2 (2 1) (2 1) (2 3)k
A k m

m m m


  
 

Therefore 
4

1 1

2 21 1

ˆ ˆ
( , ) , ( ) ( ) .

2 2
ij m mk k

n t n s
u A k m u t s dtds

t s

 

 
 

 

  

   
  

   
   

Furthermore, the above equation reveals 
1

1

2 3
( ) 24 .

2 3
m

m
t dt

m








  

Thus,  
2

5 2 5 4

ˆ24 (2 3)
( , )

2 3

ˆ1 1 12
.

2 (2 1) (2 3)(2 1) (2 ) (2 3)

ij

k

M m
u A k m

m

M

m m m n m






 
   

 

Namely, 
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where N̂ is a constant. 

Next, 
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From this theorem, it is evident 
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VI. NUMERICAL EXAMPLES 

Example 1. Consider the nonhomogeneous partial 

differential equation 
1/5 1/5

1/5 1/5
+ ( , ), , 0.

u u
f x y x y

x y

 
 

 
 

Such that (0, ) ( ,0) 0u t u x  and
4/5 4/55( )

( , )
4 (4 / 5)

x y xy
f x y





. The 

numerical results for ˆ 8m  , ˆ =16m , ˆ =32m are shown in Fig. 3, 

Fig. 4, Fig. 5. The exact solution is xy , shown in Fig. 6. Fig. 

3-6 illustrate the numerical solutions are in very good 

coincidence with the exact solution.  

 
Fig. 3. Numerical solution of ˆ 8m  . 
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Fig. 4. Numerical solution of ˆ 16m  . 

 
Fig. 5. Numerical solution of ˆ 32m  . 

 
Fig. 6. Exact solution for Example 1. 

Example 2. Consider the following fractional partial 

differential equation [20] 
1/3 1/2

1/3 1/2
+ ( , ), , 0.

u u
f x y x y

x y

 
 

 
 

subject to (0, ) ( ,0) 0u t u x  , 
2 5/3 3/2 29 8

( , )
5 (2 / 3) 3 (1/ 2)

x y x y
f x y  

 
. 

Fig. 7-10 show the numerical solutions for various m and the 

exact solution 2 2x y . The absolute errors obtained by Block 

Pulse Method (BPM) and Legendre Wavelets Method 

(LWM) for different m̂ are shown in Table 1, respectively. 

From Fig. 7-10 and Table 1, the absolute errors between 

numerical solutions and the exact solution are clearly 

decreasingly smaller when m̂ increases. Compared with the 

approximations obtained by BPM, LWM can achieve a 

higher degree of accuracy. 

 
Fig. 7. Numerical solution of ˆ 16m  . 

 
Fig. 8. Numerical solution of ˆ 32m  . 

 
Fig. 9. Numerical solution of ˆ 64m  . 

 
Fig. 10. Exact solution for Example 2. 
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TABLE 1 

 THE ABSOLUTE ERROR OF DIFFERENT m FOR EXAMPLE 2 

( , )x y   ˆ 8m   ˆ 16m   ˆ 32m   

LWM BPM LWM BPM LWM BPM 

(0,0) 0 0 0 0 0 0 

(1/8,1/8) 7.4931e-006 3.0719e-005 5.2376e-008 6.3969e-006 3.2276e-010 1.6065e-006 

(2/8,2/8) 3.3456e-006 1.0113e-004 6.4260e-007 2.5382e-005 5.3431e-009 6.4515e-006 

(3/8,3/8) 2.1453e-005 2.2617e-004 3.6551e-007 5.7263e-005 7.0156e-009 1.4572e-005 

(4/8,4/8) 5.4356e-005 4.0185e-004 4.0276e-006 1.0214e-004 5.8820e-008 2.5983e-005 

(5/8,5/8) 7.2573e-005 6.2905e-004 6.1355e-006 1.6009e-004 6.3285e-008 4.0692e-005 

(6/8,6/8) 9.3462e-005 9.0799e-004 8.8762e-006 2.3113e-004 4.1455e-007 5.8709e-005 

(7/8,7/8) 1.2653e-004 1.2388e-003 1.1992e-005 3.1532e-004 2.4376e-006 8.0040e-005 

Example 3. Consider the fractional partial differential 

equation as follows 

+ sin( ), , 0.
u u

x y x y
x y

 

 

 
  

 
 

Such that (0, ) ( ,0) 0u t u x  . The exact solution of this 

equation is sin sinx y  when = =1  . The numerical solution is 

shown in Fig. 11, and the exact solution is displayed in Fig. 

12, Fig. 13 and Fig. 14 show the approximations for various 

values of ,  . They demonstrate the simplicity and power of 

the proposed method. Compared with the generalized 

differential transform method in Ref. [14], using the 

aforementioned method can greatly reduce computation. 

 
Fig. 11. Numerical solution of = =1  . 

 
Fig. 12. Exact solution of = =1  . 

 

Fig. 13. Numerical solution of =1/2, =1/3  . 

 
Fig. 14. Numerical solution of =3/7, =3/5  . 

 

VII. CONCLUSION 

This article introduced Legendre wavelets and wavelets 

operational matrices of fractional integration and fractional 

differentiation. The fractional partial differential equations 

improved numerically via the operational matrices. By 

solving the Sylvester system, numerical solutions were 

obtained. In addition, the error analysis of Legendre wavelets 

was proposed. The solution obtained using the suggested 

method showed numerical solutions were in very good 

agreement with the exact solution. 
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