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Abstract—This paper presents a computational model for a 

nonlinear two degree-of-freedom (2-DoF) robotic leg. The model 

is based on a mathematical model of two connected body 

segments to mimic the lower thigh and shank of human leg. Two 

sets of electro-hydraulic servo systems (EHSS) are seperately 

used to drive the robotic thigh and shank. The dynamic of EHSS 

is accurately developed to exhibit the relationship of the input 

current and the actuated force\torque. A velocity observer is 

used to estimate the angular velocities of the robotic thigh and 

shank. Then, a velocity feedback controller is proposed to track 

the hip and knee joints movements of robotic leg. The simulation 

results show that the velocity feedback controller gives better 

tracking performances in term of position control strategy when 

compared with the conventional PID controller. 

Index Terms—Robotic leg, Electro-hydraulic servo systems, 

Velocity feedback controller, PID controller. 

I. INTRODUCTION 

he drive mechanism with a two degree-of-freedom  

(2-DoF) driver has been widely used as mechanical tools 

in the industry manufactures, including robotic systems, 

injection machines and boring machines [1]–[3]. Generally, 

the actuation for a 2-DoF driver is selected to be motors or 

electrohydraulic servo systems (EHSS). Many researches and 

applications of motor have been made to control the 2-DoF 

driver [4]–[6]. However, in this paper, the realization of 

2-DoF driving technologies is achieved by utilizing two sets 

of EHSS for their ability of high load efficiency, fast response, 

and high tracking accuracy [7]. 

The modeling of EHSS is extremely difficult for some 

nonlinear time-varying phenomena, such as the relationship 

between input current and output flow, fluid compressibility, 

deadband due to the internal leakage and external load [8]. In 

addition, the values of hydraulic parameters may vary due to 

temperature changes and air entrapment in the hydraulic fluid. 

Based on the desired objectives, control strategies for EHSS 

can be classified as position control [9]–[12], velocity control 

[13] and force/torque control [14]–[15]. For any one of the 

control strategies, the controller designs will directly affect 
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the tracking performances of EHSS. Generally, the PID 

controller is most widely used due to its simple control 

structure, ease of design and low cost [16]. However, the PID 

controller is completely independent of the mathematical 

model of EHSS. 

In this paper, a 2-DoF robotic leg is introduced which is 

driven by EHSS for both the robotic thigh and shank. The 

modeling for robotic leg and EHSS is built based on the 

transformation of Lagrange equation and fluid equation. 

Additionally, the velocity is estimated using an observer and 

the velocity feedback controller is proposed though the actual 

position and estimated velocities. The simulation results show 

that the proposed velocity feedback controller provides less 

tracking lag and less mean absolute error (MAE) than the 

conventional PID controller. 

II. METHOD 

In this section, the dynamic models are separately derived 

for the EHSS and 2-DoF robotic leg. This analysis primarily 

builds the nonlinear model of the EHSS dynamics, and shows 

the process of the actuator driving the robotic leg. Similar 

approaches to modeling of EHSS have been reported in 

[17]–[18]. 

The 2-DoF robotic leg under consideration is drafted in Fig. 

1. The robotic leg consists of two parts including thigh and 

shank. Two sets of EHSS are placed to drive the robotic thigh 

and shank. 

 

 
Fig. 1.  Schematic Diagram of the EHSS and 2-DoF robotic leg 
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A. Modeling of Robotic Leg 

The dynamic of 2-DoF robotic leg can be constructed by 

Lagrange equation as follows: 

TqGqqqCqqH  )(),()(                                            (1) 

In [19], the 1
  and 2

  are derived and developed based on 

the double segment compound pendulums and Lagrange 

equation. However, the derived formula of 1
  includes the 

expression of 2
 , and the derived formula of 2

 includes the 

expression of 1
 . The coupling of 1

  and 2
  can not be 

neglected. Based on this, we use the transformation of 

Lagrange equation to eliminate the interrelationship between 

1
  and 2

 . 
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where H, C and G are the inertia matrix, Coriolis matrix 

and gravity vector, respectively, Tt and Ts are the torques 

actuated severally on lower thigh and shank. θ1 and θ2 are the 

rotary angles of thigh and shank as shown in Fig. 1. 

The elements of matrix H
-1

, C and G can be expressed as 

follows: 
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where mt is the thigh mass, ms is the shank mass, Lt is the 

thigh length, Ls is the shank length, LGt is the the position of 

the center of the thigh mass, LGs is the the position of the 

center of the shank mass, It is the thigh inertia and Is is the 

shank inertia. 

The 1
  and 2

  can be obtained using the transformation of 

Lagrange equation in Eq. (2). However, the expressions in Eq. 

(4) give that the 1 , 2 , 1
  and 2

  should also be acquired. 

For simulation, the 1 , 2 , 1
  and 2

  can be written as: 
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B. Modeling of Electro-Hydraulic Servo Systems 

As shown in Fig. 1, two sets of EHSS generate the 

force\torque to drive the robotic thigh and shank. For the 

EHSS, the driving torque T can be calculated as: 

FHT                                                                               (6) 

where 
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where Ft is the driving force for the robotic thigh joint, Fs is 

the driving force for the robotic shank joint, P1t and P1s are the 

head-side pressure of hydraulic for the robotic thigh and 

shank, respectively; P2t and P2s are the rod-side pressure of 

hydraulic for the robotic thigh and shank, respectively; Ap1 is 

the head-side area; AP2 is the rod-side area; Ht and Hs are the 

arm of force for the robotic thigh and shank, respectively. Due 

to the geometry of the robot system, the Ht and Hs can be 

computed as: 
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where a, b, c and d are the geometry lengths of the robotic 

thigh and shank as shown in Fig. 1. 

In Eq. (7), the Ap1 and AP2 can be calculated through the 

following formulas when the bore diameter D1 and the rod 

diameter D2 are acquired. 
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As the the rod diameter D2 is even less than the bore 

diameter D1, the Eq. (5) can be simplified as 
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Substituting the Eq. (10) into Eq. (7) , the actuated force 

can be simplified as 
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Neglecting the external leakage, the pressure dynamics in 

actuator chambers can be described as 
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where V1t=V0+Ap1xpt, V2t=V0-Ap1xpt, V1s=V0+Ap1xps, 

V2s=V0-Ap1xps are the control volumes of the actuator 

chambers, V0 is chamber volume such that at xpt=0, 

V1t=V2t=V0 or xps=0, V1s=V2s=V0; β is the effective bulk 

modulus in the chambers; xpt and xps are the load velocity of 

the robotic thigh and shank, respectively; PLt=P1t-P2t and 

PLs=P1s-P2s are the load pressure of the dynamic actuator of 

the robotic thigh and shank, respectively; Ct is the coefficient 

of the total internal leakage of the actuator due to the pressure; 

Q1t and Q1s are the supplied flow rate to the forward chamber, 

and Q2t and Q2s are the return flow rate of the return chamber. 

Q1t, Q2t, Q1s and Q2s are related to the spool valve 

displacement of the servo-valve xv. 
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where kq is the valve discharge gain, Cd is the discharge 

coefficient, w is the spool valve area gradient, ρ is the density 

of hydraulic oil, Ps is the supply pressure of the fluid, and Pr is 

the return pressure. 

However, the xpt, vpt, xps and vps can be calculated as 
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where L0 is the cylinder dead length and xp0 is the piston 

position when the volumes are equal on both cylinder sides. 

Since a high-response servo valve is used, it is assumed that 

the current applied to the servo valve is directly proportional 

to the spool position, then the following equation is given by 

xv=kci, where kc is a positive electrical constant, and i is the 

input current. Thus, from Eq. (11), s(xv)=s(i). Then Eq. (13) 

can be rewritten as 
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where gs=kqkc and 
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Based on the Eq. (12) and (18), we have 
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Therefore, the derivation of the actuated force Ft and Fs can 

be obtained by 
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In practical working conditions, the P1t, P2t, P1s and P2s are 

all bounded by Ps and Pr, i.e. 0<Pr<P1t<Ps, 0<Pr<P2t<Ps, 

0<Pr<P1s<Ps and 0<Pr<P2s<Ps. In simulation process, the PLt 

and PLs are both bounded by Ps, i.e. -Ps< PLt < Ps and -Ps< PLs 

< Ps. 

III. CONTROLLER DESIGN 

The aim of the controller is to evaluate the tracking 

performance of EHSS such that the desired and actual 

positions should be obtained before controller design. In this 

paper, the desired positions θ1d and θ2d are designed to be the 

rotary angles of human hip and knee joints in one gait cycle. 

Then, the controller design can be made at a sampling 

frequency of fs=1000Hz to examine the behavior of the 

system. 

A. Design of the PID Controller 

To test the position tracking performance of 2-DoF robotic 

leg driven by EHSS, a feedback controller is added into this 

system where the actual positions (i.e., θ1 and θ2) of thigh and 

shank are then compared with the desired positions defined in 

Eq. (21). The error between the desired position and actual 

position is calculated and fed back to the system. The required 

torques to compensate these errors are generated by the input 

currents into the servo valves, which are figured out by a 

Proportional-Integral-Derivative (PID) controller for both 

lower thigh and shank as shown in Eq. (22). Fig. 2 illustrates 

the block diagram for the conventional PID controller that is 

added to the nonlinear 2-DoF robotic leg system. The 

conventional PID controller can be constructed as follows. 

dt
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where 
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where it and is are the input current into the valves of thigh 

and shank as seen in Eq. (19), respectively. kpt, kit and kdt are 

the fixed proportional, integral and differential gains for the 

robotic thigh, respectively. kps, kis and kds are the fixed 

proportional, integral and differential gains for the robotic 

shank, respectively. 

 

 
Fig. 2.  The block diagram of the PID controller scheme 

 

B. Design of the Velocity Feedback Control 

For the conventional PID controller, the angular velocities 

are obtained using the electrical integration method as shown 

in Eq. (5). In this paper, we take use of an observer to estimate 

the angular velocities. The observer can be written as 
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where zvt and zvs are the observer states; kvt and kvs are the 

observer gains to ensure convergence of the error to zero; tv̂  

and sv̂  are the estimated angular velocity of the thigh and 

shank. 

The estimated velocity can be used in the feedback loop of 

the position controller to decrease the tracking error. The 

proposed controller is obtained through adding a velocity 

error term to a proportional controller, which is shown in the 

block diagram of Fig. 3. The control law can be expressed as 
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where αt, βt, αs and βs are fixed controller gains. In fact, this 

controller is a state feedback controller where the velocity 

term represents the internal state of the actuation system. 

 

 
Fig. 3.  The block diagram of the velocity feedback controller scheme 

 

IV. SIMULATION RESULTS 

A. Selection of System Parameters 

In order to demonstrate the effectiveness of this system, the 

EHSS and the 2-DOF robotic legs are simulated with the 

following nominal parameters: mt=7kg, ms=3.26kg, Lt=0.43m, 

Ls=0.5m, LGt=0.24m, LGs=0.28m, It=0.13kg·m
2
, Is=0.07kg·m

2
, 

Ap1=1.77×10
-4

m
2
, a=0.14m, b=0.26m, c=0.17m, d=0.28m, 

Ps=2×10
6
Pa, Pr=0.5×10

5
Pa, L0=0.1m, xp0=0.08m, 

β=2×10
7
Pa, V0=1.15×10

-4
m

3
, Ct=8×10

-12
m

5
N

-1
s

-1
, 

gs=3.97×10
-8

m
4
s

-1
N

-1/2
.  

 

B. Selection of Observer Gains 

To establish conditions on the gains kv to ensure the 

observer stability, we consider the error between the actual 

velocity v and its estimate v̂ . 

vvev
ˆ                                                                         (27) 

Differentiating both sides of the above equation yields an 

analytic expression that describes the rate of change of the 

error ev. From the Eq. (24), the differential equation of the 

error ev is expressed as 

)ˆ(ˆ vvkvkvkvkze vvvvvv
                                (28) 

To make the observer stable to be used in the EHSS and 

2-DOF robotic legs, the Lyapunov function should be 

satisfied that 

0)ˆ()ˆ()ˆ( 2  vvkvvkvveeV vvvv
                 (29) 

The selection of observer gain must be obeyed that kv>0. 

After massive trials, the optimum of observer gains is made 

that kvt=30 and kvs=520. 

 

C. Selection of Controller Gains 

The gains of the conventional PID controller are chosen 

using Ziegler-Nichols method. Then, optimum gains of 

kpt=60, kit=40 and kdt=150 are obtained for the controller to 

track the position of the robotic thigh. In addition, the gains 

for the controller to take the best position tracking of the 

robotic shank are selected that kps=120, kis=40 and kds=130. 

The optimal values for the gains of the velocity feedback 

controller are made that αt=260, βt=65, αs=120 and βs=160. 

 

D. Comparison Results Between the PID Controller and 

Velocity Feedback Controller 

The system simulation can be implemented by Matlab 

based on the introduced EHSS model and mathematical 

2-DOF robotic leg model. The computer simulations are 

conducted using two types of controllers, such as PID 

controller and velocity feed back controller. 
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Fig. 4.  Tracking performance for robotic leg: (a) Desired movements for 

robotic leg, (b) Actual movements using PID controller, (c) Actual 

movements using velocity feedback controller 

 

The desired movements for 2-DOF robotic leg are 

demonstrated in Fig. 4(a), while Fig. 4(b) and Fig. 4(c) give 

the actual movement using the PID controller and velocity 

feedback controller, respectively. However, the control 

effects for both controllers can not be considered as 

comparable results. In order to display the controller effect 

comparatively, the controller performances are indicated by 

the mean absolute error (MAE) and tracking lag. 

 

 
Fig. 5.  Tracking performance for robotic hip using: (a) PID controller, (b) 

Velocity feedback controller 

 

 

 
Fig. 6.  Tracking performance for robotic knee using: (a) PID controller, (b) 

Velocity feedback controller 

 

As Fig. 5 shows, the control performance for robotic hip 

using velocity feedback controller obtains less MAE (0.027 

rad) and less tracking lag (8 ms) than that using PID controller 

(MAE=0.034 rad, and lag=18 ms). According to the MAE 

and lag values displayed in Fig. 6, using the velocity feedback 

controller (MAE=0.065 rad, and lag =7 ms) results in 

reduction of position error and tracking lag compared with the 

PID controller (MAE=0.088 rad, and lag =8 ms). The 

comparative results suggest that the velocity feedback 

controller gives better performance for 2-DOF robotic leg. 

For velocity feedback controller, the velocity is estimated 

using an observer as seen in Eq. (23). However, the velocity is 

acquired using integral way for PID controller. As described 

in Fig. 7 and Fig. 8, the estimated velocity using observer is 

more smooth compared with that using integral way. 

 

 
Fig. 7.  The acquired velocity for robotic hip: (a) Through integral way, (b) 

Through observer estimation 

 

 
Fig. 8.  The acquired velocity for robotic knee: (a) Through integral way, (b) 

Through observer estimation 

V. CONCLUSION 

A mathematical and computational model of 2-DOF 

robotic leg driven by EHSS has been successfully developed, 

simulated and tested in MATLAB software. The approach to 

mimic the lower thigh and shank segments of the human leg is 

original and unique to use the mathematical concepts and the 

Lagrange equation to achieve the system dynamic. In addition, 

the velocity feedback controller is proposed to track the 

position trajectory of 2-DOF robotic leg, while an observer is 

used to estimate the velocity. Two types of controllers, such 

as the conventional PID controller and the velocity feedback 

controller, are taken to obtain comparative results. Compared 

with the PID controller, the simulation results show that the 

proposed velocity feedback controller acquires less MAE and 

less tracking lag in term of position control strategy. 
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