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Abstract—Traditional reliability assessment methods are 

based on lifetime data. However, the lifetime data of high 

reliability product are difficult to obtain even by the accelerated 

life test. In this paper, a very effective method is presented to 

assess the reliability via the degradation data of product, where 

the degradation path of product is characterized by mixed 

effect wiener process model. Considering that the mixed effect 

degradation model is very complicated, the Bayesian Markov 

Chain Monte Carlo (MCMC) method is used to obtain the 

unknown parameters and the corresponding reliability 

assessment is carried out. At last, a numerical example about 

laser data is given to demonstrate that degradation data can 

provide more information about the product than lifetime data 

and pseudo lifetime data. 

 
Index Terms—Degradation data, Wiener process, Bayesian 

inference, MCMC 

 

I. INTRODUCTION 

RADITIONAL reliability assessment methods are focused  

on  the use of lifetime data. For the highly reliable 

product, it is difficult to obtain sufficient lifetime data. 

Compared with the lifetime data, the degradation data can 

provide more life informative. Degradation, such as wear, 

erosion and fatigue, is very common for most mechanical 

products. In addition, degradation can be described by a 

continuous performance process in terms of time. 

Considering that the stochastic process model can flexibly 

describe the failure generating mechanisms and the operating 

environment characteristics, many authors have used the 

different stochastic processes (i.e. Markov chain, Gamma 

processes, and Wiener processes et al.) to model degradation 

data, such as Singpurwalla (1995), Cox (1999), and Aalen 

(2001), et al. Among those stochastic process models, 

Wiener process has been widely studied, such as Tseng et al. 

(2003), Lee and Tang (2007), Park and Padgett (2006), et al. 

A well-adopted form for the Wiener process 

 ( ), 0X t t  can be expressed as 

                               ( ) ( )X t t B t                                 (1) 
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where B(t) is the standard Brownian motion, μ is the drift 

degradation rate, σ is the diffusion coefficient. The wiener 

process has independent and normally distributed increments, 

i.e., ( ) ( ) ( )X t X t t X t     is independent of ( )X t , and 

2( ) ~ ( , )X t N t t    . 

Note that the above Wiener degradation process models do 

not take into account the differences between individuals. In 

fact, the differences between individuals can not be ignored, 

because each item possibly experiences different sources of 

variations during its operation. For degradation model to be 

realistic, the random effects should be incorporated into the 

process to represent the heterogeneity. Recently, Peng and 

Tseng (2009), Wang (2010) and Si et al. (2012) considered 

the random effect Wiener process, and the reliability 

assessment of the performance degradation product are 

obtained. However, they only used the MLE method to 

obtain the estimation of unknown parameters, and they only 

utilized the current degradation data without considering the 

prior information about the unknown parameters. 

In this paper, Wiener process model with mixed effect is 

proposed to characterize the performance degradation path of 

product, and Bayesian inference method is used to obtain the 

estimation of the parameters. Considering the complexity of 

mixed effect degradation model, the estimations of unknown 

parameter are obtained by the Bayesian Markov Chain Monte 

Carlo (MCMC) method, and goodness of fit measures is 

given. The results show that MCMC method is better than the 

MLE method, and the uncertainty is smaller than the MLE 

method.  

II. DEGRADATION MODEL BASED ON WIENER PROCESS 

Assume that the degradation path of a product is governed 

by Equation (1), and ξ is predefined threshold. Given the 

threshold value , the product’s lifetime T can be defined as 

             inf{ 0 | (0) 0, ( ) }T t X X t                                 (2) 

It is well known that the lifetime T follows an inverse 

Gaussian distribution with probability density function 

(PDF) as 
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Then, the reliability at time t can be expressed as 
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To capture the difference between individual, we assume 

that μ and B(t) are independent, and assume that μ follows 
2( , )N   . Then we can get the mixed effect model as 

following 

Degradation Data Analysis Using Wiener 

Process and MCMC Approach 
 

 

Chunping Li , Huibing Hao 

T 

Engineering Letters, 25:3, EL_25_3_02

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



 

 2

( ) ( )

~ ( , )

X t t B t

N 

 

  

 



                             (5) 

where the parameter μ is a random effect representing 

between item variation, and σ is a fixed effect that is common 

to all items. 

Based on the Equation (5), when the drift parameter μ is a 

random variable, the PDF of the lifetime T can be 

reconstructed by the total law of probability as follow 

     1
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where ( )  is the probability density function of the standard 

normal distribution. 

Then, the reliability at time t can be expressed as 
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where ( )  is the distribution function of the standard normal 

distribution. 

III. BAYESIAB INFERENCE AND MCMC APPROACH 

The Bayesian inference is a method of estimating the 

unknown parameters of a given distribution by combining 

the previous knowledge of these parameters with the new 

information contained in the observed data. The previous 

information of these parameters is reflected by the prior 

distribution, and the new information is incorporated through 

the likelihood function, then the posterior distribution is 

obtained about the unknown parameters. The likelihood 

function, prior and posterior distributions are described in the 

following sections. 

A. Likelihood functions of the unknown parameters 

Let ( )i ijX t denote degradation measurements of 

product i at time ijt , for i = 1,2,…,N, j = 1,2, … , M. In 

general, the degradation data can be expressed as the 

following form 
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Set 

( 1)( ) ( ) ( )i ij i ij i i jX t X t X t    , 00 it ,
0( ) 0i iX t     (9) 

According to the independent increment property of the 

Wiener process, ( )i ijX t has the following distribution 

       
2( ) ~ ( , )i ij i ij ijX t N t t                             (10) 

where ( 1)ij ij i jt t t    ，
i is the drift degradation rate of 

the product i. Therefore, the conditional PDF of ( )i ijX t is  
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When the uncertainty of
i is taken into account, the PDF 

of ( )i ijX t is given by 
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and the cumulative distribution function (CDF) of ( )i ijX t  

is 
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where ( )  is the distribution function of the standard normal 

distribution. 

Then, the log-likelihood function of unknown 

parameters 2,   and 2

B can be given as 

2
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B. Prior distribution 

For simplicity, we assume that the unknown parameter   

has normal prior distribution. Considering that the unknown 

parameters 2

  and 2

B  are positive quantities, a natural 

choice for the prior of each parameter has gamma prior, then 
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where  ,
1 ,

2 , 
2 , 

3  and 
3 are chosen to reflect prior 

knowledge about unknown parameters 2,   and 2

B . Note 

that when 0i i   , 2,3i  , it is corresponding to the case 

of non-informative priors. 

C. Posterior distribution 

Let
2 2( , , )B     denote the unknown parameters and 

X denote the degradation data. The joint posterior distribution 

( | )X   is obtained by combining the joint prior 

distribution of    with the likelihood L(X | η) according to 

Bayes’ theorem 
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Considering that the joint posterior distribution is very 

complicated, the MCMC simulation techniques implemented 

in this study to numerically evaluate the posterior 

distributions of the parameters. 

D. MCMC approach 

MCMC approach is a simulation technique when the 

analytical posterior distribution is difficult to be computed. A 

Markov chain is generated by sampling the current point 

based on the previous one. MCMC method works 

successfully in Bayesian computing. By using MCMC 

method, it is possible to generate samples from the posterior 

distribution and to use these samples to estimate the desired 

features of the posterior distribution. The MCMC techniques, 

including the Metropolis–Hastings (M–H) algorithm [18, 19] 

and the Gibbs sampler [20, 21] have become very popular 

methods for generating a sample from a complicated model 

in recent years. 

The Gibbs sampler is a special case of MCMC algorithm. 

It generates a sequence of samples from the full conditional 

probability distributions of two or more random variables. 

Gibbs sampling requires decomposing the joint posterior 

distributions into full conditional distributions for each 

parameter in the model and then sampling from them. From 

Equation (16), we know that 
2 2
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Based on the Equation (17), the posterior inference for 

parameters can be obtained, but it is not easy to get the 

detailed results. Therefore, the MCMC method with the 

Gibbs sampler to carry out Bayesian inference is used for the 

model parameters. Let (-j) denote some vector without the jth 

component. Then the full conditional can be written as 
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We used the Bayesian software package OpenBUGS [23] to 

carry out the Gibbs sampling, after which we estimated the 

model parameters. 

IV. NUMERICAL EXAMPLE 

In this section, a numerical example about laser data[1] is 

used to demonstrate the validity of the proposed method and 

results. The performance characteristic of a laser device 

represents its operating current. When the operating current 

reaches at a predefined threshold level, this device is 

considered to be failed. Table I shows the plot of operating 

current over time for 15 tested units. The measured frequency 

of its current is 250 hours, and the experiment is terminated at 

4000 hours. For example, the degradation response for the 

10th unit, whose degradation is the fastest and observed 

every 250 hours from 0 to 4,000 hours, is 0.00, 0.41, 1.49, 

2.38, 3.00, 3.84, 4.50, 5.25, 6.26, 7.05, 7.80, 8.32, 8.93, 9.55, 

10.45, 11.28, 12. 21. The failure threshold ξ is 10. That is, 

although a laser is working at 10, it is still perceived as being 

failed. 

From the Table I, the degradation curves of the lasers are 

approximate linear and there are obvious different 

degradation path of all test units, therefore, we use the mixed 

effect Wiener process with linear drift model to fit the 

degradation data. Pseudo lifetimes can be obtained by fitting 

lines to each degradation curve and calculating the times 

when the fitted lines reach the failure threshold (Meeker and 

Escobar, 1998; Tseng, Hamada, and Chiao, 1995).If the 

degradation path is described by the Wiener process, the 

pseudo lifetimes are follow the inverse Gaussian distribution. 

A. Parameters estimation and data analysis 

Firstly, we use the mixed effects model to fit the 

degradation data. Based on the MCMC method, we can get 

the Bayesian estimation of the unknown parameters. Table II 

presents posterior estimator summaries for μβ, σβ , σB based on 

the 50,000 samples, including the mean and standard 

deviation, as well as the 0.025, 0.050, 0.500, 0.950, 0.975 

quantiles. 

To test the goodness-of-fit, we firstly obtain each unit’s 

pseudo failure time which is the time of degradation path to 

threshold ξ =10. The empirical CDF and the CDF obtained 

             TABLE I 
             THE LASER DATA 

 

 Operating current 

0 250 500  3500 3750 4000 

1 0 0.47 0.93 … 9.49 9.87 10.94 

2 0 0.71 1.22 … 8.42 8.91 9.28 

3 0 0.71 1.17 … 6.02 6.45 6.88 

4 0 0.36 0.62 … 5.61 5.95 6.14 

5 0 0.27 0.61 … 6.32 7.10 7.59 

6 0 0.36 1.39 … 9.95 10.4 11.0 

7 0 0.36 0.92 … 5.57 6.1 7.17 

8 0 0.46 1.07 … 5.46 5.81 6.24 

9 0 0.51 0.93 … 6.84 7.20 7.88 

10 0 0.41 1.49 … 10.45 11.28 12.21 

11 0 0.44 1.00 … 6.54 6.96 7.42 

12 0 0.39 1.80 … 6.99 7.37 7.88 

13 0 0.30 0.74 … 7.39 7.85 8.09 

14 0 0.44 0.70 … 6.14 6.51 6.88 

15 0 0.51 0.83 … 5.84 6.16 6.62 

 

TABLE II 

POSTERIOR ESTIMATOR SUMMARIES BASED ON DEGRADATION DATA 

 
Parameter 

 
Mean 

 
SD 

Quantiles 

0.025 0.050 0.500 0.950 0.975 

μβ 

σβ 

σB 

R(4500) 

0.002052 

0.000378 

0.1123 

0.6542 

0.0001087 

0.0002266 

0.0005520 

0.09394 

0.001839 

0.000379 

0.01019 

0.4580 

0.001874 

0.000375 

0.01034 

0.4902 

0.002052 

0.000378 

0.01121 

0.6597 

0.002232 

0.000382 

0.01216 

0.8006 

0.002265 

0.000383 

0.01238 

0.8233 
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from the estimated inverse Gaussian distribution are 

simultaneously displayed in Fig. 1. From the Figure 1, we can 

find that the estimated failure time distribution based on the 

Wiener process agrees well with the empirical distribution. 

Then, we can use the posteriors estimation results to 

inference about the reliability function R(t) at each time t. For 

example, from the posterior estimator summaries, the 

reliability at 4500 hours is 0.6542, its median value is 0.6597 

and its 95% credible interval is (0.4580, 0.8233), 

respectively. 

 

Fig.1 The empirical CDF and the CDF of the laser data. 

B. Comparison with the MLE method 

We use the laser data to compare our methods with the 

work of Peng and Tseng[12], in which the MLE is used to 

obtain the unknown parameters. For comparison, we 

summarize the corresponding estimation results of the 

parameters in the Table III. 

From the Table III, we can find that our estimation results 

are slightly differences from the results in Ref [12]. 

Furthermore, we obtain the PDFs of the lifetime T at the 

different estimation method, as shown in Fig. 2, and the 

corresponding reliability curves are shown in Fig.3. 

 

Fig.2 The PDF curves of the lifetime via different methods 

From Fig. 2, we can see that the PDFs of the estimated 

lifetime for MCMC method and the MLE method have a little 

difference, and the estimated PDF under the MLE method of 

the lifetime covers a wider range, that is to say its uncertainty 

is larger than the MCMC method.  

 

Fig.3 The reliability curves of the lifetime via different methods 

C. Comparison with the lifetime data 

In this section, by using the laser data, we compare the 

degradation data with the lifetime data to confirm that 

degradation data can provide more information about the 

product. When the threshold ξ =10, we can find that there are 

three units (names unit 1, unit 6 and unit 10) failed and the 

lifetime data consist of three interval censored observations 

(3750, 4000), (3500, 3750) and (3250, 3500), respectively. 

Note that the degradation is described by the mixed effect 

Wiener process, and the lifetime distribution is given by the 

Equation (6). A Bayesian analysis method using the same 

priors for μβ, σβ and σB as above, the posterior summaries 

presented in Table IV as follow: 

 

Comparing the Table IV and the Table II, we can find that 

the 95% credible intervals of the unknown parameters under 

the lifetime data are wider than under the degradation data. 

For example, the 95% credible intervals for R(4500) is now 

(0.3395, 0.8705). This illustrates the increased uncertainty as 

compared with those obtained from degradation data.  

TABLE III 

THE ESTIMATION RESULTS VIA DIFFERENT METHODS 

 μβ σβ σB 

MCMC 0.002052 0.0003783 0.01123 

MLE 0.002037 0.0004215 0.01012 

 

TABLE VI 
POSTERIOR ESTIMATOR SUMMARIES BASED ON LIFETIME DATA 

 
Parameter 

 
Mean 

 
SD 

Quantiles 

0.025 0.050 0.500 0.950 0.975 

μβ 

σβ 

σB 

R(4500) 

0.00207 

0.000378 

0.01772 

0.6196 

0.000184 

0.000242 

0.00174 

0.1411 

0.001702 

0.000374 

0.01715 

0.3395 

0.00176 

0.00038 

0.01718 

0.3762 

0.00207 

0.00038 

0.01738 

0.6318 

0.00237 

0.00038 

0.01957 

0.8396 

0.00241 

0.00038 

0.02105 

0.8705 
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D. Comparison with the pseudo lifetime data 

In this section, we compare the degradation data and the 

pseudo lifetime data to verify that degradation data generally 

can provide more information. When the threshold ξ =10, we 

can find that twelve units (names units 2, 3, 4, 5, 7, 8, 9, 11, 

12, 13, 14, 15) do not reach the failure threshold. From Ref 

[1, 16], the pseudo lifetime can be obtained by the failure 

threshold ξ and the rate of degradation intensity μβi. Note that 

the pseudo lifetime distribution is given by the Equation (6). 

Similarly, a Bayesian analysis method using the same priors 

for μβ, σβ and σB as above, the posterior summaries presented 

in Table V as follow: 

Comparing the Table V and the Table II, we can find that 

the 95% credible intervals of the unknown parameters under 

the pseudo lifetime data are wider than under the degradation 

data. For example, the 95% credible intervals for R(4500) is 

now (0.44665, 0.8233). This also illustrates the increased 

uncertainty under the pseudo lifetime data.  

V. CONCLUSION 

In this paper, we have shown that the degradation data can 

be modeled by a Wiener process model with mixed effects, 

and we illustrate the advantages to assess reliability via 

degradation data. By using the Bayesian MCMC approach, 

the unknown parameters of the complicated degradation 

model can be obtained and the corresponding reliability 

assessment is carried out. At last, a numerical example about 

laser data is given to demonstrate that degradation data can 

provide more information about the product than lifetime 

data and pseudo lifetime data. 
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TABLE V 

POSTERIOR ESTIMATOR SUMMARIES BASED ON PSEUDO LIFETIME DATA 

 
Parameter 

 
Mean 

 
SD 

Quantiles 

0.025 0.050 0.500 0.950 0.975 

μβ 

σβ 

σB 

R(4500) 

0.002004 

0.000378 

0.0267 

0.6506 

0.000139 

0.000002 

0.009887 

0.0907 

0.001726 

0.000374 

0.01701 

0.44665 

0.001778 

0.000375 

0.01717 

0.4983 

0.002009 

0.000378 

0.0249 

0.6537 

0.002234 

0.000382 

0.04478 

0.7954 

0.002272 

0.000383 

0.04963 

0.8233 
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