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Abstract—In this paper, for solving generalized linear frac-
tional programming (GLFP), a new branch-and-reduce ap-
proach is presented. Firstly, an equivalent problem (EP) of
GLFP is given; then, a new linear relaxation technique is
proposed; finally, the problem EP is reduced to a sequence
of linear programming problems by using the new linear
relaxation technique. Meanwhile, to improve the convergence
speed of our algorithm, two reducing techniques are presented.
The proposed algorithm is proved to be convergent, and some
experiments are provided to show its feasibility and efficiency.

Index Terms—Linear relaxation; Global optimization; Gen-
eralized linear fractional programming; Reducing technique;
Branch and bound.

I. INTRODUCTION

THIS paper considers the following generalized linear
fractional programming (GLFP) problem:

GLFP

 min
p∑

i=1

n∑
j=1

cijxj+di

n∑
j=1

eijxj+fi

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b},

where p ≥ 2, A ∈ Rm×n, b ∈ Rm, cij , di, eij , fi are
arbitrary real numbers, D is bounded with intD ̸= ∅, and

for ∀x ∈ D,
n∑

j=1

eijxj + fi ̸= 0, i = 1, · · · , p, j = 1, · · · , n.

Among fractional programming, the problem GLFP is a
special class of optimization problems, which has attracted
the interest of practitioners for many years. The main reason
is that many applications in various fields can be put into the
form GLFP, including transportation scheme, manufacturing,
economic benefits, and multi-objective bond portfolio [1-5],
etc.

In addition, since the problem GLFP may be not
(quasi)convex, it may has multiple local optimal solutions,
and many of which fail to be globally optimal, that is, the
problem GLFP posses significant theoretical and computa-
tional difficulties. So, it also has attracted the interest of many
researchers.

During the past years, for x ∈ D, with the assumption that
n∑

j=1

cijxj+di ≥ 0,
n∑

j=1

eijxj+fi > 0, many algorithms have
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been presented for solving special cases of problem GLFP.
For example, when p = 1, by using variable transformation,
Charnes and Cooper proposed a method [6]. When p = 2,
Konno et al. proposed an effective parametric algorithm
[7], which can be used to solve large scale problem. When
p = 3, Konno and Abe developed a heuristic algorithm[8].
When p ≥ 3, through utilizing an updated objective function
method, Bitran and Novaes presented an approach, which
solves a sequence of linear programming problems depend-
ing on updating the local gradient of the fractional objective
function at successive points [9]. By using an equivalent
transformation and a linearization technique, Shen and Wang
proposed a branch and bound algorithm for solving a sum
of linear ratios problem with coefficients [10]. Dur et al.
introduced the algorithm (DMIHR) and applied it to the
class of fractional optimization problem [11]. By adopting
monotonic transformation technique, Shen et al. proposed
a method to solve quadratic ratios fractional program [12].
By using the characteristics of exponential and logarithmic
functions, Wang et al. presented a twice linearization tech-
nique [13]. Through using suitable transformation, Benson
proposed a method, which has a potential to solve GLFP by
some well known techniques [14]. By solving an equivalent
concave minimum problem of the original problem, Benson
put forward a new branch and bound algorithm [15]. Under

the assumption that
n∑

j=1

cijxj + di ≥ 0,
n∑

j=1

eijxj + fi ̸= 0,

a branch and bound algorithm was developed [16]. Recently,
two global optimization algorithms were proposed for solv-

ing GLFP with the only assumption that
n∑

j=1

eijxj + fi ̸= 0

[17,18].
The goal of this research has two-fold. First, we present

a new linear relaxation method. Second, in order to improve
the convergence speed of our algorithm, two reducing tech-
niques are proposed, which can be used to eliminate the
region in which the global minimum solution of GLFP does
not exist.

The main features of this algorithm are (1) the model
considered by this paper has a more general form, which only

request
n∑

j=1

eijxj+fi ̸= 0; (2) a new linear relaxation method

is proposed in order to obtain a lower bound for the global
optimal value of problem EP over partitioned subsets, which
is more convenient in the computation than the methods
[10,14,18]; (2) two reducing techniques are presented, which
can be used to improved the convergence speed of the
proposed algorithm; (3) numerical experiments are given to
show the feasibility and efficiency of our algorithm.

This paper is structured as follows. In Section 2, an
equivalent problem EP of problem GLFP is derived. In
Section 3, a new linear relaxation technique is presented for
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generating the linear relaxation programming problem LRP
of problem EP, which can provide a lower bound for the
optimal value of problem EP. In order to improve the con-
vergence speed of our algorithm, two reducing techniques are
presented in Section 4. In Section 5, the global optimization
algorithm is described, and the convergence of this algorithm
is established. Numerical results are reported to show the
feasibility and efficiency of our algorithm in Section 6.

II. EQUIVALENT PROBLEM (EP) OF GLFP

In problem GLFP, for ∀x ∈ D, since
n∑

j=1

eijxj + fi ̸=

0, by the intermediate value theorem, we have
n∑

j=1

eijxj +

fi > 0 or
n∑

j=1

eijxj + fi < 0. In addition, through using

the techniques of [15,16],
n∑

j=1

cijxj + di ≥ 0 always can be

satisfied. Therefore, without loss of generality, we assume

that
n∑

j=1

cijxj + di ≥ 0 always holds.

For ∀x ∈ D, let

I+ = {i |
n∑

j=1

eijxj + fi > 0, i = 1, · · · , p},

I− = {i |
n∑

j=1

eijxj + fi < 0, i = 1, · · · , p}.

Compute l0j = min
x∈D

xj , u0
j = max

x∈D
xj(j =

1, · · · , n), and define rectangle H0 = [l0, u0]. Further-
more, we compute y0

i
= 1

n∑
j=1

max{eij l0j ,eiju0
j}+fi

, y0i =

1
n∑

j=1

min{eij l0j ,eiju0
j}+fi

, i = 1, · · · , p, and construct rect-

angle Y 0 = [y0, y0]. Through introducing new variables
yi(i = 1, · · · , p), the problem GLFP can be converted into
an equivalent problem EP as follows:

EP(H 0 )



v(H0) = minφ0(x, y) =
p∑

i=1

yi(
n∑

j=1

cijxj + di)

s.t. φi(x, y) = yi(
n∑

j=1

eijxj + fi) ≥ 1, i ∈ I+,

φi(x, y) = yi(
n∑

j=1

eijxj + fi) ≤ 1, i ∈ I−,

x ∈ D
∩

H0, y ∈ Y 0.

The key equivalence result for problem GLFP and EP(H0)
is given by the following theorem.

Theorem 1 If (x∗, y∗) is a global optimal solution of
problem EP(H0), then x∗ is a global optimal solution of
problem GLFP. Conversely, if x∗ is a global optimal solution
of problem GLFP, then (x∗, y∗) is a global optimal solution
of problem EP(H0), where y∗i = 1

n∑
j=1

eijx∗
j+fi

, i = 1, · · · , p.

Proof. From the definitions of problems GLFP and
EP(H0), the conclusion can be obtained easily, so it is
omitted.

By Theorem 1, in order to globally solve problem GLFP,
we may solve problem EP(H0) instead. Therefore, in the fol-
lowing we only consider how to solve the problem EP(H0).

III. LINEAR RELAXATION PROGRAMMING (LRP)
PROBLEM

Let H = {x | l ≤ x ≤ u} denote the initial box H0 or
modified box as defined for some partitioned subproblem in
a branch and bound scheme. This section will show how to
construct the problem LRP for problem EP over H .

For convenience in expression, let

T c+
i = {j | ci,j > 0, j = 1, · · · , n},

T c−
i = {j | ci,j < 0, j = 1, · · · , n},

T e+
i = {j | ei,j > 0, j = 1, · · · , n},

T e−
i = {j | ei,j < 0, j = 1, · · · , n}.

To derive the problem LRP of problem EP, for i =
1, · · · , p, we first compute y

i
= 1

n∑
j=1

max{eij lj ,eijuj}+fi

,

yi = 1
n∑

j=1

min{eij lj ,eijuj}+fi

, and consider the term xjyi in

the interval [lj , uj ] and [y
i
, yi]. Since xj−lj ≥ 0, yi−y

i
≥ 0,

we have
(xj − lj)(yi − y

i
) ≥ 0,

that is
xjyi − xjyi − ljyi + ljyi ≥ 0.

Furthermore, we have

xjyi ≥ xjyi + ljyi − ljyi. (1)

Meanwhile, since xj − lj ≥ 0, yi − yi ≤ 0, we have

(xj − lj)(yi − yi) ≤ 0,

Furthermore, we can obtain

xjyi ≤ xjyi + ljyi − ljyi. (2)

Based on (1) and (2), we can derive the problem LRP of
problem EP. Towards this end, first, consider the objective
function φ0(x, y), we have

φ0(x, y) =
p∑

i=1

yi(
n∑

j=1

cijxj + di)

=
p∑

i=1

(
∑

j∈T c+
i

cijxjyi +
∑

j∈T c−
i

cijxjyi) +
p∑

i=1

diyi

≥
p∑

i=1

(
∑

j∈T c+
i

cij(xjyi + ljyi − ljyi)

+
∑

j∈T c−
i

cij(xjyi + ljyi − ljyi)) +
p∑

i=1

diyi

= φl
0(x, y).

φ0(x, y) =
p∑

i=1

yi(
n∑

j=1

cijxj + di)

=
p∑

i=1

(
∑

j∈T c+
i

cijxjyi +
∑

j∈T c−
i

cijxjyi) +
p∑

i=1

diyi

≤
p∑

i=1

(
∑

j∈T c+
i

cij(xjyi + ljyi − ljyi)

+
∑

j∈T c−
i

cij(xjyi + ljyi − ljyi)) +
p∑

i=1

diyi

= φu
0 (x, y).
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Then, consider the constraint functions φi(x, y), i =
1, · · · , p. For i ∈ I+i , by using (1) and (2), we have

φi(x, y) =
n∑

j=1

eijxjyi + fiyi

≤
∑

j∈T e+
i

eij(xjyi + ljyi − ljyi)

+
∑

j∈T e−
i

eij(xjyi + ljyi − ljyi) + fiyi = φu
i (x, y).

(3)

For i ∈ I−i , we have

φi(x, y) =
n∑

j=1

eijxjyi + fiyi

≥
∑

j∈T e+
i

eij(xjyi + ljyi − ljyi)

+
∑

j∈T e−
i

eij(xjyi + ljyi − ljyi) + fiyi = φl
i(x, y).

(4)

From the above discussion, the linear relaxation program-
ming problem LRP can be established as follows, which
provides a lower bound for the optimal value v(H) of
problem EP(H):

LRP(H )


LB(H) = min φl

0(x, y)
s.t. φu

i (x, y) ≥ 1, i ∈ I+,
φl
i(x, y) ≤ 1, i ∈ I−,

x ∈ D
∩

H, y ∈ Y = [y, y].

Obviously, if H ⊆ H ⊆ H0, then LB(H) ≥ LB(H).

IV. REDUCING TECHNIQUE

To improve the convergence speed of this algorithm, we
present two reducing techniques, which can be used to
eliminate the region in which the global optimal solution
of problem EP(H0) does not exist.

Assume that UB and LB are the current known upper
bound and lower bound of the optimal value v(H0) of the
problem EP(H0). Let

αj =
p∑

i=1

ξi, where ξi =

{
cijyi, if cij > 0,

cijyi, if cij < 0,

βi =
n∑

j=1

cij lj + ei,

Λ1 = −
p∑

i=1

(
∑

j∈T c+
i

cij ljyi +
∑

j∈T c−
i

cij ljyi),

Ω1 =
p∑

i=1

min{βiyi, βiyi},

γk = UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Ω1 − Λ1,

θj =
p∑

i=1

ηi, where ηi =

{
cijyi, if cij > 0,
cijyi, if cij < 0,

Λ2 = −
p∑

i=1

(
∑

j∈T c+
i

cij ljyi +
∑

j∈T c−
i

cij ljyi),

Ω2 =
p∑

i=1

max{βiyi, βiyi},

τk = LB −
n∑

j=1,j ̸=k

max{θj lj , θjuj} − Ω2 − Λ2,

The reducing techniques are derived as in the following
theorems.

Theorem 2 For any subrectangle H ⊆ H0 with Hj =
[lj , uj ], if there exists some index k ∈ {1, 2, · · · , n} such that
αk > 0 and γk < αkuk, then there is no globally optimal

solution of problem EP(H0) over H1; if αk < 0 and γk <
αklk, for some k, then there is no globally optimal solution
of problem EP(H0) over H2, where

H1 = (H1
j )n×1 ⊆ H, with H1

j =

{
Hj , j ̸= k,
( γk

αk
, uk]

∩
Hk, j = k,

H2 = (H2
j )n×1 ⊆ H, with H2

j =

{
Hj , j ̸= k,
[lk, γk

αk
)
∩

Hk, j = k.

proof First, we show that for all x ∈ H1, φ0(x, y) >
UB. Consider the kth component xk of x. Since xk ∈
( γk

αk
, uk], it follows that

γk
αk

< xk ≤ uk.

From αk > 0, we have γk < αkxk. For all x ∈ H1, by the
above inequality and the definition of γk, it implies that

UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Ω1 − Λ1 < αkxk,

that is

UB <
n∑

j=1,j ̸=k

min{αj lj , αjuj}+ αkxk +Ω1 + Λ1

≤
n∑

j=1

αjxj +
p∑

i=1

βiyi + Λ1 = φl
0(x, y).

Thus, for all x ∈ H1, we have φ0(x, y) ≥ φl
0(x, y) > UB ≥

v(H0), i.e. for all x ∈ H1, φ0(x, y) is always greater than
the optimal value v(H0) of the problem EP(H0). Therefore,
there can not exist globally optimal solution of problem
EP(H0) over H1.

For all x ∈ H2, if there exists some k such that αk < 0 and
γk < αklk, from arguments similar to the above, it can be
derived that there is no globally optimal solution of problem
EP(H0) over H2

Theorem 3 For any subrectangle H ⊆ H0 with Hj =
[lj , uj ], if there exists some index k ∈ {1, 2, · · · , n} such
that θk > 0 and τk > θklk, then there is no globally optimal
solution of problem EP(H0) over H3; if θk < 0 and τk >
θkuk, for some k, then there is no globally optimal solution
of problem EP(H0) over H4, where

H3 = (H3
j )n×1 ⊆ H, with H3

j =

{
Hj , j ̸= k,
[lk, τk

θk
)
∩
Hk, j = k,

H4 = (H4
j )n×1 ⊆ H, with H4

j =

{
Hj , j ̸= k,
( τkθk , uk]

∩
Hk, j = k.

proof First, we show that for all x ∈ H3, φ0(x, y) <
LB. Consider the kth component xk of x. By the assumption
and the definitions of θk and τk, we have

lk ≤ xk <
τk
θk

.

Note that θk > 0, we have τk > θkxk. For all x ∈ H3, by
the above inequality and the definition of τk, it implies that

LB >
n∑

j=1,j ̸=k

max{θj lj , θjuj}+ θkxk +Ω2 + Λ2

≥
n∑

j=1

θjxj +
p∑

i=1

βiyi + Λ2 = φu
0 (x, y) ≥ φ0(x, y).
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Thus, for all x ∈ H3, we have v(H0) ≥ LB > φ0(x, y).
Therefore, there can not exist globally optimal solution of
problem EP(H0) over H3.

For all x ∈ H4, if there exists some k such that θk < 0 and
τk < θkuk, from arguments similar to the above, it can be
derived that there is no globally optimal solution of problem
EP(H0) over H4

V. ALGORITHM AND ITS CONVERGENCE

In this section, based on the former results, we present
the branch and bound algorithm to solve problem EP(H0).
This method need to solve a sequence of linear relaxation
programming problems over partitioned subsets of H0 in
order to find a global optimal solution.

A. Branching rule

During each iteration of the algorithm, the branching
process creates a more refined partition that cannot yet be
excluded from further consideration in searching for a global
optimal solution for problem EP(H0), which is a critical
element in guaranteeing convergence. This paper chooses
a simple and standard bisection rule, which is sufficient to
ensure convergence since it drives the intervals shrinking to
a singleton for all the variables along any infinite branch of
the branch and bound tree.

Consider any node subproblem identified by rectangle
H = {x ∈ Rn | lj ≤ xj ≤ uj , j = 1, · · · , n} ⊆ H0.
The branching rule is as follows:

(i) let k = argmax{lj − uj | j = 1, · · · , n};
(ii) let πk = (lk + uk)/2;
(iii) let

H1 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, lk ≤ xk ≤ πk},
H2 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, πk ≤ xk ≤ uk}.

Through using this branching rule, the rectangle H is
partitioned into two subrectangles H1 and H2.

B. Branch and bound algorithm

Based upon the results and operations given above, this
subsection summarizes the basic steps of the proposed algo-
rithm.

Let LB(Hk) be the optimal function value of LRP over
the subrectangle H = Hk, and (xk, yk) be an element of the
corresponding argmin.

Algorithm statement
Step 1. Choose ϵ ≥ 0. Find an optimal solution x0 and

the optimal value LB(H0) for problem LRP(H) with H =
H0. Set LB0 = LB(H0), y0i = 1

n∑
j=1

eijx0
j+fi

, i = 1, · · · , p,

and UB0 = φ0(x
0, y0). If UB0 − LB0 ≤ ϵ, then stop:

(x0, y0) and x0 are ϵ-optimal solutions of problems EP(H0)
and GLFP, respectively. Otherwise, set Q0 = {H0}, F =
∅, k = 1, and go to Step 2.

Step 2. Set LBk = LBk−1. Subdivide Hk−1 into two
subrectangles Hk,1, Hk,2 via the branching rule. Set F =
F
∪
{Hk−1}.

Step 3. Set t = t + 1. If t > 2, go to Step 5. Otherwise,
continue.

Step 4. If LB(Hk,t) > UBk, set F = F
∪
{Hk,t}, and

go to Step 3. Otherwise, set

yk,ti =
1

n∑
j=1

eijx
k,t
j + fi

, i = 1, · · · , p.

Let UBk = min{UBk, φ0(x
k,t, yk,t)}. If UBk =

φ0(x
k,t, yk,t), set xk = xk,t, yk = yk,t, go to Step 3.

Step 5. Set

F = F
∪
{H ∈ Qk−1 | UBk ≤ LB(H)},

Qk = {H | H ∈ (Qk−1

∪
{Hk,1,Hk,2}),H /∈ F}.

Step 6. Set LBk = min{LB(H) | H ∈ Qk}. Let Hk

be the subrectangle which satisfies that LBk = LB(Hk). If
UBk −LBk ≤ ϵ, stop, (xk, yk) and xk are global ϵ-optimal
solutions of problems EP(H0) and GLFP, respectively. Oth-
erwise, set k = k + 1, and go to Step 2.

C. Convergence analysis

In this subsection, we give the global convergence prop-
erties of the above algorithm.

Theorem 4 The above algorithm either terminates finite-
ly with a globally ϵ-optimal solution, or generates an infinite
sequence {(xk, yk)} of iteration such that along any infinite
branch of the branch and bound tree, which any accumulation
point is a globally optimal solution of problem EP(H0).

Proof When the algorithm is finite, by the algorithm, it
terminates at some step k ≥ 0. Upon termination, it follows
that

UBk − LBk ≤ ϵ.

From Step 1 and Step 6 in the algorithm, a feasible solution
(xk, yk) for the problem EP(H0) can be found, and the
following relation holds

φ0(x
k, yk)− LBk ≤ ϵ.

By Section 3, we have

LBk ≤ v(H0).

Since (xk, yk) is a feasible solution of problem EP(H0),
φ0(x

k, yk) ≥ v(H0). Taken together above, it implies that

v(H0) ≤ φ0(x
k, yk) ≤ LBk + ϵ ≤ v(H0) + ϵ,

and so (xk, yk) is a global ϵ-optimal solution to the problem
EP(H0) in the sense that

v(H0) ≤ φ0(x
k, yk) ≤ v(H0) + ϵ.

If the algorithm is infinite, then an infinite sequence
{(xk, yk)} will be generated. Since the feasible region of
EP(H0) is bounded, the sequence {(xk, yk)} must be has
a convergence subsequence. Without loss of generality, set
lim
k→∞

(xk, yk) = (x∗, y∗), then we have

lim
k→∞

yki = y∗i = 1
n∑

j=1

eijx∗
j+fi

,

lim
k→∞

(
n∑

j=1

cijx
k
j + di) =

n∑
j=1

cijx
∗
j + di.
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Furthermore, we have

lim
k→∞

UBk = lim
k→∞

φ0(x
k, yk) = φ0(x

∗, y∗),

lim
k→∞

LBk = lim
k→∞

(
p∑

i=1

(
∑

j∈T c+
i

cij(x
k
j yi + ljy

k
i − ljyi)

+
∑

j∈T c−
i

cij(x
k
j yi + ljy

k
i − ljyi) +

p∑
i=1

diy
k
i

=
p∑

i=1

n∑
j=1

cijx
∗
j+di

n∑
j=1

eijx∗
j+fi

= φ0(x
∗, y∗).

Therefore, we have lim
k→∞

(UBk − LBk) = 0.

This implies that (x∗, y∗) is a global optimal solution of
problem EP(H0). By Theorem 1, x∗ is a global optimal
solution of problem GLFP.

VI. NUMERICAL EXPERIMENTS

In this section, to verify the performance of the pro-
posed algorithm, some numerical experiments are reported,
and compared with several latest algorithms[10,13,17-20].
The algorithm is implemented by Matlab 7.1, and all test
problems are carried out on a Pentium IV (3.06 GHZ)
microcomputer. The simplex method is applied to solve the
linear relaxation programming problems.

The results of problems 1-7 are summarized in Table I,
where the following notations have been used in row headers:
ϵ: convergence error; Iter: number of algorithm iterations.

Table II summarizes our computational results of Example
8. For this test problem, ϵ is set to 1e−3. In Table II, Ave.Iter
represents the average number of iterations; Ave.Time stands
for the average CPU time of the algorithm in seconds, which
are obtained by randomly running our algorithm for 10 test
problems.

Example 1[18]

max 0.9× −x1 + 2x2 + 2

3x1 − 4x2 + 5
+ (−0.1)× 4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 2[13,18,19]

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Example 3[20]

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 4[19,20]

max
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

+
4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50
s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5[10]

max
63x1 − 18x2 + 39

13x1 + 26x2 + 13
+

13x1 + 26x2 + 13

37x1 + 73x2 + 13

+
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

13x1 + 13x2 + 13

63x1 − 18x2 + 39
s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 6[10]

max
3x1 + 4x2 + 50

3x1 + 5x2 + 4x3 + 50
− 3x1 + 5x2 + 3x3 + 50

5x1 + 5x2 + 4x3 + 50

−x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
− 4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 7[17]

max
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 16x2 + 39

13x1 + 26x2 + 13
s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 8

min
p∑

i=1

n∑
j=1

cijxj+di

n∑
j=1

eijxj+fi

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b},

where the elements of the matrix A ∈ Rm×n, cij , ei,j ∈ R
are randomly generated in the interval [0,1]. All constant
terms of denominators and numerators are the same number,
which randomly generated in [1,100]. The elements of b ∈
Rm are equal to 1. This agrees with the way random numbers
are generated in [13].

TABLE I: Computational results of Examples 1-7

Example ϵ Methods Optimal solution Optimal value Iter
1 1e-9 [18] (0.0, 1.0) 3.575 1

1e-9 ours (0.0, 1.0) 3.575 1
2 1e-6 [13] (1.1111, 1.365e-5, 1.351e-5) 4.081481 39

1e-5 [20] (0.0013, 0.0, 0.0) 4.087412 1640
1e-9 [18] (1.1111, 0.0, 0.0) 4.0907 1289
1e-9 ours (1.1111, 0.0, 0.0) 4.0907 28

3 1e-8 [20] (0.0, 0.283935547) 1.623183358 71
1e-8 ours (0.0, 0.283935547) 1.623183358 65

4 1e-5 [19] (0.0, 1.6725, 0.0) 3.0009 1033
1e-8 [20] (0.0, 3.3333, 0.0) 3.00292 119
1e-8 ours (0.0, 3.3333, 0.0) 3.00292 77

5 1e-6 [10] (3.0, 4.0) 3.2917 9
1e-6 ours (3.0, 4.0) 3.2917 8

6 1e-6 [10] (-1.838e-16, 3.3333, 0.0) 1.9 8
1e-6 ours (0.0, 3.3333, 0.0) 1.9 8

7 1e-4 [17] (3.0, 4.0) 5.0 32
1e-4 ours (3.0, 4.0) 5.0 20

From Table I, it can be seen that, for Examples 1-7,
our algorithm can determine the global optimal solution
effectively than that of the references [10,13,17-20].
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TABLE II: Computational results of Example 8

(p,m, n) Ave.Time Ave.Iter
(5,30,30) 0.1534 2.6

(5,50,50) 0.30 2.8

(5,100,100) 2.7641 3.4

(10,30,30) 0.1890 2.9

(10,50,50) 0.4329 4.6

(10,100,100) 3.2490 6.2

From Table II, the computational results show that our
algorithm performs well on the test problems, and can solve
them in a reasonable amount of time. Meanwhile, we find
that, with the size of the problem becoming large, the average
number of iterations and the average CPU time do not
increase quickly.

The results in Tables I and II show that our algorithm is
both feasible and efficient.

REFERENCES

[1] H. Konno, H. Watanabe, ”Bond portfolio optimization problems and
their applications to index tracking: a partial optimization approach,”
Journal of the Operations Research Society of Japan, vol. 39, no.3, pp
295-306, 1996.

[2] J. E. ,Falk, S. W. , Palocsay, ”Optimizing the sum of linear frac-
tionalfunctions,in Recent Advancesin Global Optimization,” Princeton
University Press,Princeton, NJ, USA, 1992.

[3] R. Horst, P. M. Pardalos, N. V. Thoai, ”Introduction to Global
Optimization,” Kluwer Academic Publishers, Dordrecht, Netherlands,
2nd edition, 2000.

[4] X. J. Wang, S. H. Choi, ”Optimisation of stochastic multi-
item manufacturing for shareholder wealth maximisation,” Engineering
Letters, Vol. 21, no. 3, pp 127-136, 2013.

[5] T. Hasuike, H. Katagiri, ”Sensitivity analysis for random fuzzy port-
folio selection model with investor′s subjectivity,” IAENG International
Journal of Applied Mathematics, vol. 40, no.3, pp 185-189, 2010.

[6] A. Charnes, W. W. Cooper, ”Programs with linear fractional functions,”
Naval Research Logistics Quarterly, vol. 9, no. 3-4, pp 181-196, 1962.

[7] H. Konno, Y. Yajima, T. Matsui, ”Parametric simplex algorithms for
solving a special class of nonconvex minimization problems,” Journal
of Global Optimization, vol. 1, no. 1, pp 65-81, 1991.

[8] H. Konno, N. Abe. ”Minimization of the sum of three linear fractional
functions,” Journal of Global Optimization, vol. 15, no. 4, pp 419-432,
1999.

[9] G. R. Bitran, A. G. Novaes, ”Linear programming with a fractional
objective function,” Operations Research, vol. 21, no. 1, pp 22-29, 1973.

[10] P. P. Shen, C. F. Wang. ”Global optimization for sum of linear ratios
problem with coeicients,” Applied Mathematics and Computation, vol.
176, no. 1, pp 219-229, 2006.

[11] M. Dur, C. Khompatraporn, Z. B. Zabinsky, ”Solving fractional
problems with dynamic multistart improving hit-and-run,” Annals of
Operations Ressearch, vol. 156, no. 1, pp 25-44, 2007.

[12] P. P. Shen, Y. C. Chen,Y. Ma, ”Solving sum of quadratic ratios
fractional programs via monotonic function,” Applied Mathematics and
Computation, vol. 212, no. 1, pp 234-244, 2009.

[13] Y. J. Wang, P. P. Shen, Z. A. Liang, ”A branch-and-bound algorithm
to globally solve the sum of several linear ratios,” Applied Mathematics
and Computation, vol. 168, no. 1, pp 89-101, 2005.

[14] H. P. Benson, ”On the global optimization of sums of linear fractional
functions over a convex set,” Journal of Optimization Theory and
Application, vol. 121, no. 1, pp 19-39, 2004.

[15] H. P. Benson, ”Solving sum of ratios fractional programs via concave
minimization,” Journal of Optimization Theory and Application, vol.
135, no. 1, pp 1-17, 2007.

[16] Y. Ji, K. C. Zhang, S. J. Qu, ”A deterministic global optimization
algorithm,” Applied Mathematics and Computation, vol. 185, no. 1, pp
382-387, 2007.

[17] C. F. Wang, P. P. Shen, ”A global optimization algorithm for linear
fractional programming,” Applied Mathematics and Computation, vol.
204, no. 1, pp 281-287, 2008.

[18] H. J. Jiao, S. Y. Liu, ”A practicable branchand bound algorithm
forsum of linear ratios problem,” European Journal of Operational
Research, vol. 243, no. 3, pp 723-730, 2015.

[19] Y. G. Pei, D. T. Zhu, ”Global optimization method for maximizing the
sum of difference of convex functions ratios over nonconvex region,”
Journal of Applied Mathematics and Computing, vol. 41, no. 1, pp
153-169, 2013.

[20] H. J. Jiao, ”A branch and bound algorithm for globally solving a class
of nonconvex programming problems,” Nonlinear Analysis: Theory,
Methods and Applications, vol. 70, no. 2, pp 1113-1123, 2009.

Engineering Letters, 25:3, EL_25_3_06

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 




