Engineering Letters, 25:4, EL._25 4 11

Adaptive Complex Modified Projective

Synchronization of Two Fractional-order

Complex-variable Chaotic Systems with
Unknown Parameters

Xiaomin Tian, Zhong Yang

Abstract—In this paper, the complex modified projective
synchronization (CMPS) of two different fractional-order
chaotic complex systems with unknown parameters is firstly
investigated. We assume that the slave system is perturbed by
external disturbances. The master and slave systems achieved
CMPS can be synchronized up to a complex scaling matrix. On
the basis of a novel stability theory, a robust adaptive control
law is designed to realize the CMPS for two different
fractional-order chaotic complex systems. Meanwhile, to deal
with these unknown parameters, some fractional-order type
update laws are provided. The CMPS can be regarded as the
generalization of several types of synchronization reported in
existing literatures. Simulation results are given to verify the
effectiveness and feasibility of the proposed synchronization
scheme.

Index Terms—Complex modified projective synchronization,
Fractional-order chaotic complex system, Adaptive control,
Fractional-order type update law

I. INTRODUCTION

Ithough fractional calculus is a mathematical topic with
more than 300 years history, its applications in the fields
of physics and engineering have attracted lots of attentions
only in the recent years. It was found that, with the help of
fractional calculus, many systems in interdisciplinary fields
can be described more accurately, such as viscoelastic system
[1], dielectric polarization [2], electrode-electrolyte
polarization [3], finance systems and electromagnetic waves
[4]. That is to say, fractional calculus provides a superb
instrument for the description of memory and hereditary
properties of various materials and processes. Many
literatures have proven that some fractional-order differential
systems can behave chaotically, e.g., the fractional-order
Duffing system [5], fractional-order Chen-Lee system [6],
fractional-order Lorenz system [7], fractional-order
hyperchaotic Chen system [8], fractional-order Qi system [9],
and so on.
The research on chaotic systems has grown significantly
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over past decades and has become a popular topic. For
example, Gyorgyi [10] calculated the entropy in the chaotic
systems. Steeb et al. [11] applied the maximum entropy
formalism into the study of chaotic systems. Aghababa [12]
used the finite-time theory to realize the finite-time
synchronization of chaotic systems. Lu [13] developed a
nonlinear observer to synchronize the chaotic systems. Chen
et al. [14,15] researched the chaos synchronization of
fractional-order chaotic neural network.

However, all of aforementioned researches only focus on
the systems with real variables, while chaotic complex
systems are not involved. In practical, chaotic complex
systems can be widely used to describe a variety of physical
phenomenon such as population inversion [16], detuned laser
systems [17], thermal convections of liquid flows [18], etc. At
present, some control schemes [19-24] have been proposed to
synchronize two chaotic systems with complex variables. It is
should be noted that all of chaotic complex nonlinear systems
in above mentioned literatures are integer-order systems. So,
it is a challenging and meaningful problem for researchers to
realize the synchronization of fractional-order chaotic
complex nonlinear systems. Recently, Luo et al. [25,26]
firstly studied the dynamic properties of fractional-order
complex Lorenz and fractional-order complex Chen systems.
Liu et al. [27] researched the control and synchronization of
fractional-order complex T system. But, in [25-27], the
system parameters are assumed to be known for the
synchronization of two identical fractional-order chaotic
complex systems. As a matter of fact, many systems’
parameters cannot be exactly known in advance. The
synchronization will be not achieved under the effect of
unknown uncertainties. Therefore, it is urgent to consider the
influence of unknown parameters in synchronizing two
chaotic complex systems.

On the other hand, in many practical systems, the master
(drive) system and slave (response) system may evolve in
different directions with a constant intersection angle. Thus,
the modified projective synchronization with respect to a
complex scaling matrix, namely, the complex modified
projective synchronization (CMPS) should be taken into
consideration. This kind of CMPS is deemed to be the
generalization of several types of synchronization, such as
complete synchronization (CS) [28], anti-synchronization
(AS) [29], modified projective synchronization (MPS) [30],
and projective synchronization (PS) [31], etc. For this reason,
CMPS of two different chaotic complex systems is more
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essential. To the best of our knowledge, until now, there is no
information available about the CMPS between two different
fractional-order chaotic complex systems with unknown
parameters.

Motivated by the above discussions, in this paper, the
CMPS of two different fractional-order chaotic complex
systems with unknown parameters and external disturbances
is firstly investigated. Inspired by [31], we extend the
theoretical results of [31] to the fractional-order chaotic
complex systems. As we all known that the stability theory of
integer-order nonlinear systems cannot be directly applied to
fractional-order systems, so, we use a novel fractional-order
system’s stability theory to demonstrate the applicability of
the proposed synchronization scheme. It is worth noting that
in [31] the effect of external disturbances is not taken into
account, and the feedback control gains are chosen as fixed
values wherever the initial points start, which result in the
theoretical results in [31] are much conservative. Fortunately,
on the basis of the novel stability theory and fractional-order
adaptive control method, we propose a new adaptive control
law and some parametric update rules to address the above
problems. Therefore, our approach is more meaningful and
practical than that of [31]. We applied this proposed control
scheme, as an example, to research the CMPS between
fractional-order complex Lorenz system and fractional-order
complex Chen system.

The rest structure of this paper is as follows. In Section 2,
the relevant definitions, lemma and description of
n-dimensional fractional-order chaotic complex system are
introduced. In Section 3, the adaptive controller and unknown
parameters update laws are designed in detail. Simulation
results about the CMPS between fractional-order complex
Lorenz system and fractional-order complex Chen system are
provided in Section 4. Finally, conclusions are included in
Section 5.

Il. PRELIMINARIES

A. Definitions and Lemma

The most frequently used definitions for the general
fractional calculus are Riemann-Liouville definition and
Caputo definition.

Definition 1 The « th-order Riemann-Liouville
fractional integration is given by
toltaf(t):i t&dr (1)

T(e) " (t-7)""
where T'(-) is the Gamma function.

Definition 2 For n-1<a<n , neR , the
Riemann-Liouville fractional derivative definition of order
o is defined as
af®y 1 d° f f(T)_ 1dT:CL'nﬂ,f(t)(Z)

dt  T(n-a)dt" % (t—7) ™ dt"

Definition 3 The Caputo fractional derivative definition of
order « is written as

t Dta f (t) =

1 t f(m)(T) )
D”f(t): r(m—a) J.to (t_z.)a—mq dr, m-l<a<m (3)
tp Tt

m

dt™

f(©),

Lemma 1 (see [32, 33]) Consider the autonomous system
D“x = Ax or D*x = f(X) (4)
ae(01] is the

X = (X, X,,..., X )" is the state variable. AeR™ is a

where fractional order and

constant matrix. If there is a real symmetric positive definite
matrix P such that the inequation J =x"PD“x <0 always
holds for any states, then system (4) is asymptotically stable.

For the detailed application of the above lemma in
fractional-order chaotic systems, the reader can refer to Refs.
[32-36].

B. Description of N-dimensional Fractional-order

Chaotic Complex System

Consider a fractional-order chaotic complex system,
described by

Dx=F(X)yw + f(X) (5)

where o € (0,1) is the fractional order of the system.

X=Xy Xy eers xn)T is the state complex vector, and
X=X+ X', X" = (U, Ugy ooy Uy g) "0 X = (U, Uy, ooy Uy )T
j=+-1. F(x) eC™ , and the elements of this matrix are
the functions of state complex variables. y ¢ R™(or eC™) is
the  wvector of  unknown  system parameters.
f=(f, f, .., fn)T is the vector of nonlinear complex
functions. The superscripts I and i represent the real and
imaginary parts of the state complex vector, respectively.
Remark 1 System (5) is the generalization of
fractional-order chaotic complex systems. In this paper, as an
example, the fractional-order complex Lorenz and
fractional-order complex Chen systems are considered, and
both systems can be described by (5).
Take the fractional-order complex Lorenz system as master
system, described by
D%, = a1(X2 - Xl)
DX, = a,X — X, —

XX, (6)

» 1. -
D X3 = E(X1X2 + Xlxz) — X3
and the fractional-order complex Chen system as slave system,
determined by
Dayl = bl(Yz - yl)

ay _ (7
Dy, =(b, b)Yy, = Y,Ys +b,Y,

D%y, =%(>71y2 +¥1¥2) = bsYs
where X, = Uy, + JUpy, s X, = Uy, + ju,,, are complex state
variables, and X; = Ug, is the real state variable of system
(6). Yy, =Uyg+ ju, , Y, =Uy+ ju, are complex state
variables, and Y, = U, is the real state variable of system (7).

The subscripts M and S denote the master and slave systems,
respectively.

Through separating real and imaginary parts of (6) and (7),
two five-dimensional continuous real systems can be obtained
[25, 26], given by
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Daulm = al(uam - ulm)
DaUZm = al(udm — Uy

D“U,,, = a,u,,, — Uy, — U, U ®)
3m 2Y%m ~ Yam ~ YimUsm
DUy = 85Uz — Uy — U Usy,
Dausm = Uy Ugpy + Upp Uy — &3Us,
and
DUy, =D, (Uy, —uy,)
DU, =Dy (Uyg —Uy) 9)

Dau3s = (bz - b1)U1s — UpUsg + bzuss
Dau4s = (bz - b1)u25 — UpsUss + bzu4s
DUy, = Uy Uy + U, U, —boUg
According to the analysis results in [25] and [26],
whena, =10, a, =28, a,=8/3, b =35, b, =28, b, =3,
a =0.998, system (8) and (9) behave chaotically, the
attractors are shown in Fig. 1.

Fig. 1. The 3D projections of chaotic attractors of
system (8) and (9)

I1l. MAIN RESULTS

In this section, a robust adaptive control law and the
parameter adaptation rules are designed to achieve the CMPS
between two different fractional-order chaotic complex
systems with unknown parameters.

According to system (5), the master and slave systems with
unknown parameters can be represented as

Master system:

D“x = D“X" + jDX' = F(X)w + f (X) (10)
Slave system with external disturbances:
D*y=D"y" + jD*y' =G(y)s +g(y) +d(t) +W() (11)

where yeR' , 5eR? are the vectors of unknown
parameters in master system and slave system, respectively,
d(t) = (d,(t), d,(t), ..., d (t))" e R"is the vector of external

W (1) = (W, (), Wy (0), -y W(D)T
W, (1) =w[ + jw, (k=12,..., n) are the controller to be

designed later.
Before introducing our approach, we firstly give the
definition of CMPS.
Definition 4 Consider the master (10) and slave (11)
systems, the error of CMPS is defined as
e=e"+je' =y—Hx
=y —H'X +HX + j(y' —H'X —=H'x")

disturbances, and

(12)

wheree’ = (e, €, ,...6, ) €R" e =(e
H =diag(h, h,, ...,
and h =h/+jh., (k=12,..,n). f e>0a t—>w,
that is

eu2" )T S Rn 1

h,) e C™ is a complex constant matrix,

lim|[e" [=lim||y"—H'X"+H'x' |=0 and
t—o0 t—o0

lim || ¢ = lim || y' ~=H"x' ~H'x []=0 , then the CMPS
between system (10) and (11) is achieved.

Remark 2 It is obvious that when H € R™, CMPS
reduced to MPS, when h =h, =...=h =1, CS s achieved,
when h =h, =...=h =-1, we can get AS.

Our goal in this paper is to design an adaptive controller
and appropriate parametric update laws to achieve CMPS
between master system (10) and slave system (11). To the best
of the authors’ knowledge, so far, there is no information
available in this field.

In order to make the proposed method more reasonable and
effective, an assumption is necessary.

Assumption 1 In general, it is assumed that the external
disturbances d, (t) € R are bounded by

ld, @) <. k=1 2,..,n
where @, are positive constants.

Next, we will design an adaptive controller to achieve
CMPS for two fractional-order chaotic complex systems.
Theorem 1 Consider the master system (10) and slave
system (11), if the controller is designed as
W (1) = Wi (1) + jw ()

W (t) = =Gy (Y)o +(h R () —h R/ (%)) - g: ()
+h £ () —h £ () - & sanCe,,, )

W, (1) = =Gy ()5 + (h{F/ () + he R ()97 — g (¥)

)

(13)

+he fki (x)+ hli f, (X) -7, sgn(e
k=12, ..,n
where sgn is the sign function, G/,

Uzk

li(l Fkrleil g;i gll(l fkri
f) are the ith row vector of G', G', F',F', g", g', f",
f' respectively, h', h, are given constants. & _and 7, are

control gains, which are updated by
D =B ey, |

D=0y le

(14)
o |

in which, g and 5, are positive constants.
The parametric update laws are selected as
Dy =—(HF' () -HF X e -HFX+HF e (15)
D= e +G e

Then the CMPS between master system (10) and slave system
(11) can be achieved.

Proof According to the definition of CMPS, we obtain
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D“e=D“¢" + jD"¢' = D*(y - Hx)= D"y - HD"x
=G(y)5+9(y)+d () +W (1) - H(F(x)w + f(x))
=G ()5 +0" (N +dM)+W M) + (G (VS +a' () +W'@®)
—(H+ HO[F 0w + £ 0+ J(F o + £ ()]
=G (Y)6+g"(y)+d () +W (®) = H"(F () + £'(x)
FHF 0w + £100)+ J[6' (1) + ' () W (1)
—H(F 0y + FF ) HI(F (w + £ ()]

Namely, the real and imaginary parts of complex

synchronization error system (16) can be equivalently
converted to the following real error systems

D, , =Gy (¥)5 +0;(y)+d, (1) + W[ (1) -h; (F (x)p + ; (x))
+h (R 0w+ (%)

D“g,, =Gy ()5 +0, () +W, (1) - h{ (F () + 1, (%))
—h (R () + £ (9))

) (16)

where k=1 2,.., n, H=diag(h, h,, .., h,), h =h + jh, .
Denote 7 =y —y, 6 =5—5 (1 and § are the estimation
of w and O , respectively). Further denote

T=(E", 7,87, ET, 7T) e RM“4+9) where
_((er)T (ei)T) Rb2n

€) =(e, €, 8, )eR™
€) =, .8, e, )eR™"
w' eR™, 5T eR™
&= & &)ERT G =5 -5
7" = 0 o 1,) R B =1 =1,
5;2(pk+1
7 21

Choose a real symmetric positive finite matrix P in the
form of

P:diag(l nHeg? s e — ).
et A B B o1 0, Oy

Then we can construct a function to prove the stability of
the closed-loop system, written as

1 1 1 1 1 1]

J=XTPD*X
That is
J=X"PD*X =(e")" D%" +(e')" D% +«/7TD“1/7+5TD“5
+Z ED¢ +Z D%,
k=1 k k=1 Ok

= ZeuM D, . +Zequ D, +y7 Dy +5 DS

+Z ng §k+z

klk k=1 Ok

7D,

(18)
Inserting (17) into (18), it yields

)= Zeuz [61v)6 + g1 () + 0, (0w, 0) - (R 0w + £ 00+ i (F 0w+ £ 0]
+Zeu“[ei(y)6+ 01(y) )~ (F w00} 0w+ £ 0]

+7'D%+6'D" 5+Z ED" §k+z .07,

klk k=L Ok

(19)

Substituting the control law (13) into (19), we obtain

1=Ye, [6:()@-8)+d, O~ F 0 - 0w —) - & son(e,, )]

k=1

+Zequ [6: ()6 -8)- (0 00+ B Fy 00k ) -, sene, )]

+§ DY +5'D" 5+Z

a By

(& -&)D° ék*Z

klk

-7,)D%n,

(20)
On the basis of the parametric update laws (15), we can
derivate that

Zequ G (Y)(6 - 5)+Zeu2kG (V) -9)

—E)eT(m©- 5)]+(e Yo' (y@-3)]

=@-8cmf e +©E-8"G'ye
=-5'D"8
and
e, FhiF 00 -nFE 0k -] e, F R0+ RF 0l )]
=) [F(HF ) -HF )y -]+ @) [ (HF )+ HF )y )]
=) FHFE-HE®e +@-) [F(HF®+HE )]
—w-9) FHF-HF e -(HF+HF )¢
—-7D
So, substituting the adaptive laws (15) into (20), We obtain
J= zeu ( )= smn(e, uzk] ) Zeuz( 11 SOn(e u"))+2ﬂ (- gk D +2 (1.~ 'h )D°m

Zldk Heuzm‘ szleuu‘l Z'M%NHZ (& ék )D* E+Z

k=1 k=1 Ok

(1 =m)D"7,

(21)
Inserting the update rules (14) of &, , 7, into (21), then
according to Assumption 1, we have

J<Z<ﬂkleu2k.l kaleuml ZmlemHZ(@ fk)leuzkll+2 n-m)le, |
=1 [=)
=Slo-ge,. 1Yl |
(=)

k=L

(22)
Since & >4 +1, 77; >1, so (22) can be further derived as

n n n
e, . = Xle, =-Yle, - Xle, |=—{le I+1€')<0

J SZ(% -p.-1
k1

Owingto J <0, according to Lemma 1, the error system (17)
is asymptotically stable. Consequently, the master system (10)
and slave system (11) can be synchronized up to a complex
matrix. Therefore, the proof is completed.

Remark 3 Apparently, the theoretical results in Refs. [19,
31] are the special cases of our scheme. It is should be noted
that in practical applications, the feedback control gain is
desired as small as possible, however, the theoretical
feedback control gains in [19, 31] are fixed values no matter
where the initial values start, thus the gains must be larger
than the values needed, which means a kind of waste in
practice. In our method, we use an adaptive controller to
overcome the above drawbacks. The control gains &, , 7,
can be automatically adapted to the suitable values, which can
simplify the task of design and reduce the cost of control.

If w and § are two unknown complex parameter vectors,
the y and & can be rewritten as y =y + jy', §=56"+jo' -
Then master system (10) and slave system (11) become

D“x=D“x"+ jD°X =F(X)@" + jy)+f(x)  (23)
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and

D7y = Dy + jDY =G(y)(6" + &) +g(y) +d@®)+w(t) (24)
According to the definition of CMPS, we can obtain the

synchronization error system

D¢ =D"" + jD“' = Dy’ ~H'D“X" + H'D"X' + j(D“y' - H'D“X — H'D"x")
=G'(y)8"=G'(y)6" + 9" (y) +d () +W"(®) = H"(F" ()" = F'(x)y + £'(x))
+H'(F(Xy' + F' (Xy" + () + J[G"(y)d" +G'(¥)8" +'(y) +W'(t)

—HI(F Oy + F'(y "+ £100) = H'(F"(y" = F' (' + £/ ()]
(25)

That is, the real and imaginary parts of (25) can be written
as
D, =Gl(y)8" ~Gy(y)6" + g1 (y) +d, () + W O - h{(F, ()" - K (X' + £ (x))

(R 0w + L O0p” + £ ()
D7, =Gy (y)8' +Gi(y)o" +gL(y)+w, ()~ h{ (R (w' + F (0w + ()
~ (R w" = FLOw' + 1(4)
k=12 ..,n (26)

Similarly, for stabilizing the error system (26), we give the
following theorem.

Theorem 2 Consider the master system (23) and slave
system (24) with unknown complex parameters, if the
controller is designed as
w, (1) = wi () + jwi ()

W, () = -G (15" + G (13" + (WF ()~ hF )" - (R (0 + KR
= 0c(y) + A () = F () — & sone,, )

Wi () =-G{ (1)3' -G ()8 + (L (x)+ L (" + iy () iR ()
=0 (y) + R A0+ hef () —m san(e,,)

(27)
where k=1, 2,..,n. & and p, are control gains, which
are updated by

Dafk =ﬂk le

Uzk-1 |
D =0 |8y, |
where 3, and o, are two positive constants.

The parametric update laws are selected as

DY =—(HF () -HF ) e —(HF' (x)+HF ()¢

DY =(HF )+ HF ) e —(HF () -HF ()¢

DS =(G"(y)) e + (G ()] ¢

D5 = (—G‘(y))T e Jr(G'(y))T e (28)
Then the CMPS between master system (23) and slave system
(24) can be achieved.

Proof It is similar to that of Theorem 1. Limited by the
length of this paper, the proof is omitted here.

Remark 4 It is not hard to see that the synchronization
schemes in [37-39] are also special cases of the proposed
scheme. Therefore the proposed method is applicable to
achieve the CMPS of two integer-order chaotic complex
systems with unknown complex parameters.

In this paper, for simplicity, we take the fractional-order
chaotic complex systems with unknown real parameters as
example to verify the effectiveness of the proposed
synchronization scheme.

IV. SIMULATION RESULTS

In this section, we investigate numerical simulation for the
CMPS of two different fractional-order chaotic complex
systems. Let us take the fractional-order complex Lorenz

system as master system, and the fractional-order complex
Chen system as slave system.

From the generalized form of fractional-order chaotic
complex systems (10) and (11), we get

X-% 0 0 Uy =Uy, 0 0 U=l 00
F)=| 0 x =0y, 0 [+j 0 u, O|=F'(X+jFX

0 0 -x 0 0 -ug, 0 0 0
Y-y, 0 0 Uy, Uy 0 0 Uy = Uy 0 0
G(y)—[ -y, Vit+y, O J—[ —U  Ug+u, 0 }j[ Uy Uy Uy, 0}—G’(y)+jG(y)
0 0 -y, 0 0 -u, 0 0 0
0 0 0
=] =% =XX |=| —Ugpy—Uplsy ]"' J[_ Usm _UZWUSMJ =7 (x)+ jf'(x)
7(¥1X2 +X1i2) UsgyUsg + Upp Uy 0

a(y) =

_y1y3 = _u15u55 + ] _u25u55 = gr(y)+ ng(y)
%(yiyz + Y1yz) UygUsg +UpgUyg 0

h by
yv=|a,| 6=|h,
3, b

In this study, disturbances d, (t)=0.5cos(t) » k=1, 2, 3 are
attached to the slave system. The complex matrix
H =diag(h,, h,, h,), and h =h' + jh/, h, =h} + jh} are two
complex constants, h, is a real constant.

The adaptive controller designed by Theorem 1 as
Wy = _61(u35 = Uy ) +a[h (Usy, —Uy,) = h1I (Upy —Up)] =&, Sgn(eul)
W = b, (U, —Uze) + AT (U —Up) 1] (U, — Uy )] = 750N(e,,)
WzIr = 61“15 - 62 (uls + USS) + é2 (h2ru1m - h;u2m) + UgUsg

+ hzr (_uam - ulmu5m) - h; (_u4m - u2mu5m) - 52 sgn(eUB)
Wiz = t31”25 - tA)z (Uyg +U,.) + 8, (hyuy, + h;ulm) +UyUs
+h; (<Ugp, —UypUsy, ) + h; (—Uzp — Uy Usy ) =17, 800(e,,)
W, = Billy, — 8,y = (Ul + Uy ) + o Uy Uy + UpUy) = & SONCe,, )
w, =0 (29)
where
DG =5 le, |
D, =5, e, |
DG =4 e, |
Dm =ole, |
Dn,=0,|¢
Dn, =0

On the basis of (15), we can also obtain the parametric

update laws

Daél = _(hlr (u3m - ulm) - hli(UAm _uZm)ku1 _(hlr (u4m _UZm) + hli(u?;m _ulm)kuz

Daéz = _(hzrulm - r";"JZm)(z‘\u:4 - (thUZm + h;ulm)eu4

|

D“4, = h3u5meus
DD, = (Us, —Uy, )8, —Up®,, +(Ugg —Up e, —UneE,
Db, = (U, +Us,)e, +(Uye +Uy e,
Db, = U8,
(30)
In this simulation, let « =0.998, H =diag(, j,—1), the
unknown parameters are (a, a,, a,)" =(10, 28,8/3)"
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(b, b,, b,)" =(35,28,3)" , the initial values are randomly
chosen as x(0)=(—j,-2+2j,3)", y(0)=@+j,1+j,)",
w(0)=(0,0,0" , 5(0)=(0,0,01 ., £0)=(0,0,0)
n(0)=(0,0,0)" . The positive constants are chosen
as B =L, =, =0,=0,=05. The simulation results are

depicted in Figs. 2-4. Fig. 2 shows the time evolution of
synchronization errors between fractional-order complex
Lorenz system and fractional-order complex Chen system.
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Fig. 2. Time response of synchronization error system (17)

Obviously, the synchronization errors e, (i=1,2,3, 4, 5)

converge to zero asymptotically, which illustrates that the
CMPS between fractional-order complex Lorenz system and
fractional-order complex Chen system is achieved. Fig. 3
displays the time evolution of estimate parameters. It is not
hard to see all unknown parameters gradually converge to
their actual values, which implies that the proposed
parametric update laws are applicable.
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Fig. 3. Time evolution of estimate parameters for
master and slave systems

Further, we can calculate the module errors and phases of
master system and slave system, respectively. For any
complex number x = x" + jx' e C, the module p_and phase

0, are calculated as follows [40]

pr=A(X)? +(X')*

arctan(x' / x"), x">0, x'>0,

o - 2z +arctan(x' /x"), x' >0, x' <0,
“ | z+arctan(x'/x7), X' <0,
z—arctan(x' /x"), x"=0.

Since we are merely interested in the complex variables,
thus the results of module errors and phases for state complex
variables in master and slave systems are illustrated in Fig. 4.
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Fig. 4. The module errors and phases of master
and slave systems
All simulation results demonstrate that the adaptive

CMPS between two nonidentical fractional-order chaotic

complex systems has been achieved, and all unknown

parameters of master and slave systems are fully identified.
Remark 5 In the simulation, the random choice of complex

matrix H will not affect the theoretic results.

V. CONCLUSIONS

In this paper, a novel synchronization scheme called
complex modified projective synchronization (CMPS) is
introduced, and the CMPS between two nonidentical
fractional-order chaotic complex systems with unknown
parameters is firstly investigated. Moreover, the slave system
is assumed to be perturbed by bounded external disturbances.
It is worth noting that CMPS is the generalization of several
types of synchronization, such as CS, PS, MPS, AS, etc. Thus,
the research about CMPS is meaningful and essential. A new
stability theory is applied to prove the asymptotic stability of
fractional-order error system. Simulation results are provided
to verify the effectiveness and correctness of the proposed
method. Because our results contain and extend most existing
works, we believe that there are high potential in the proposed
method.

ACKNOWLEDGEMENT

This work is supported by the Foundation of Jinling
Institute of Technology (Grant No: jit-fhxm-201607 and
jit-b-201706), the Natural Science Foundation of Jiangsu
Province University (Grant No: 17KJB120003), and the
University-industry Collaboration Education Foundation of
Ministry of Education (Grant No: 201602009006).

REFERENCES

[1] R. L. Bagley and R. A. Calico, “Fractional order state equations for
the control of viscoelastically damped structure,” Journal of
Guidance, Control, Dynamics, vol. 14, pp. 304-311, 1991.

[2] H. H. Sun, A. A. Abdelwahad, and B. Oharal, “Linear
approximation of transfer function with a pole of fractional power,”
IEEE Transaction on Automation Control, vol. 29, pp. 441-444,
1984.

[3] M. Ichise, Y. Nagayanagi, and T. Kojima, “An analog simulation of
non-integer order transfer functions for analysis of electrode
process,” Journal of Electroanalytical Chemistry and Interfacial
Electrochemistry, vol. 33, pp. 253-265, 1971.

[4] O. Heaviside, Electromagnetic Theory. Chelsea: New York, USA,
1971.

[5] X. Gaoand J. Yu, “Chaos in the fractional order periodically forced
complex Duffing's oscillators,” Chaos, Solitons and Fractals, vol.
26, pp. 1125-1133, 2005.

[6] C. M. Chen and H. K. Chen, “Chaos and hybrid projective
synchronization of commensurate and incommensurate fractional

(Advance online publication: 17 November 2017)



Engineering Letters, 25:4, EL._25 4 11

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

order Chen-Lee systems,” Nonlinear Dynamics, vol. 62, pp.
851-858, 2010.

I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the
fractional Lorenz system,” Physical Review Letters, vol. 91, pp.
034101, 2003.

X.J.Wuand Y. Lu, “Generalized projective synchronization of the
fractional-order Chen hyperchaotic system,” Nonlinear Dynamics,
vol. 57, pp. 25-35, 2009.

R. X. Zhang and S. P. Yang, “Robust chaos synchronization of
fractional-order chaotic systems with unknown parameters and
uncertain perturbations,” Nonlinear Dynamics, vol. 69, pp.
983-992, 2012.

G. Gyorgyi and P. Szepfalusy, “Calculation of the entropy in
chaotic systems,” Physical Review A, vol. 31, pp. 3477-3479, 1985.
W. H. Steeb, F. Solms, and R. Stoop, “Chaotic systems and
maximum entropy formalism,” Journal of Physics A:
Mathematical and General, vol. 27, pp. 399-402, 1994.

M. P. Aghababa, “Finite-time chaos control and synchronization of
fractional-order nonautonomous chaotic (hyperchaotic) systems
using fractional nonsingular terminal sliding mode technique,”
Nonlinear Dynamics, vol. 69, pp. 247-267, 2012.

J. G. Lu, “Nonlinear observer design to synchronize fractional-order
chaotic system via a scalar transmitted signal,” Physica A, vol. 359,
pp. 107-118, 2006.

L. P. Chen, J. F. Qu, Y. Chai, R. C. Wu, and G. Y. Qi,
“Synchronization of a class of fractional-order chaotic neural
networks,” Entropy, vol. 15, pp. 3265-3276, 2013.

L. P. Chen, Y. Chai, R. C. Wu, J. Sun, and T. D. Ma, “Cluster
synchronization in fractional-order complex dynamical networks,”
Physics Letters A, vol. 376, pp. 2381-2388, 2012.

G. M. Mahmoud, M. A. Arkashif, and A. A. Farghaly, “Chaotic and
hyperchaotic attractors of a complex nonlinear system,” Journal of
Physics A: Mathematical and Theoretical, vol. 41, pp. 055104,
2008.

E. Roldab, G. J. Devalcarcel, and R. Vilaseca, “Single-mode-laser
phase dynamics,” Physical Review A, vol. 48, pp. 591-598, 1993.
V. Y. Toronov and V. L. Derbov, “Boundedness of attractors in the
complex Lorenz model,” Physical Review E, vol. 55, pp.
3689-3692, 1997.

G. M. Mahamoud and E. E. Mahmoud, “Complex modified
projective synchronization of two chaotic complex nonlinear
systems,” Nonlinear Dynamics, vol. 73, pp. 2231-2240, 2013.

G. M. Mahamoud and E. E. Mahmoud, “Phase and antiphase
synchronization of two identical hyperchaotic complex nonlinear
systems,” Nonlinear Dynamics, vol. 61, pp. 141-152, 2010.

Q. Wei, X. Y. Wang, and X. P. Hu, “Feedback chaotic
synchronization of a complex chaotic system with disturbances,”
Journal of Vibration and Control, vol. 21, no. 15, pp. 734-735,
2015.

X. Y. Wang and N. Wei, “Modified function projective lag
synchronization of hyperchaotic complex systems with parameter
perturbations and external disturbances,” Journal of Vibration and
Control, vol. 21, no. 16, pp.225, 2014.

X. B. Zhou, M. R. Jiang, X. M. Cai, “Synchronization of a novel
hyperchaotic complex-variable system based on finite-time stability
theory,” Entropy, vol. 15, pp. 4334-4344, 2013.

X.J.Wuand J. K. Wang, “Adaptive generalized function projective
synchronization of uncertain chaotic complex systems,” Nonlinear
Dynamics, vol. 73, pp. 1455-1467, 2013.

C. Luo and X. Y. Wang, “Chaos in the fractional-order complex
Lorenz system and its synchronization,” Nonlinear Dynamics, vol.
71, pp. 241-257, 2013.

C. Luoand X. Y. Wang, “Chaos generated from the fractional-order
complex Chen system and its application to digital secure
communication,” International Journal of Modern Physics C, vol.
24, pp. 1350025, 2013.

X. J. Liu, L. Hong, and L. X. Yang, “Fractional-order complex T
system: bifurcation, chaos control, and synchronization,”
Nonlinear Dynamics, vol. 75, pp. 589-602, 2014.

G. M. Mahamoud and E. E. Mahmoud, “Complete synchronization
of chaotic complex nonlinear systems with uncertain parameters,”
Nonlinear Dynamics, vol. 62, pp. 875-882, 2010.

P. Liu and S. Liu, “Anti-synchronization between different chaotic
complex systems,” Physica Scripta, vol. 83, pp. 065006, 2011.

G. M. Mahamoud and M. E. Ahmed, “Modified projective
synchronization and control of complex Chen and Lu systems,”
Journal of Vibration and Control, vol. 17, pp. 1184-1194, 2011.

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

K. Abualnaja and E. Mahmoud, “Analytical and numerical study of
the projective synchronization of the chaotic complex nonlinear
systems with uncertain parameters and its applications in secure
communication,” Mathematical Problems in Engineering, vol.
2014, pp. 1-10, 2014.

J. B. Hu, Y. Han, and L. D. Zhao, “A novel stability theorem for
fractional systems and its applying in synchronizing fractional
chaotic system based on backstepping approach,” Acta Physica
Sinica, vol. 58, pp. 2235-2239, 2009.

C.L.LiandY.N. Tong, “Adaptive control and synchronization of a
fractional-order chaotic system,” Pramana Journal of Physics, vol.
80, pp. 583-592, 2013.

J.B. Hu, Y. Han, and L. D. Zhao, “Synchronizing fractional chaotic
systems based on Lyapunov equation,” Acta Physica Sinica, vol. 57,
pp. 7522-7526, 2008.

G. Q. Si, Z. Y. Sun, H. Y. Zhang, and Y. B. Zhang, “Parameter
estimation and topology identification of uncertain fractional order
complex networks,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, pp. 5158-5171, 2012.

L. X. Yang and J. Jiang, “Adaptive synchronization of
drive-response fractional-order complex dynamical networks with
uncertain parameters,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, pp. 1496-1506, 2014.

F. F. Zhang, S. T. Liu, and W. Y. Yu, “Modified projective
synchronization with complex scaling factors of uncertain real
chaos and complex chaos,” Chinese Physics B, vol. 22, pp. 120505,
2013.

P. Liu and S. T. Liu, “Robust adaptive full state
hybrid synchronization of chaotic complex systems with unknown
parameters and external disturbances,” Nonlinear Dynamics, vol.
70, pp. 585-599, 2012.

S. T. Liu and P. Liu, “Adaptive anti-synchronization of chaotic
complex nonlinear systems with unknown parameters,” Nonlinear
Analysis: Real World Applications, vol. 12, pp. 3046-3055, 2011.

Z. Y. Wu,; J. Q. Duan, and X. C. Fu, “Complex projective
synchronization in coupled chaotic complex dynamical systems,”
Nonlinear Dynamics, vol. 69, pp. 771-779, 2012.

Y. L. Shang, D. H. Hou, F. Z. Gao, “Finite-time output feedback
stabilization for a class of uncertain high order nonholonomic
systems,” Engineering Letters, vol. 25, no. 1, pp. 39-45, 2017.

Y. Y. Pan and Y. D. Shi, “A Grey Neural Network Model
Optimized by Fruit Fly Optimization Algorithm for Short-term
Traffic Forecasting,” Engineering Letters, vol. 25, no. 2, pp.
198-204, 2017.

W. J. Du, S. Qin, J. G. Zhang, and J. N. Yu, “Dynamical Behavior
and Bifurcation Analysis of SEIR Epidemic Model and its
Discretization,” IAENG International Journal of Applied
Mathematics, vol. 47, no. 1, pp. 1-8, 2017.

J. S. Wang, J. D. Song, “Chaotic Biogeography-based Optimization
Algorithm,” IAENG International Journal of Computer Science,
vol. 44, no. 2, pp. 122-134, 2017.

Xiaomin Tian (1987-) gained her master degree from Anhui University of
Science and Technology in 2012, and gained doctor degree from Southeast
University in 2015. Now, she is a teacher in Jinling Institute of Technology,
and her main research direction is about the control of fractional-order

system.

Zhong Yang (1968-) gained his doctor degree from Nanjing University of
Aeronautics and Astronautics in 1996. Now, he is a professor in Jinling
Institute of Technology, and his main research direction is about the
development of new energy resources.

(Advance online publication: 17 November 2017)


http://iopscience.iop.org/0305-4470/
http://iopscience.iop.org/0305-4470/
http://iopscience.iop.org/1402-4896
http://www.medsci.cn/sci/?fullname=acta%20physica%20sinica&action=search
http://www.medsci.cn/sci/?fullname=acta%20physica%20sinica&action=search



