
 

 

Abstract—In this paper, the complex modified projective 

synchronization (CMPS) of two different fractional-order 

chaotic complex systems with unknown parameters is firstly 

investigated. We assume that the slave system is perturbed by 

external disturbances. The master and slave systems achieved 

CMPS can be synchronized up to a complex scaling matrix. On 

the basis of a novel stability theory, a robust adaptive control 

law is designed to realize the CMPS for two different 

fractional-order chaotic complex systems. Meanwhile, to deal 

with these unknown parameters, some fractional-order type 

update laws are provided. The CMPS can be regarded as the 

generalization of several types of synchronization reported in 

existing literatures. Simulation results are given to verify the 

effectiveness and feasibility of the proposed synchronization 

scheme. 

 
Index Terms—Complex modified projective synchronization, 

Fractional-order chaotic complex system, Adaptive control, 

Fractional-order type update law 

 

I. INTRODUCTION 

lthough fractional calculus is a mathematical topic with 

more than 300 years history, its applications in the fields 

of physics and engineering have attracted lots of attentions 

only in the recent years. It was found that, with the help of 

fractional calculus, many systems in interdisciplinary fields 

can be described more accurately, such as viscoelastic system 

[1], dielectric polarization [2], electrode-electrolyte 

polarization [3], finance systems and electromagnetic waves 

[4]. That is to say, fractional calculus provides a superb 

instrument for the description of memory and hereditary 

properties of various materials and processes. Many 

literatures have proven that some fractional-order differential 

systems can behave chaotically, e.g., the fractional-order 

Duffing system [5], fractional-order Chen-Lee system [6], 

fractional-order Lorenz system [7], fractional-order 

hyperchaotic Chen system [8], fractional-order Qi system [9], 

and so on. 

The research on chaotic systems has grown significantly 
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over past decades and has become a popular topic. For 

example, Gyorgyi [10] calculated the entropy in the chaotic 

systems. Steeb et al. [11] applied the maximum entropy 

formalism into the study of chaotic systems. Aghababa [12] 

used the finite-time theory to realize the finite-time 

synchronization of chaotic systems. Lu [13] developed a 

nonlinear observer to synchronize the chaotic systems. Chen 

et al. [14,15] researched the chaos synchronization of 

fractional-order chaotic neural network. 

However, all of aforementioned researches only focus on 

the systems with real variables, while chaotic complex 

systems are not involved. In practical, chaotic complex 

systems can be widely used to describe a variety of physical 

phenomenon such as population inversion [16], detuned laser 

systems [17], thermal convections of liquid flows [18], etc. At 

present, some control schemes [19-24] have been proposed to 

synchronize two chaotic systems with complex variables. It is 

should be noted that all of chaotic complex nonlinear systems 

in above mentioned literatures are integer-order systems. So, 

it is a challenging and meaningful problem for researchers to 

realize the synchronization of fractional-order chaotic 

complex nonlinear systems. Recently, Luo et al. [25,26] 

firstly studied the dynamic properties of fractional-order 

complex Lorenz and fractional-order complex Chen systems. 

Liu et al. [27] researched the control and synchronization of 

fractional-order complex T system. But, in [25-27], the 

system parameters are assumed to be known for the 

synchronization of two identical fractional-order chaotic 

complex systems. As a matter of fact, many systems’ 

parameters cannot be exactly known in advance. The 

synchronization will be not achieved under the effect of 

unknown uncertainties. Therefore, it is urgent to consider the 

influence of unknown parameters in synchronizing two 

chaotic complex systems. 

On the other hand, in many practical systems, the master 

(drive) system and slave (response) system may evolve in 

different directions with a constant intersection angle. Thus, 

the modified projective synchronization with respect to a 

complex scaling matrix, namely, the complex modified 

projective synchronization (CMPS) should be taken into 

consideration. This kind of CMPS is deemed to be the 

generalization of several types of synchronization, such as 

complete synchronization (CS) [28], anti-synchronization 

(AS) [29], modified projective synchronization (MPS) [30], 

and projective synchronization (PS) [31], etc. For this reason, 

CMPS of two different chaotic complex systems is more 
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essential. To the best of our knowledge, until now, there is no 

information available about the CMPS between two different 

fractional-order chaotic complex systems with unknown 

parameters. 

Motivated by the above discussions, in this paper, the 

CMPS of two different fractional-order chaotic complex 

systems with unknown parameters and external disturbances 

is firstly investigated. Inspired by [31], we extend the 

theoretical results of [31] to the fractional-order chaotic 

complex systems. As we all known that the stability theory of 

integer-order nonlinear systems cannot be directly applied to 

fractional-order systems, so, we use a novel fractional-order 

system’s stability theory to demonstrate the applicability of 

the proposed synchronization scheme. It is worth noting that 

in [31] the effect of external disturbances is not taken into 

account, and the feedback control gains are chosen as fixed 

values wherever the initial points start, which result in the 

theoretical results in [31] are much conservative.  Fortunately, 

on the basis of the novel stability theory and fractional-order 

adaptive control method, we propose a new adaptive control 

law and some parametric update rules to address the above 

problems. Therefore, our approach is more meaningful and 

practical than that of [31]. We applied this proposed control 

scheme, as an example, to research the CMPS between 

fractional-order complex Lorenz system and fractional-order 

complex Chen system. 

The rest structure of this paper is as follows. In Section 2, 

the relevant definitions, lemma and description of 

n-dimensional fractional-order chaotic complex system are 

introduced. In Section 3, the adaptive controller and unknown 

parameters update laws are designed in detail. Simulation 

results about the CMPS between fractional-order complex 

Lorenz system and fractional-order complex Chen system are 

provided in Section 4. Finally, conclusions are included in 

Section 5. 

II. PRELIMINARIES 

A. Definitions and Lemma 

The most frequently used definitions for the general 

fractional calculus are Riemann-Liouville definition and 

Caputo definition. 

Definition 1 The   th-order Riemann-Liouville 

fractional integration is given by 
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where ( )   is the Gamma function. 

Definition 2 For nn  1 , Rn , the 

Riemann-Liouville fractional derivative definition of order 
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Definition 3 The Caputo fractional derivative definition of 

order   is written as 
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Lemma 1 (see [32, 33]) Consider the autonomous system 

AxxD   or )(xfxD                    (4) 

where ]1,0(  is the fractional order and 

T

nxxxx )...,,,( 21  is the state variable. 
nnRA   is a 

constant matrix. If there is a real symmetric positive definite 

matrix P  such that the inequation 0 xPDxJ T   always 

holds for any states, then system (4) is asymptotically stable. 

For the detailed application of the above lemma in 

fractional-order chaotic systems, the reader can refer to Refs. 

[32-36]. 

B. Description of N-dimensional Fractional-order 

Chaotic Complex System 

Consider a fractional-order chaotic complex system, 

described by 

)()( xfxFxD                             (5) 

where )1,0(  is the fractional order of the system. 

T

nxxxx )...,,,( 21 is the state complex vector, and 

ir jxxx  , T

n

r uuux )...,,,( 1231  , T

n

i uuux )...,,,( 242 , 

1j . mnCxF )(  , and the elements of this matrix are 

the functions of state complex variables. mR (or mC ) is 

the vector of unknown system parameters. 
T

nffff )...,,,( 21 is the vector of nonlinear complex 

functions. The superscripts r  and i  represent the real and 

imaginary parts of the state complex vector, respectively. 

Remark 1 System (5) is the generalization of 

fractional-order chaotic complex systems. In this paper, as an 

example, the fractional-order complex Lorenz and 

fractional-order complex Chen systems are considered, and 

both systems can be described by (5). 

Take the fractional-order complex Lorenz system as master 

system, described by 
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and the fractional-order complex Chen system as slave system, 

determined by 
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where 
mm juux 211  , 

mm juux 432   are complex state 

variables, and 
mux 53   is the real state variable of system 

(6). 
ss juuy 211  , 

ss juuy 432   are complex state 

variables, and suy 53  is the real state variable of system (7). 

The subscripts m  and s denote the master and slave systems, 

respectively. 

Through separating real and imaginary parts of (6) and (7), 

two five-dimensional continuous real systems can be obtained 

[25, 26], given by 
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and 
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According to the analysis results in [25] and [26], 

when 101 a , 282 a , 3/83 a , 351 b , 282 b , 33 b , 

998.0 , system (8) and (9) behave chaotically, the 

attractors are shown in Fig. 1. 
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Fig. 1. The 3D projections of chaotic attractors of  

system (8) and (9) 

III. MAIN RESULTS 

In this section, a robust adaptive control law and the 

parameter adaptation rules are designed to achieve the CMPS 

between two different fractional-order chaotic complex 

systems with unknown parameters. 

According to system (5), the master and slave systems with 

unknown parameters can be represented as 

Master system: 

)()( xfxFxjDxDxD ir            (10) 

Slave system with external disturbances: 

)()()()( tWtdygyGyjDyDyD ir        (11) 

where lR  , R   are the vectors of unknown 

parameters in master system and slave system, respectively, 

1 2( ) ( ( ), ( ), ..., ( ))T n

nd t d t d t d t R  is the vector of external 

disturbances, 
1 2( ) ( ( ), ( ), ..., ( ))T

nW t w t w t w t  , and 

( ) r i

k k kw t w jw   ( 1, 2, ..., )k n  are the controller to be 

designed later. 

Before introducing our approach, we firstly give the 

definition of CMPS. 

Definition 4 Consider the master (10) and slave (11) 

systems, the error of CMPS is defined as 
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xHxHye , then the CMPS 

between system (10) and (11) is achieved. 

Remark 2 It is obvious that when nnRH  , CMPS 

reduced to MPS, when 1...21  nhhh , CS is achieved, 

when 1...21  nhhh , we can get AS. 

Our goal in this paper is to design an adaptive controller 

and appropriate parametric update laws to achieve CMPS 

between master system (10) and slave system (11). To the best 

of the authors’ knowledge, so far, there is no information 

available in this field.  

In order to make the proposed method more reasonable and 

effective, an assumption is necessary. 

Assumption 1 In general, it is assumed that the external 

disturbances ( )kd t R  are bounded by 

kk td |)(| , nk ...,,2,1  

where k  are positive constants. 

Next, we will design an adaptive controller to achieve 

CMPS for two fractional-order chaotic complex systems. 

Theorem 1 Consider the master system (10) and slave 

system (11), if the controller is designed as 
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where sgn is the sign function, r
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kf , 
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kf  are the ith row vector of rG , iG , rF , iF , rg , ig , rf , 

if  respectively, r

kh , 
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kh  are given constants. 
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in which, 
k  and 

k  are positive constants. 

The parametric update laws are selected as 
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Then the CMPS between master system (10) and slave system 

(11) can be achieved. 

Proof According to the definition of CMPS, we obtain 

Engineering Letters, 25:4, EL_25_4_11

(Advance online publication: 17 November 2017)

 
______________________________________________________________________________________ 



 

 
 

 
  

 
  
   )()()()(

)()()()()(

)()()()()()(

)()()()()(

)()()()()()()(

)()()()()()(

xfxFHxfxFH

tWygyGjxfxFH

xfxFHtWtdygyG

xfxFjxfxFjHH

tWygyGjtWtdygyG

xfxFHtWtdygyG

xHDyDHxyDejDeDeD

rriiir

iiiiii

rrrrrr

iirrir

iiirrr

ir





























  (16) 

Namely, the real and imaginary parts of complex 

synchronization error system (16) can be equivalently 

converted to the following real error systems 
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Then we can construct a function to prove the stability of 

the closed-loop system, written as 

XPDXJ T   
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Inserting (17) into (18), it yields 
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Substituting the control law (13) into (19), we obtain 

  

  




















n

k

kkk

k

n

k

kkk

k

TT

n

k

uk

r

k

i

k

i

k

r

k

i

ku

n

k

uk

i

k

i

k

r

k

r

kk

r

ku

DDDD

exFhxFhyGe

exFhxFhtdyGeJ

kk

kk

1

*

1

*

1

1

)(
1

)(
1ˆ~

ˆ~

)sgn()ˆ()()()ˆ)((

)sgn()ˆ()()()()ˆ)((

22

1212















(20) 

On the basis of the parametric update laws (15), we can 
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So, substituting the adaptive laws (15) into (20), we obtain 
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Inserting the update rules (14) of k , k into (21), then 

according to Assumption 1, we have 
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* 1k  , so (22) can be further derived as  
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Owing to 0J  , according to Lemma 1, the error system (17) 

is asymptotically stable. Consequently, the master system (10) 

and slave system (11) can be synchronized up to a complex 

matrix. Therefore, the proof is completed. 
Remark 3 Apparently, the theoretical results in Refs. [19, 

31] are the special cases of our scheme. It is should be noted 

that in practical applications, the feedback control gain is 

desired as small as possible, however, the theoretical 

feedback control gains in [19, 31] are fixed values no matter 

where the initial values start, thus the gains must be larger 

than the values needed, which means a kind of waste in 

practice. In our method, we use an adaptive controller to 

overcome the above drawbacks. The control gains 
k , 

k  

can be automatically adapted to the suitable values, which can 

simplify the task of design and reduce the cost of control. 

If   and   are two unknown complex parameter vectors, 

the   and   can be rewritten as r ij    , r ij    . 

Then master system (10) and slave system (11) become 
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and 

)()()())(( tWtdygjyGyjDyDyD irir     (24) 

According to the definition of CMPS, we can obtain the 

synchronization error system 
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That is, the real and imaginary parts of (25) can be written 

as 
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Similarly, for stabilizing the error system (26), we give the 

following theorem. 

Theorem 2 Consider the master system (23) and slave 

system (24) with unknown complex parameters, if the 

controller is designed as 
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where nk ...,,2,1 . 
k  and 

k  are control gains, which 

are updated by 
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where 

k  and 
k  are two positive constants. 

The parametric update laws are selected as 

   

   

   

    iTrrTii

iTirTrr

iTiirrrTriiri

iTriirrTiirrr

eyGeyGD

eyGeyGD

exFHxFHexFHxFHD

exFHxFHexFHxFHD

)()(ˆ

)()(ˆ

)()()()(ˆ

)()()()(ˆ

























       (28) 

Then the CMPS between master system (23) and slave system 

(24) can be achieved. 

Proof It is similar to that of Theorem 1. Limited by the 

length of this paper, the proof is omitted here. 

Remark 4 It is not hard to see that the synchronization 

schemes in [37-39] are also special cases of the proposed 

scheme. Therefore the proposed method is applicable to 

achieve the CMPS of two integer-order chaotic complex 

systems with unknown complex parameters. 

In this paper, for simplicity, we take the fractional-order 

chaotic complex systems with unknown real parameters as 

example to verify the effectiveness of the proposed 

synchronization scheme. 

IV. SIMULATION RESULTS 

In this section, we investigate numerical simulation for the 

CMPS of two different fractional-order chaotic complex 

systems. Let us take the fractional-order complex Lorenz 

system as master system, and the fractional-order complex 

Chen system as slave system. 

From the generalized form of fractional-order chaotic 

complex systems (10) and (11), we get  
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In this study, disturbances ( ) 0.5cos( )kd t t , 3,2,1k  are 

attached to the slave system. The complex matrix 

),,( 321 hhhdiagH  , and ir jhhh 111  , ir jhhh 222   are two 

complex constants, 
3h is a real constant. 

The adaptive controller designed by Theorem 1 as 
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On the basis of (15), we can also obtain the parametric 

update laws 
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In this simulation, let 998.0 , )1,,1(  jdiagH , the 

unknown parameters are TTaaa )3/8,28,10(),,( 321  , 
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TTbbb )3,28,35(),,( 321  , the initial values are randomly 

chosen as Tjjx )3,22,1()0(  , Tjjy )1,1,1()0(  , 

T)0,0,0()0(ˆ  , T)0,0,0()0(ˆ  , T)0,0,0()0(  , 

T)0,0,0()0(  . The positive constants are chosen 

as 5.021321   . The simulation results are 

depicted in Figs. 2-4. Fig. 2 shows the time evolution of 

synchronization errors between fractional-order complex 

Lorenz system and fractional-order complex Chen system. 
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Fig. 2. Time response of synchronization error system (17) 

Obviously, the synchronization errors 
iue ( 5,4,3,2,1i ) 

converge to zero asymptotically, which illustrates that the 

CMPS between fractional-order complex Lorenz system and 

fractional-order complex Chen system is achieved. Fig. 3 

displays the time evolution of estimate parameters. It is not 

hard to see all unknown parameters gradually converge to 

their actual values, which implies that the proposed 

parametric update laws are applicable. 
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Fig. 3. Time evolution of estimate parameters for  

master and slave systems 

 

Further, we can calculate the module errors and phases of 

master system and slave system, respectively. For any 

complex number Cjxxx ir  , the module 
x  and phase 

x  are calculated as follows [40] 

22 )()( ir

x xx   























.0),/arctan(

,0),/arctan(

,0,0),/arctan(2

,0,0),/arctan(

rri

rri

irri

irri

x

xxx

xxx

xxxx

xxxx








 

Since we are merely interested in the complex variables, 

thus the results of module errors and phases for state complex 

variables in master and slave systems are illustrated in Fig. 4. 
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Fig. 4. The module errors and phases of master  

and slave systems 

All simulation results demonstrate that the adaptive 

CMPS between two nonidentical fractional-order chaotic 

complex systems has been achieved, and all unknown 

parameters of master and slave systems are fully identified.  

Remark 5 In the simulation, the random choice of complex 

matrix H  will not affect the theoretic results. 

V. CONCLUSIONS 

In this paper, a novel synchronization scheme called 

complex modified projective synchronization (CMPS) is 

introduced, and the CMPS between two nonidentical 

fractional-order chaotic complex systems with unknown 

parameters is firstly investigated. Moreover, the slave system 

is assumed to be perturbed by bounded external disturbances. 

It is worth noting that CMPS is the generalization of several 

types of synchronization, such as CS, PS, MPS, AS, etc. Thus, 

the research about CMPS is meaningful and essential. A new 

stability theory is applied to prove the asymptotic stability of 

fractional-order error system. Simulation results are provided 

to verify the effectiveness and correctness of the proposed 

method. Because our results contain and extend most existing 

works, we believe that there are high potential in the proposed 

method. 
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