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Abstract—In this paper, an effective method for performing
the experimental modal analysis of structural systems is devel-
oped. The proposed methodology is corroborated by analytical
considerations and is verified experimentally. The identification
method developed in this paper is based on time-domain system
identification numerical techniques. The case study considered
in this work is a frame structure that can be modeled as a two-
story shear building system. A preliminary mechanical model
of the two-story shear building system is developed by using
a lumped parameter approach. Subsequently, a more realistic
second-order model of the frame structure is obtained directly
from input-output experimental data. To this end, a numerical
procedure based on the combination of the Observer/Kalman
Filter Identification Method (OKID) with the Eigensystem
Realization Algorithm (ERA) is employed for determining the
sequence of system Markov parameters. In particular, the
fundamental matrices that characterize the state-space repre-
sentation of a general linear time-invariant dynamical system
are obtained from the identified system Markov parameters.
In addition to the identified first-order state space model, a
second-order mechanical model of the frame structure is exper-
imentally obtained employing a methodology for constructing
mechanical models from identified state-space representations.
More importantly, considering the assumption of proportional
damping, an effective method based on a simple least-square
approach is used for calculating an improved estimation of
the identified damping coefficients. The experimental modal
parameters found by using the proposed methodology are
consistent with those predicted by using the analytical approach
based on the simplified lumped parameter model. Further-
more, the mechanical model identified employing the approach
discussed in this paper is used for developing an actively
controlled inertial-based vibration absorber based on the Linear
Quadratic Gaussian (LQG) control and estimation method. The
numerical and experimental results found in this investigation
confirmed the effectiveness of the methodology developed in the
paper.

Index Terms—Applied system identification, Experimen-
tal modal analysis, Two-story shear building system, Ob-
server/Kalman Filter Identification Method (OKID), Eigensys-
tem Realization Algorithm (ERA), Damping estimation, Linear
Quadratic Gaussian (LQG) control and estimation.

I. INTRODUCTION

In many problems of physics and engineering, the devel-
opment of a mathematical model of a mechanical system
is based on a priori theoretical knowledge of the physical
behavior of the system of interest. Applied system identifi-
cation, on the other hand, is concerned with the process of
developing mathematical models of physical systems based
only on input-output experimental measurements [1], [2], [3],
[4], [5], [6], [7]. In engineering applications, a dynamical
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model of a mechanical system identified from experimental
data can be used for performing the system modal analysis, to
predict the system response to known external actions, and in
the design process of control strategies necessary for obtain-
ing a desired dynamic behavior [8], [9], [10], [11], [12]. In
all these cases, having an accurate mathematical model of a
physical system is of fundamental importance for performing
numerical experiments based on dynamic simulations [13],
[14], [15], [16]. In particular, understanding the dynamic
behavior of the mechanical system of interest is of paramount
importance in the design process of robust and effective con-
trol actions [17], [18], [19]. Also, the parameter identification
of substantial structural parameters of a mechanical system,
such as for example the system mass, stiffness, and damping
matrices, is necessary for the experimental estimation of the
system capacity of carrying static loads and for assessing the
system dynamic response to time-varying external excitations
[20]. In order to achieve these goals, several numerical
techniques of applied system identification emerged in the
fields of dynamic and control engineering [21]. For in-
stance, a large variety of system identification numerical
techniques can be used for obtaining from experimental data
realistic first-order state-space models of linear mechanical
systems that are necessary for the design of feedforward
(open-loop) and feedback (closed-loop) control actions [22],
[23], [24], [25], [26], [27], [28], [29]. In the literature,
several studies focused on developing numerical procedures
for identifying linear time-invariant dynamical models of
mechanical systems useful for the design of effective control
strategies for machines and structures are available [30],
[31], [32], [33], [34], [35], [36], [37]. Among the others,
important engineering applications of the numerical tech-
niques devised in the field of applied system identification
are the identification of multibody models of the suspension
mechanisms necessary for implementing active and passive
control schemes, the modal parameters identification of civil
structures based on mechanical excitations arising from the
external environment, and the dynamic testing of mechan-
ical models of aerospace systems useful for refining the
numerical solutions obtained from the finite element analysis
[38], [39], [40], [41], [42], [43], [44], [45]. From a general
perspective, although they are based on a common set of
fundamental principles and make use of similar mathematical
methods, the numerical techniques employed in the field
of applied system identification can be divided into two
broad categories: a) frequency-domain system identification
methods and b) time-domain system identification methods
[46], [47]. Frequency-domain system identification methods
address the problem of identifying mathematical models for
accurately describing the frequency response of physical
systems considering a set of input-output experimental data
represented in the frequency domain. The system identifi-
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cation methods based on the frequency domain represent
well-known and reliable techniques that can be successfully
used for performing the experimental modal analysis of
structural systems. This investigation, on the other hand,
is focused on the development of a system identification
numerical method based on time-domain input and output
measurements. In general, the numerical techniques capable
of identifying the dynamical models of mechanical systems
by using time-domain input-output data can be readily used
for developing effective control strategies and accurate state
estimation methods based on the methodologies of modern
control and optimal estimation theories. As discussed in
the paper, this problem is particularly interesting in the
case of the development of second-order physical models
of mechanical systems in the configuration space starting
from first-order state-space representations. The mechanical
models identified using time-domain techniques are useful
for performing the experimental modal analysis and for
solving the vibration control problem of structural systems
[48], [49].

This paper is focused on the development of a method-
ology for identifying first-order and second-order dynamic
models of mechanical systems using time-domain input-
output experimental data. The goal is to perform the ex-
perimental modal analysis of structural systems in order
to obtain an accurate dynamic model that can be used for
the design of an optimal feedback controller. The proposed
method is based on the numerical techniques of applied
system identification and is verified experimentally by using
a test rig for analyzing the structural vibrations of mechanical
systems. The mechanical system considered as the case study
for testing the proposed methodology is a frame structure that
can be modeled as a two-story shear building system. The
two-story shear building system is excited impulsively by
using an impact hammer equipped with a load cell capable
of recording the input force impressed to the frame structure.
The floors of the frame structure are instrumented with
piezoelectric transducers that sense the system accelerations
in response to the impulsive excitations. By doing so, the
output data obtained from the accelerometers placed on the
frame structure are monitored and recorded in real time by
means of a frequency spectrum analyzer. In order to facil-
itate the experimental identification process, a preliminary
mechanical model of the two-story shear building system
is developed by using the analytical methods of classical
mechanics and employing a lumped parameter approach.
Subsequently, a system identification numerical procedure
based on the combination of the Observer/Kalman Filter
Identification Method (OKID) with the Eigensystem Realiza-
tion Algorithm (ERA) is developed for obtaining a first-order
state-space model of the frame structure [50], [51], [52],
[53]. In addition to the state-space identification method, a
methodology for constructing mechanical models from iden-
tified state-space representations is derived in the paper for
obtaining experimentally a second-order mechanical model
of the two-story shear building system [54], [55], [56], [57].
Furthermore, a simple least-square numerical procedure is
devised in this work in order to improve the estimation of
the damping parameters of the frame structure considering
the proportional damping hypothesis. The identified modal
parameters of the frame structure obtained by using the

proposed methodology are consistent with those predicted by
using the preliminary simple mechanical model based on the
lumped parameter approach. Furthermore, the effectiveness
of the method developed in this work is verified experimen-
tally by means of simple vibration tests. The methodology
proposed in this paper is also used for the optimal design
of a control strategy for suppressing the structural vibrations
of the mechanical system of interest for this investigation.
To this end, the mechanical model identified using the
proposed approach is employed for developing an actively
controlled inertial-based vibration absorber based on the
Linear Quadratic Gaussian (LQG) control and estimation
approach. The actively controlled inertial-based vibration
absorber is realized using a physical pendulum hinged on the
second floor of the frame structure. The pendulum system
is controlled using a brushless motor and the feedback
control action is computed in real time by using a digital
controller. Numerical and experimental results show that the
action of the feedback controller designed using the proposed
control architecture leads to a considerable reduction of the
vibrations of the two-story shear building system.

This paper is organized as follows. In section 2, a concise
description of the mechanical system considered in this in-
vestigation as the case study and an illustration of the test rig
used for the experimental testing of the proposed identifica-
tion procedure are provided. In section 3, a simplified lumped
parameter model of the frame structure is developed. In
section 4, the computational steps of the system identification
numerical procedure used in this investigation are described.
In section 5, the proposed system identification numerical
procedure based on the sequence of system Markov param-
eters obtained from experimental input-output data is used
for determining first-order and second-order mathematical
models of the two-story frame structure. In section 6, the
development and the implementation of a feedback control
system for reducing the structural vibrations of the two-story
shear building system considered in this work are described.
In section 7, the conclusions drawn in this study and practical
considerations for future investigations are discussed.

II. TEST RIG DESCRIPTION

In this section, a concise description of the mechanical
system considered as case study and an illustration of the
test rig used for the experimental testing of the proposed
identification procedure are provided. The mechanical system
of interest for the experimental modal analysis carried out in
this investigation is the frame structure shown in figure 1.
The frame structure examined in this paper can be modeled
as a two-story shear building system. In particular, the two-
story shear building system is formed by four flexible beams
and two rigid connecting rods. The connecting rods are made
of aluminum and the flexible beams are made of harmonic
steel. The frequency range of interest for testing the dynamic
behavior of the frame structure includes all the excitation
frequencies between 0 Hz and 15 Hz. In the frequency range
of interest, the connecting rods can be considered as rigid
bodies while the flexible beams can be assumed as linear
elastic continuum bodies. Thus, the frame structure can be
modeled as a two-story shear building system deployed in
a plane. The current configuration of the two-story shear
building system is devised in a way such that an actively
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Fig. 1. Frame structure

controlled inertial-based vibration absorber can be placed on
the second floor of the frame structure in order to test new
control strategies for suppressing the structural vibrations.
The experimental apparatus used in this investigation is
shown is figure 2. The two floors of the frame structure

Fig. 2. Test rig

are excited employing an impact hammer instrumented with
a load cell that is connected to a spectrum analyzer used
for acquiring the experimental data necessary for performing
the experimental modal analysis. By doing so, the impulsive
forces impressed to the frame structure can be acquired and
used as input signals. Piezoelectric transducers for measuring
the acceleration of the mechanical system are located on
the two floors of the frame structure in order to obtain
the time response of the two-story shear building system
corresponding to the impulsive excitations. For this purpose,
the acceleration signals obtained employing the piezoelectric

transducers are recorded by using the spectrum analyzer in
order to obtain the input-output experimental data necessary
for applying the system identification numerical procedure
developed in this work.

III. MECHANICAL MODEL

In this section, a simplified lumped parameter model of the
frame structure is developed. The lumped parameter model
developed in this section describes the vibratory behavior
of the two-story shear building system in a simplified but
realistic manner. The preliminary modal analysis of the frame
structure based on the simplified lumped parameter model
developed in this section will facilitate the experimental
modal analysis based on the proposed identification method.
Figure 3 shows a schematic representation of the lumped
parameter model used for the preliminary modal analysis of
the frame structure. In the lumped parameter model of the

Fig. 3. Lumped parameter model

frame structure, it is assumed that the connecting rods can be
modeled as two lumped masses whereas the flexible beams
are schematized as two spring elements. Thus, the lumped
parameter model of the two-story shear building system has
n2 = 2 degrees of freedom. The degrees of freedom of the
two-story shear building system are the horizontal displace-
ment of the first and second floors denoted, respectively, as
x1(t) and x2(t), where t is time. The configuration vector
of the two-story shear building system is denoted with x(t)
and is given by:

x(t) =
[
x1(t) x2(t)

]T
(1)

The equations of motion that mathematically describe the
mechanical model of the two-story shear building system
can be written in a compact matrix form as:

M ẍ(t) + K x(t) = 0 (2)

where ẍ(t) represents the system generalized acceleration
vector, x(t) is the system generalized coordinate vector, M
denotes the system mass matrix, and K identifies the system
stiffness matrix. In the equations of motion, the damping of
the mechanical system is neglected because a realistic esti-
mation of the structural damping based only on theoretical
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considerations is difficult to obtain. However, a simple and
effective method is used in the paper for obtaining a realistic
estimation of the system structural damping employing the
identified modal parameters obtained from real input-output
data. On the other hand, by using the classical methods of
analytical dynamics, the mass and stiffness matrices of the
lumped parameter model can be written as follows:

M = diag (m1,1,m2,2) (3)

K =

[
k1,1 k1,2
k2,1 k2,2

]
(4)

The mass and stiffness matrices M and K of the two-
story shear building system are constant symmetric positive-
definite matrices. For the two-story shear building model,
the entries mi,j and ki,j of the system mass and stiffness
matrices are defined as:{

m1,1 = m1

m2,2 = m2
(5) k1,1 = 2k

k1,2 = k2,1 = −k
k2,2 = k

(6)

In particular, assuming clamped-clamped boundary condi-
tions and a parallel configuration of the resulting lumped
spring elements, the stiffness of each flexible beam can be
readily computed as follows:

k = 24EJ
/
L3 (7)

where m1 = 0.65 (kg) and m2 = 1.55 (kg) are respectively
the masses of the first and second connecting rods, E = 2.0 ·
1011

(
N
/
m2
)

identifies the Young modulus of the flexible
beams, J = 2.917·10−12

(
m4
)

is the second moment of area
of the flexible beams, and L = 300 · 10−3 (m) represents
the length of the flexible beams. From a modal analysis
of the lumped parameter model of the two-story building
system, one obtains the system natural frequencies fn,j and
the system modal shapes ϕj . In particular, the normal mode
vectors can be analytically expressed as follows:

ϕj = eiΘjρj , j = 1, 2, . . . , n2 (8)

where e is the Napier’s constant, i =
√
−1 is the imag-

inary unit, ρj represents the vector of relative amplitudes
corresponding to the mode j, and Θj denotes a diagonal
matrix containing the relative phases associated with each
components of the mode j. Considering the mechanical
model of the frame structure, the modal analysis yields the
following set of modal parameters:

fn,1 = 1.949 (Hz)

ρ1 =
[

1 1.812
]T

Θ1 = diag (0, 0)

(9)


fn,2 = 6.715 (Hz)

ρ2 =
[

1 0.231
]T

Θ2 = diag (0, 3.141)

(10)

As expected, the first mode shape of the simplified lumped
parameter model of the frame structure is perfectly in phase
has no nodes, while the second mode has one node and is
perfectly out of phase. Although the lumped parameter model
represents a crude approximation of the vibratory behavior

of the two-story shear building system, the modal parameters
obtained from the preliminary modal analysis performed for
the simplified mechanical model of the frame structure are
useful for corroborating the numerical results obtained by
using the system identification method developed in this
investigation.

IV. SYSTEM IDENTIFICATION NUMERICAL PROCEDURE

In this section, the computational steps of the system
identification numerical procedure used in this investigation
are described. For this purpose, the definition of the Markov
parameters is used for identifying the time-domain input-
output relationship representing the dynamic properties of a
general linear mechanical system. Consider the discrete-time
representation of the state-space model of a general linear
mechanical system defined by using the following dynamic
and measurement equations: z(k + 1) = Az(k)+Bu(k)

y(k) = Cz(k)+Du(k)
(11)

where k is the discrete time, z(k) denotes the discrete-time
state vector of dimension n = 2n2, u(k) identifies the
discrete-time input vector of dimension r, y(k) indicates
the discrete-time output vector of dimension m, A is the
discrete-time system state matrix of dimension n × n, B
denotes the discrete-time input influence matrix of dimension
n× r, C identifies the output influence matrix of dimension
m × n, and D indicates the direct transmission matrix of
dimension m × r. The discrete-time state-space model can
be modified by using a state observer in order to provide
an estimation of system state based on inputs and outputs
measurements. Thus, the set of discrete-time dynamic and
measurement equations can be reformulated considering the
introduction of a state estimator as follows: ẑ(k + 1) = Āẑ(k)+B̄v(k)

ŷ(k) = Cẑ(k)+Du(k)
(12)

where ẑ(k) denotes the estimated state vector of dimension
n, ŷ(k) identifies the estimated measurement vector of
dimension m, Ā is the discrete-time observer state matrix
of dimension n × n, B̄ indicates the discrete-time observer
state influence matrix of dimension n× (r +m), and v(k)
represents the generalized input vector of dimension r +m
which are respectively defined as:

Ā = A + GC (13)

B̄ =
[

B + GD −G
]

(14)

v(k) =

[
u(k)
y(k)

]
(15)

where G is the observer matrix of dimension n×m. The
introduction of the observer matrix G modifies the eigen-
values of the observer state matrix Ā which can be made
as asymptotically stable as desired. Thus, the discrete-time
state-space model and the discrete-time observer state-space
model lead to linear input-output relationships associated
with the dynamic behavior of a general linear time-invariant
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mechanical system which can be respectively expressed as
follows:

y(k) =
k∑
j=0

(Yju(k − j)) (16)

ŷ(k) =
k∑
j=0

(
Ȳjv(k − j)

)
(17)

where Yk is a sequence of m× r matrices called sys-
tem Markov parameters, whereas Ȳk is a sequence of
m× (r +m) matrices known as observer Markov param-
eters. The system Markov parameters and the observer
Markov parameters are also referred to as discrete impulse
response functions because they represent the response of
the discrete-time system and observer state-space models
to impulsive excitations. The system and observer Markov
parameters denoted with the matrices Yk and Ȳk are re-
spectively defined as follows: Y0 = D

Yk = CAk−1B
(18)

 Ȳ0 = D

Ȳk = CĀk−1B̄
(19)

In the computer implementation of system identification al-
gorithms based on a set of time-domain input-output data, an
additional sequence of Markov parameters known as observer
gain Markov parameters can be defined. The sequence of
observer gain Markov parameters is useful for developing
system identification numerical procedures and is given by: Y0

0 = D

Y0
k = CAk−1G

(20)

where the sequence of rectangular matrices Y0
k of dimension

m×m denotes the observer gain Markov parameters. The
set of observer Markov parameters Ȳk can be computed
from measured input-output data employing a computational
procedure based on a least-square approximation method. On
the other hand, once that the observer Markov parameters Ȳk

are identified starting from experimental data, a recursive
procedure can be used to recover the sequence of system
Markov parameters Yk and the sequence of observer gain
Markov parameters Y0

k from the identified set of observer
Markov parameters Ȳk. In order to achieve this goal, con-
sider a finite difference input-output representation of a
linear mechanical system described by using the following
equations:

y(k) +
p∑
j=1

(
Ȳ

(2)
j y(k − j)

)
=

p∑
j=1

(
Ȳ

(1)
j u(k − j)

)
+ Du(k)

(21)

where Ȳ
(1)
k and Ȳ

(2)
k are rectangular matrices of dimensions

m× r and m×m that are respectively defined as:
Ȳ

(1)
k = C(A + GC)k−1(B + GD)

Ȳ
(2)
k = C(A + GC)k−1G

(22)

The matrix representation of the observer Markov parameters
Ȳk can be partitioned as follows:

Ȳk =
[

Ȳ
(1)
k −Ȳ

(2)
k

]
(23)

A least-square computational approach based on input-output
experimental data can be effectively used for computing the
coefficients of the finite difference model. For this purpose,
a numerical procedure based on the Observer/Kalman Filter
Identification Method (OKID) can be readily used. By doing
so, the sequence of observer Markov parameters can be
identified and, subsequently, the system Markov parameters
and the observer gain Markov parameters can be obtained
from experimental measurements. To this end, the linear
difference model can be reformulated in a matrix form
considering a data record of length l as follows:

Y = L̄pVp (24)

where Y, L̄p, and Vp are rectangular matrices having dimen-
sions m× l, m× (r + (r +m)p), and (r + (r +m)p)× l
and are respectively defined as follows:

Y =
[

y(0) y(1) . . . y(l − 1)
]

(25)

L̄p =
[

Ȳ0 Ȳ1 . . . Ȳp

]
(26)

Vp =


u(0) u(1) . . . u(l − 1)

0 v(0) . . . v(l − 2)
...

...
. . .

...
0 0 . . . v(l − p− 1)

 (27)

where the integer p represents the discrete time at which
the approximation of the estimated output vector ŷ(k)
approaches the actual measured output vector y(k). The
sequence of the first p observer Markov parameters Ȳk is
included in the block matrix L̄p and, therefore, a simple
least-square computational method can be used for obtaining
an approximate solution of the observer Markov parameters
Ȳk. Thus, one can write the following set of equations based
on experimental input-output measurements:

L̄p = YV+
p (28)

where V+
p represents the Moore-Penrose pseudoinverse ma-

trix of the matrix Vp identified by a rectangular matrix
having dimension m× (r + (r +m)p). Furthermore, the se-
quence of system Markov parameters Yk and the sequence
of observer gain Markov parameters Y0

k can be obtained
from the identified observer Markov parameters with the use
of recursive relationships mathematically defined as:

D = Y0 = Ȳ0

Yk = Ȳ
(1)
k −

k∑
j=1

Ȳ
(2)
j Yk−j , k = 1 , 2 , . . . , p

Yk = −
p∑
j=1

Ȳ
(2)
j Yk−j , k = p + 1, p+ 2, . . .

(29)
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

Y0
1 = CG = Ȳ

(2)
1

Y0
k = Ȳ

(2)
k −

k−1∑
j=1

Ȳ
(2)
j Y0

k−j , k = 2 , 3, . . . , p

Y0
k = −

p∑
j=1

Ȳ
(2)
j Y0

k−j , k = p+ 1 , p+ 2, . . .

(30)
An applied system identification methodology based on time
domain data can be developed by using the combination of
the identified system and observer gain Markov parameters
Yk and Y0

k. To this end, the Eigensystem Realization
Algorithm (ERA) is a computational procedure based on the
identified Markov parameters which can be readily used for
computing a set of state-space matrices A, B, C, and D
of a general linear mechanical system. Thus, consider the
following block matrix that includes the system and observer
gain Markov parameters:

Γk =
[

Yk Y0
k

]
(31)

where Γk is a block matrix of dimensions m× (r +m). The
assembly of the combined matrix Γk is used for constructing
a generalized block Hankel matrix defined as follows:

N̄(k − 1) =


Γk Γk+1 . . . Γk+β−1

Γk+1 Γk+2 . . . Γk+β
...

...
. . .

...
Γk+α−1 Γk+α . . . Γk+α+β−2

 (32)

where N̄(k − 1) is a block Hankel matrix of dimensions
αm× β(r +m) in which the set of system and observer
gain Markov parameters Yk and Y0

k are included. In the
block Hankel matrix N̄(k − 1), the two integers α and β
are numerical parameters which can be assumed as α = p
and β = l − p, where l is the length of the data record. In
particular, the generalized Hankel matrix N̄(0) can be readily
factorized using the Singular Value Decomposition (SVD) as
follows:

N̄(0) = R̄Σ̄S̄T (33)

where the rectangular matrix Σ̄ contains the singular values
of the generalized Hankel matrix N̄(0) and the columns of
the matrices R̄ and S̄ form orthonormal vectors. The block
matrix Σ̄ can be partitioned as follows:

Σ̄ =

[
Σ̄n̂ O
O O

]
(34)

where the submatrix Σ̄n̂ is a square diagonal matrix defined
as:

Σ̄n̂ = diag (σ1, σ2, . . . , σn̂) (35)

where σi , 1 = 1, 2, . . . , n̂ represent the nonzero singular
values associated with the generalized Hankel matrix N̄(0).
Moreover, the generalized Hankel matrix N̄(0) and its
Moore-Penrose pseudoinverse matrix N̄+(0) can be respec-
tively written as follows:

N̄(0) = R̄n̂Σ̄n̂ S̄Tn̂ (36)

N̄+(0) = S̄n̂Σ̄−1n̂ R̄T
n̂ (37)

where R̄n̂ and S̄n̂ represent the rectangular matrices formed
by the first n̂ columns of the rectangular matrices R̄ and

S̄. A thorough analysis of the spectrum of the singular
values σi , 1 = 1, 2, . . . , n̂ of the generalized Hankel matrix
N̄(0) allows for establishing the order n̂ of the identified
state-space model of the linear mechanical system under
consideration. By doing so, an identified discrete-time state-
space model can be computed leading to the discrete-time
state-space matrices Â, B̂, Ĉ, and D̂ as well as to the
identified observer matrix Ĝ. The set of discrete-time state-
space matrices obtained from the sequence of system Markov
parameters based on the measured of input-output data can
be readily obtained as follows:

Â = Σ̄
−1/2
n̂ R̄T

n̂ N̄(1)S̄n̂Σ̄
−1/2
n̂[

B̂ Ĝ
]

= Σ̄
−1/2
n̂ S̄Tn̂Er+m

Ĉ = ET
mR̄n̂Σ̄

−1/2
n̂

D̂ = Y0 = Ȳ0

(38)

where Em and Er+m are Boolean matrices given by:

ET
m =

[
Im Om . . . Om

]T
(39)

ET
r+m =

[
Ir+m Or+m . . . Or+m

]T
(40)

The set of identified discrete-time state-space matrices Â, B̂,
Ĉ, D̂, and Ĝ represents a minimum order, controllable, and
observable state-space realization of a general mechanical
system having a linear mathematical structure. The modal
parameters of the identified mechanical model represent the
actual system modal parameters obtained by the available
sequence of input-output data. In particular, the discrete-
time state-space model of the mechanical system can be
readily transformed into its continuous-time counterpart.
More importantly, a second-order mechanical model of the
dynamical system can be obtained by using the identified
modal parameters of the state-space model as follows:

M̂ =
(
ŴΛ̂cŴ

T
)−1

K̂ = −
(
ŴΛ̂

−1
c ŴT

)−1
R̂ = −

(
M̂ŴΛ̂

2

cŴ
TM̂

)
(41)

where Λ̂c is the diagonal matrix containing the identified
eigenvalues of the continuous-time state-space model, Ŵ
indicates the matrix of the identified eigenvectors associated
with the set of system generalized coordinates, M̂ represents
the identified mass matrix, K̂ is the identified stiffness
matrix, and R̂ denotes the identified damping matrix of
the linear model of the mechanical system. In practical
applications, the estimation of the system damping matrix R̂
is considerably influenced by the noise that affects the input-
output data set. Therefore, an improved estimation method
of the identified damping matrix R̂ of the mechanical system
should be employed for obtaining more realistic numerical
results. For this purpose, a simple least-square estimation
method based on the proportional damping assumption is
employed in this paper for obtaining the proportional damp-
ing coefficients α̂ and β̂. The method used in this work for
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calculating the proportional damping coefficients α̂ and β̂
can be mathematically written as follows:

x̄ = C̄+d̄ (42)

where the matrix C̄ and the vectors d̄ and x̄ are respectively
defined as:

x̄ =

[
α̂

β̂

]
(43)

C̄ =
1

2


1

2πf̂n,1
2πf̂n,1

1
2πf̂n,2

2πf̂n,2
...

...
1

2πf̂n,n̂2

2πf̂n,n̂2

 (44)

d̄ =


ξ̂1
ξ̂2
...
ξ̂n̂2

 (45)

where C̄+ denotes the Moore-Penrose pseudoinverse matrix
of the coefficient matrix C̄, f̂n,j represents the identified
natural frequency associated with the mode j of the mechan-
ical system, and ξ̂j is the identified damping ratio relative to
the mode j of the linear dynamical system. Subsequently,
an improved estimation of the system damping matrix R̂
based on the proportional damping assumption can be readily
obtained as follows:

R̂ = α̂M̂ + β̂K̂ (46)

where the proportional damping coefficients α̂ and β̂ are
calculated from the identified modal parameters by using the
proposed least-square approximation method.

V. EXPERIMENTAL MODAL ANALYSIS

In this section, the proposed system identification numer-
ical procedure based on the sequence of system Markov
parameters obtained from experimental input-output data is
used for determining a mathematical model of the two-story
frame structure. Subsequently, the system modal parameters
are obtained by performing an experimental modal analysis.
In order to achieve this goal, an impact hammer instrumented
with a load cell is used to excite impulsively the first floor of
the two-story shear building system and the corresponding
accelerations of the two floors of the frame structure are
recorded by using piezoelectric transducers. The impulsive
force signal obtained by using the load cell of the impact
hammer is shown in figure 4. The acceleration signals
of the frame structure recorded in correspondence of the
impulsive excitation by using the piezoelectric transducers
placed on the two floors of the two-story shear building
system are respectively shown in figures 5 and 6. The
sampling frequency used for obtaining the experimental data
is fs = 32 (Hz), whereas the time span considered is
Ts = 32 (s). The sampling time step is ∆t = 3.125·10−2 (s)
which corresponds to a Nyquist frequency of fN = 16 (Hz).
Therefore, the frequency range of interest spanning from
0 Hz to 15 Hz is correctly captured by the experimental
input-output data acquired during the experimental testing.
The experimental sequences of input-output data were fil-
tered in the frequency domain. To this end, a low-pass
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Fig. 4. Force input measurement
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Fig. 5. Acceleration output measurement of the first floor

filter having a cut-off frequency of fc = 16 (Hz) was
used for eliminating the influence of high-frequency noise.
By using the proposed system identification numerical pro-
cedure based on the set of input-output data obtained by
means of experimental measurements, the set of observer
Markov parameters Ȳk was identified. Subsequently, the
system Markov parameters Yk and the observer gain Markov
parameters Y0

k were recovered from the identified sequence
of the observer Markov parameters Ȳk. Then, the matrix
sequence of the combined Markov parameters Γk was assem-
bled by using the identified Markov parameters Ȳk and the
identified observer gain Markov parameters Y0

k employing
recursive relationships. The combined Markov parameters
Γk were subsequently used to construct the sequence of
Hankel matrices N̄(k − 1) necessary for implementing the
proposed system identification method. In this process, the
Hankel matrix N̄(0) was factorized by using the Singular
Value Decomposition (SVD) method. Figure 7 shows the
magnitude of the singular values of the identified Hankel
matrix N̄(0). As shown in figure 7, only 4 singular values
have a relatively large magnitude. Consequently, the order of
the identified state-space model representing mathematically
the two-story shear building system is n̂ = 4. Thus, the
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Fig. 6. Acceleration output measurement of the second floor
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Fig. 7. Magnitude of the singular values of the identified Hankel matrix

identified discrete-time state-space matrices Â, B̂, Ĉ, and
D̂ corresponding to the identified linear dynamical model
of the two-story frame structure and the identified observer
matrix Ĝ can be computed by using the system identification
approach developed in this work leading to the following set
of identified modal parameters:

f̂n,1 = 1.912 (Hz)

ξ̂1 = 0.0118

ρ̂1 =
[

1 0.937
]T

Θ̂1 = diag (0, 0.1076)

(47)


f̂n,2 = 6.847 (Hz)

ξ̂2 = 0.0039

ρ̂2 =
[

1 2.180
]T

Θ̂2 = diag (0,−3.1642)

(48)

wheref̂n,j represents the identified natural frequency of the
mode j, ξ̂j indicates the identified damping ratio correspond-
ing to the mode j, ϕ̂j = eiΘ̂j ρ̂j is the identified modal
vector of the mode j, ρ̂j denotes the identified vector of
relative modal amplitudes of the mode j, and Θ̂j identifies
the relative phase matrix of the mode j. It is important to note
that the modal parameters of the identified continuous-time

state-space model are consistent with those obtained by using
the approximate modal analysis based on the preliminary
lumped parameter model of the frame structure. Furthermore,
a preliminary estimation of the system structural damping
is obtained from the identified modal parameters. However,
since the magnitude of the identified modal damping is small,
the identified mode shapes can be assumed approximately in
phase or perfectly out of phase. Therefore, the hypothesis
of proportional damping can be employed and the proposed
method for identifying the proportional damping coefficients
can be used for improving the estimation of the damping co-
efficients. By doing so, the proportional damping coefficients
can be readily computed to yield:

α̂ = 0.1752

β̂= 3.4355 · 10−5
(49)

where α̂ and β̂ are the identified proportional damping
coefficients obtained by using the simple least-square esti-
mation method developed in this investigation. Moreover, a
second-order mechanical model can be constructed from the
identified sate-space representation by using the methodol-
ogy discussed in the paper leading to the following set of
identified matrices:

M̂ =

[
1.3005 −0.0846
−0.0846 0.5663

]
(50)

K̂ =

[
1047.3 −824.1
−824.1 841.6

]
(51)

R̂ =

[
72.8876 −45.6374
−45.6374 46.3942

]
(52)

where M̂ represents the identified mass matrix, K̂ indicates
the identified stiffness matrix, and R̂ is the identified damp-
ing matrix. An improved estimation of the identified damping
matrix R̂ can be obtained employing the proportional damp-
ing assumption and considering the identified proportional
damping coefficients α̂ and β̂ together with the identified
mass and stiffness matrices M̂ and K̂ as follows:

R̂ = α̂M̂ + β̂K̂

=

[
0.3955 −0.0485
−0.0485 0.1838

] (53)

As shown in the next section of the paper, the identified
second-order mechanical model of the two-story frame struc-
ture can be used for the optimal design of an effective control
strategy. The optimal feedback controller is implemented by
means of an actively controlled inertial-based vibration ab-
sorber and leads to the reduction of the structural vibrations
induced by and external source of excitation.

VI. FEEDBACK CONTROL DESIGN

In this section, the development of a feedback controller is
described. The feedback controller developed in this section
is used for reducing the structural vibration of the two-
story building system. The architecture of the feedback
controller that is employed for the implementation of the
control strategy described in this section is shown in figure
8. As shown in figure 8, the ground of the frame structure
is excited by a shaker. The shaker is connected to the
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ground of the two-story structure by means of a stinger.
In order to measure the force transferred to the two-story
frame structure by the shaker, a load cell is collocated
between the ground of the structure and the stinger. The
shaker is connected to a power amplifier that receives in-
put signals from an arbitrary wave function generator. In
order to measure the mechanical vibrations of the two-
story shear building system, piezoelectric transducers that
capture the system accelerations are collocated on each floor
of the frame structure using the same experimental set-up
employed for identifying the dynamic model of the two-
story system. Furthermore, a physical pendulum having an
additional mass concentrated on the tip is collocated on the
second floor of the frame structure. The physical pendulum
schematically shown in figure 8 is designed to work as an
actively controlled inertial-based vibration absorber. To this
end, the physical pendulum is actively controlled using a
control actuator driven by a brushless motor. The brushless
motor is equipped with an encoder that allows for sensing
the pendulum angular rotation. The control actuator provides
a control torque that is calculated in real time by using
a digital controller. For this purpose, the digital controller
communicates with the brushless motor by means of a
drive device, reads the acceleration signals obtained from
the piezoelectric transducers, and makes use of the force
signal measured by the load cell. The digital controller can
be programmed offline and monitored online in order to
calculate a feedback control law for the control torque of the
brushless motor that is based on the force and acceleration
measurements. The control method used for the design of
the feedback controller is the Linear Quadratic Gaussian
(LQG) control approach. This method is implemented by
using the identified second-order mechanical model of the
two-story frame structure described in the previous section
of the paper. More importantly, the optimal design of the
feedback controller is performed using the identified second-
order mechanical model of the two-story structure in combi-
nation with a linear lumped parameter model of an actively
controlled inertial-based vibration absorber realized using the
actuated pendulum. The updated mechanical model used to
design the feedback controller includes n2 = 3 degrees of
freedom. The generalized coordinates used in this mechanical
model are contained in a configuration vector denoted with

x(t) and given by x(t) =
[
x1(t) x2(t) θ(t)

]T
, where

x1(t) and x2(t) represent the linear displacements of the first
and second floors of the frame structure, respectively, while
θ(t) identifies the angular rotation of the pendulum. Em-
ploying the mathematical methods of analytical mechanics,
the mechanical model of the two-story shear building system
with the pendulum hinged on the second floor can be readily
obtained as follows:

Mẍ(t) + Rẋ(t) + Kx(t) = Teue(t) + Tcuc(t) (54)

where ẍ(t) is the system generalized acceleration vector,
ẋ(t) represents the system generalized velocity vector, x(t)
denotes the system generalized coordinate vector, M is
the system mass matrix, R represents the system damp-
ing matrix, K denotes the system stiffness matrix, ue(t)
is the vector of uncontrollable inputs, uc(t) is the vector
of controllable inputs, Te is a transformation matrix that
identifies the locations of the uncontrollable inputs, and Tc

is a transformation matrix that identifies the locations of
the controllable inputs. For the two-story system with the
pendulum attached on the second floor, the system mass,
stiffness, and damping matrices are respectively defined as
follows: 

M = BT
x M̂Bx + BT

3 M3B3

K = BT
x K̂Bx + BT

3 K3B3

R = BT
x R̂Bx + BT

3 R3B3

(55)

where M̂, R̂, and K̂ denote respectively the identified mass,
damping, and stiffness matrices obtained in the previous
section of the paper, while M3, R3, and K3 represent respec-
tively the mass, damping, and stiffness matrices associated
with the physical pendulum that are given by:

M3 =

[
m3 m3l
m3l m3l

2 + Izz,3

]
, K3 = m3gl, R3 = 0

(56)
where g = 9.81 (m

/
s2) represents the gravity acceler-

ation, l = 82.5 · 10−3 (m) is half the length of the
pendulum, m3 = 0.083 (kg) denotes the pendulum mass,
and Izz,3 = 8.32 · 10−4 (kg · m2) identifies the mass
moment of inertia of the pendulum. In these equations,
the matrices Bx and B3 are appropriate Boolean matrices
that can be used to formulate the complete mechanical
model of the two-story frame structure with the pendulum
hinged on the second floor. For the two-story shear building
system, the vector of uncontrollable inputs ue(t) contains
an external excitation force applied on the ground of the
frame structure, whereas the vector of controllable inputs
uc(t) includes a control torque applied on the pendulum.
Considering a worst-case scenario, the uncontrollable input
vector ue(t) is equal to an external force Fe(t) defined
by the superposition of two harmonic components having
large amplitudes and characterized by a set of excitation
frequencies close to the first two natural frequencies of the
frame structure. Furthermore, in order to simulate the action
of the earthquake, the two-story frame structure is excited by
a noise excitation source combined with the two harmonic
excitations. Therefore, considering the worst case scenario
in which the external excitation frequencies are close to the
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first two system natural frequencies, the external force Fe(t)
modeled as an uncontrollable input is defined as follows:

Fe(t) = F0,1 sin(2πf1t) + F0,2 sin(2πf2t) + w(t) (57)

where F0,1 = 0.1 (N) and F0,2 = 0.1 (N) denote the am-
plitudes of the first and second harmonic forces, respectively,
whereas f1 = 1.9 (Hz) and f2 = 6.8 (Hz) represent the
frequencies of the first and second harmonic forces, respec-
tively, and w(t) is a noise excitation source characterized
by a normal Gaussian distribution. In the identification and
control scheme considered in section and showed in figure
8, the external excitation force can be measured using a
load cell collocated between the shaker and the stinger,
while the measurable output variables of the two-story shear
building system are the accelerations of the two floors and
the pendulum angular rotation. Consequently, these output
variables can be included into an output vector denoted with
y(t) and defined as y(t) =

[
ẍ1(t) ẍ2(t) θ(t)

]T
. The

system measurement equations are, therefore, given by:

y(t) = Cdx(t) + Cvẋ(t) + Caẍ(t) (58)

where Cd is the generalized displacement influence matrix
on the measured output, Cv is the generalized velocity
influence matrix on the measured output, and Ca is the
generalized acceleration influence matrix on the measured
output. Considering a time span equal to Ts = 64 (s) and a
time step equal to ∆t = 3.125 · 10−2 (s), an optimal state
estimator and an optimal controller can be obtained by using
the LQG methodology. This approach leads to the following
set of discrete-time state-space and measurement equations:

ẑ(k + 1) = Aẑ(k) + Beue(k) + Bcuc(k)
+K∞ (y(k)− ŷ(k))

ŷ(k) = Cẑ(k) + Deue(k) + Dcuc(k)

uc(k) = F∞ẑ(k)

(59)

where k is the discrete time, ẑ(k) is the estimated discrete-
time state vector, and ŷ(k) denotes the estimated discrete-
time measurement vector. In these equations, the matri-
ces K∞ and F∞ represent a discrete-time infinite-horizon
Kalman filter gain and a discrete-time infinite-horizon opti-
mal feedback gain, respectively, which can be readily com-
puted by using the LQG regulation and estimation method.
The discrete-time state-space model given by the set of
matrices A, Be, Bc, C, De, and Dc can be easily derived
from the mechanical model of the two-story frame structure
combined with the pendulum system. In order to analyze the
dynamic behavior of the two-story structural system with
and without the action of the feedback controller, the control
input is deactivated in the time range between t = 0 (s)
and t = 32 (s) and it is activated in the time range between
t = 32 (s) and t = 64 (s). The estimated displacement of
the first floor of the frame structure resulting from the imple-
mentation of the control system is shown in figure 9, whereas
the corresponding control torque used as a controllable input
signal is represented in figure 10. Observing the estimated
displacement shown in figure 9, it is apparent that the action
of the feedback controller allows for obtaining a considerable
amplitude reduction of the system mechanical vibrations.
The reduction of the system vibrations can be quantitatively

Fig. 9. Estimated displacement of the first floor

Fig. 10. Control torque

measured by comparing the maximum amplitude values of
the system displacements with and without the action of
the feedback controller. This quantitative comparison can be
carried out as follows:

(
xnc1,max − xc1,max

)/
xnc1,max = 76.93 (%)(

xnc2,max − xc2,max

)/
xnc2,max = 65.78 (%)

(60)

where xnc1,max and xnc2,max denote the maximum values of the
estimated structural displacements when there is no control
action, whereas xc1,max and xc2,max represent the maximum
values of the estimated structural displacements when the
feedback controller acts on the pendulum attached on the
two-story structure. It is important to note that the numerical
results found in this section are consistent with the system
actual dynamic behavior observed during the experimental
testing.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

The main research areas of interest for the authors are
multibody dynamics [58], [59], [60], [61], system identifica-
tion [62], [63], [64], [65], and nonlinear control [66], [67],
[68], [69], [70]. In this respect, the research of the authors is
focused on the development of new methods for obtaining ac-
curate analytic modeling [71], [72], [73], new numerical pa-
rameter identification methodologies based on experimental
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data [74], [75], [76], and new control approaches suitable for
regulating the dynamic behavior of rigid-flexible multibody
systems [77], [78], [79], [80], [81], [82], [83], [84], [85],
[86]. This paper, on the other hand, is concerned with the
development of a time-domain system identification method
for obtaining first-order state-space models and second-order
mechanical models based on the system configuration space
and using experimental input-output data. The case study
considered for the experimental testing of the system identifi-
cation numerical procedure developed in this work is a frame
structure that can be modeled as a lumped parameter system.
First, the frame structure is modeled as a two-story shear
building system that is mathematically described by using a
two-degree-of-freedom lumped parameter mechanical model.
This simplified model is readily developed in the paper
employing the analytical methods of classical mechanics.
The natural frequencies and the mode shapes obtained ana-
lytically by using the preliminary mechanical model based
on the lumped parameter approach are useful for guiding
the experimental identification process and for assessing the
quality of the numerical results obtained by using the pro-
posed system identification approach. The proposed system
identification numerical procedure is developed employing
the combination of the Observer/Kalman Filter Identification
Method (OKID) with the Eigensystem Realization Algorithm
(ERA). The proposed methodology is used in this work for
performing the experimental modal analysis of the two-story
shear building system employing an impulsive excitation
as the input force measurement and recording the corre-
sponding structural accelerations as output measurements. In
particular, the method developed in this paper leads to the
identification of a first-order state-space model and to the
reconstruction of a second-order mechanical model which
can be readily performed in the time domain by using input
force measurements and output acceleration measurements
recorded from the vibrations of the frame structure. Subse-
quently, the first-order dynamical model of the mechanical
system considered as the case study is used for performing
the experimental modal analysis in order to obtain the
system modal parameters. For this purpose, in order to
obtain a reliable estimation of the system mass, stiffness, and
damping matrices, a method for extracting a second-order
mechanical model from an identified state-space realization
is used. Furthermore, the estimation of the system damping
is improved by using an approximation method based on
the least-square computational approach and assuming the
proportional damping hypothesis. Finally, the second-order
mechanical model identified in this investigation is used
for developing an actively controlled inertial-based vibration
absorber based on the Linear Quadratic Gaussian (LQG) con-
trol and estimation approach. The actively controlled inertial-
based vibration absorber is realized employing a physical
pendulum hinged on the second floor of the frame structure.
The pendulum system is controlled using a brushless motor
and the feedback control action is computed in real time by
using a digital controller. The numerical and experimental
results shown in the paper confirmed the effectiveness of
the methodology proposed in this investigation. However,
the goal of the future research developments will be to
obtain the suppression of the mechanical vibrations of three-
dimensional frame structures that are induced by multiple

external sources of disturbances. Therefore, future research
will be devoted to the analytical derivation, the practical im-
plementation, and the experimental testing of more complex
identification and control techniques.
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