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Abstract—Underwater moving object detection/tracking is 

critical in various applications such as exploration of natural 

undersea resources, acquiring of accurate scientific data to 

maintain regular surveillance of missions, navigation and 

tactical surveillance. In currently, underwater moving target is 

usually tracked using the traditional non-linear estimators such 

as Extended Kalman Filter (EKF) and unscented Kalman Filter 

(UKF). However, if an underwater target moves with delicate 

maneuver, the accuracy of the filter may decline, even diverge. 

In this paper, a (STSGQF) is proposed to deal with the problem. 

The STSGQF is obtained by introducing the Strong Tracking 

Filter (STF) to the Sparse Grid Quadrature Filter (SGQF). 

Compared with the Gauss-Hermite Quadrature Filter (GHQF), 

the sparse grid method is available to reduce the SGQF's 

computational cost significantly, with slight sacrifice of 

accuracy its accuracy declines slightly. Meanwhile, the 

STSGQF has stronger robustness than SGQF against the state 

change. The effectiveness of STSGQF is demonstrated by the 

simulation results more robust, better robustness. 

 
Index Terms—Underwater target tracking; Gauss hermite 

quadrature filter; Sparse grid; Strong tracking filter 

 

I. INTRODUCTION 

 HE submarine plays a significant role in underwater 

operation, such as the exploration of marine resource and 

the demand of military. Detecting, classifying and tracking 

the underwater target around the submarine were 

indispensable parts of underwater defense system, which was 

to ensure the security of submarines [1]. So far, various types 

of sonar arrays and underwater sensor network had been 

applied, they were generally mounted on a ship, or deployed 

prior to the application [1]-[4]. There may be no sufficient 

flexibility to deal with real-time tracking missions, and the 

propagation delay of underwater acoustic communication 

may cause the decline of tracking accuracy [1]. It is important 

to choose a target tracking algorithm that can track the 

moving target expeditiously [5]-[8]. Theoretically, the 

underwater target tracking was a nonlinear estimate process, 
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so the nonlinear filter algorithm is an attractive choice 

[9]-[11]. 

 The Extended Kalman Filter (EKF) was widely used for 

state estimation in nonlinear systems [13]-[15]. However, the 

process of calculating the Jacobian matrix was complex and 

the nonlinear function must be derivable [14]. Moreover, the 

EKF may suffer from the problems of performance degrading 

and diverging in the linearization process [15]. Alcocer et.al 

proposed the Unscented Kalman Filter (UKF), in which the 

Unscented Transformation (UT) was adopted to propagate 

meaning and covariance information [14], [16], [17]. As 

compared with the EKF, the UKF did not need to calculate the 

Jacobian matrix and its approximation of posterior 

distribution can reach 3rd accuracy level [16]. However, the 

effect of UKF was not good in a high dimensional strong 

nonlinear system [14]. On the basis of Gauss Hermite 

Quadrature (GHQ) rule, the Gauss Hermite Quadrature Filter 

(GHQF) was proposed by Ito et al.[18]-[22]. In theory, the 

GHQF can reach any order accuracy by selecting the number 

of the one dimensional quadrature points, but the 

computational complexity of the GHQF grows exponentially 

with the system dimension, which was known as "curse of 

dimensionality" [21], [22]. To solve this problem, the Sparse 

Grid Quadrature Filter (SGQF) based on the Sparse Grid 

Quadrature (SGQ) rule was presented [19]-[22]. The SGQ 

rule is based on a special linear combination of lower level 

sensor products to extend the one dimensional point set 

[21]-[23]. Therefore, the number of quadrature points under 

the SGQ rule was obviously less than that of the GHQ rule 

[19]. In terms of the point selection strategy, the SGQF was 

more flexible and it has higher accuracy than UKF [22].  
However, if the target state suddenly changes, the accuracy 

of the proposed filters above (EKF, UKF, GHQF and SGQF) 

may decline and even diverge due to model errors [14]. The 

adaptive algorithm is a good strategy to solve the problem. 

One of them, the Strong Tracking Filter (STF) was proposed 

by Zhou et al. to overcome the poor robustness[24], in which 

a fading factor was introduced to provide better state 

estimation by adjusting the gain matrix in real time [24]-[28], 

STF had several important merits, including: 1) strong 

robustness against model uncertainties; 2) better real time 

state tracking capability, no matter whether the system 

reaches steady or not; and 3) moderate computational 

cost[23]-[25]. To improve the accuracy and simplify the 

computation, a filter called Strong Tracking Unscented 

Kalman Filter (STUKF) was developed based on the 

combination of UKF and STF[27];  [28]. The accuracy of 

SGQF was higher than UKF. In this paper, a novel point 

based adaptive nonlinear filter algorithm called Strong 
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Tracking Sparse Grid Quadrature Filter (STSGQF) was 

proposed. In the STSGQF, the suboptimal fading factor of 

STF was introduced to time update and measurement update 

equations of the SGQF to provide better robustness and 

accuracy. 

The rest of the paper was organized as follows: in section II, 

the GHQF was briefly reviewed and the SGQ rule was 

introduced by a concrete example. In section III, the STF was 

reviewed and the STSGQF was derived. Two simulation 

examples were given in section IV, various kinds of filters 

were illustrated in weak and strong maneuver conditions, 

respectively. Conclusions were given in section V. 

 

II. SPARSE GRID QUADRATURE FILTER 

The SGQF based on the SGQ rule and the Kalman Filter 

framework was briefly introduced. 

A.  Gauss-Hermite Quadrature Filter  

Consider a nonlinear system given by 

             1( )k k k x f x w   (1) 

           ( )k k k z h x v   (2) 

Where kx  is the state vector and kz  is the measurement 

vector; kw  and kv  are independent white Gaussian process 

noise and measurement noise with covariance kQ  and kR , 

respectively. 

The univariate GHQ rule is given by 

           
1

( ) ( ;0,1)d ( )
s

i i

i

f x x x f 


  (3) 

where ( )f x  is the integrand; s  is the number of quadrature 

points; i  and i  are quadrature points and weights 

obtained by quadrature rule, respectively. 

The univariate points and their weights can be calculated as 

follows. 

First of all, constructing a symmetric tri-diagonal matrix J  

with zero diagonal elements and 

, 1 / 2 ( 1,2, , 1)i i i i s   J . Then the j-th 

quadrature point j  is calculated by 2j j  , where 

j  is the j-th eigenvector of J . The corresponding weight 

j  is calculated by 
2

1[( ) ]j j  v , where 1( )jv  is the first 

element of the j-th normalized eigenvector of J . Finally, the 

quadrature points and weights are obtained. 

The selection of different number of quadrature points are 

given by Table I. 

The multivariate GHQ rule of n-dimensional vector 

( ; , )n0x x I  is extended by the above univariate GHQ 

rule as follows. 

1 1

1 1 1 1

( ) ( ; , )d ( ) ( ) ( )

n

n n

n

s s s

n i i i i i i

i i i

f f    
  

    0f x x I x f   (4) 

where 
1 2

T[ , , , ]
ni i i i    and 

1
p

n

i i

p

 


  are 

the i-th quadrature point and its weight, respectively. 
TABLE I 

QUADRATURE POINTS AND WEIGHTS 

Number 

of points 
Point set G and weight set A 

Accuracy 

level 

1 
1 {0}G   1 

 
1 {1}A     

3 
2 1 1{ ,0, } 1.7321,0,1 }21{ .73G p p   

2 2 1 2{ , , }

0.1667,0.6667,0{ . 6 }16 7

A   


 

2 

5 
3 3 2 2 3{ , ,0, , }

2.8570, 1.3556,0,1.3{ }556,2.8570

G p p p p  

  

3 5 4 3 4 5{ , , , , }

0.0113,0.2221,0.5333,0.2221{ ,0.0113}

A     



 

3 

 

The multidimensional GHQF algorithm is summarized as 

follows. 

1) Initialization 

0 0
ˆ [ ]Ex x ， 0 0cov( )P x ； 

where 0x̂  is the initial state vector; 0P  is the initial state 

covariance matrix. 

2) Prediction 

T
1 1 1k k k  P S S                                                     (5) 

, 1 1 1
ˆ

i k k i k    S x                                           (6) 

| 1 , 1

1

ˆ ( )
M

k k i i k

i

 



x f                                          (7) 

T
| 1 , 1 | 1 , 1 | 1

1

1

ˆ ˆ( ( ) )( ( ) )
M

k k i i k k k i k k k

i

k

    





  



P f x f x

Q

 

                                                                            (8) 

where , 1i k  is the transformed point; 
nM s  is the 

number of total points; | 1
ˆ

k kx  and | 1k kP  are the predicted 

state vector and the predicted state covariance matrix, 

respectively. 

3) Update 

T
| 1 | 1 | 1k k k k k k  P S S                                               (9) 

,k| 1 | 1 | 1
ˆ

i k k k i k k    S x                                    (10) 

| 1 ,k| 1

1

ˆ ( )
M

k k i i k

i

 



z h                                         (11) 

T
, | 1 ,k| 1 | 1 ,k| 1 | 1

1

ˆ ˆ( ( ) )( ( ) )
M

zz k k i i k k k i k k k

i

k

    



  



P h z h z

R

 

                                                                          (12)

T
, | 1 , 1 | 1 ,k| 1 | 1

1

ˆ ˆ( ( ) )( ( ) )
M

xz k k i i k k k i k k k

i

    



  P f x h z 

                                                                          (13) 
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1
, | 1 , | 1k xz k k zz k k


 K P P                                               (14) 

| 1 | 1
ˆ ˆ ˆ( )k k k k k k k   x x K z z                               (15) 

T
| 1 , | 1k k k k zz k k k  P P K P K                                 (16) 

where ,k| 1i k  is the transformed point; , | 1zz k kP  and 

, | 1xz k kP  are innovation covariance matrix and cross 

covariance matrix, respectively; | 1ˆk kz  is the predicted 

measurement; kK  is the gain matrix; ˆ
kx  and kP  are the 

updates of state vector and state covariance matrix, 

respectively. 

 

B. Sparse grid quadrature rule 

As can be seen in the Eq. (4), 
ns  quadrature points were 

needed to solve the multivariate numerical integration. The 

computational cost grows exponentially as dimension 

increases, hence the "curse of dimension"[21]. The 

sparse-grid method utilized a linear combination of low-level 

sensor products to approximate the multivariate integral [18].  

The multivariate numerical integral based on sparse-grid 

method was shown as follows. 

1

,

1
1 1

1

( ) ( ; , )d ( )

= ( 1) ( )( )
n

n

q

n n L

L
L n L n

n i i

q L n N

I f I f

C I I f


   


  

 

  



 

0x x I x

 

                                                                                   (17) 

where 
T

1 2[ , , , ] n
nx x x x ; , ( )n LI f  is an 

approximation to the n-dimensional integral with accuracy 

level L , which means that , ( )n LI f  is accurate to all the 

polynomials of the form 1 2

1 2
ni i i

nx x x , and satisfies the 

condition of 

1

2 1
n

j

j

i L


  .  The binomial coefficient is 

marked as 
1
1

L n
nC  
 ; The sensor product is marked as  . 

( )
jiI f  is the j-th univariate integral with the accuracy level 

of ji  , and  1 2, , , ni i i  is an accuracy level 

sequence. Accuracy level ji  means  ( )
jiI f  is accurate up 

to the (2 1)ji  -th order of the univariate polynomial. 
n
qN  

is the set of accuracy level sequences, it is defined as 

1

: , 0

, 0

n
n
q j

j

n
q

N i n q q

N q



   
      
   


 


                     (18) 

where q  is a parameter of nonnegative integer and satisfies 

the condition of 1L n q L    ;   is the empty set. 

The point set of the univariate integral ( )
jiI f  is marked 

as
jiX . The univariate quadrature points in 

jiX  are selected 

through the univariate GHQ rule mentioned in section A. 

1

T[ , , ]
ns s sx x x  is the s-th quadrature point of the 

n-dimensional vector and 
j js ix X ; 

js  is the 

corresponding weight in ( )
jiI f  associated with the point 

jsx . The set of n-dimensional sparse-grid quadrature points is 

given by 

1

1

, ( )
n

n

q

L

n L i i

q L n N

X X X


  

                        (19) 

where  is denoted as the union of the quadrature point sets. 

Each element in 
n
qN  can build a special sensor product 

jiX  

where 
n

j qi N . 

The SGQ rule can be regarded as that an n-dimensional 

integral is expanded by the univariate integral through a 

particular strategy of point selection. The explicit form of the 

Eq. (17) can be written as 

1

1 1

1

,

1 1
1

1

( ) ( , , )

( 1)

n
n

s i s iq n n

j

L

n L s s

q L n x X x XN

n
L n L n

n s

j

I f f x x

C 



   

   






  
  
  

   



 

                                                                                    (20) 

The selection strategy of the SGQ points and the 

corresponding weights is shown as follows. 

1) The dimension n  and accuracy level L  of the 

multivariate integral are determined at first; 

2) Parameter q  and the set of accuracy level sequences 

n
qN  can be calculated by Eq. (18); 

3)  1 2, , , ni i i  is obtained, then the SGQ points 

like sx  are obtained; 

4) Finally, calculating the corresponding weight 
js . If 

the point is new, add it to the set of SGQ points  , and 

calculate the corresponding weight of s  as follows 

1 1
1

1

( 1)
j

n
L q L q

s n s

j

W C    




                                  (21) 

If the point already exists, make it stay and update its weight 

by recursion addition. 

To explain the SGQ rule specifically, the process of 

quadrature points with accuracy level 3L   is analyzed. The 

value of q  can be 0, 1 or 2 and the dimension is 3n  . The 

univariate quadrature points and weights of different accuracy 

are shown in TABLE 1. 

When 0q  , 

1

n

j

j

i n


 , so 
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0 (1,1,1, ,1)(1,1,1, ,1) (1,1,1, ,1)n

n

N
  

  
  

 

that is to say, all of the n  points are the origin, the number of 

the SGQ points is 0 1qX   . By the Eq. (21), the weight is 

3 1 0 3 1 0
1

( 1)( 2)
( 1) C (1 1 1)

2
n

n

n n
W    



 
       

When 1q  , 

1

1
n

j

j

i n


  , 

1 (2,1,1, ,1)(1,2,1, ,1) (1,1,1, ,2)n

n

N
  

  
  

 

for the sequence (2,1,1, ,1) , there are 3 n-dimensional 

SGQ points 
T

1[ ,0, ,0]p , 
T

1[ ,0, ,0]p  and 

T[0,0, ,0] . The origin has been chosen, so the number of 

the SGQ points is 1 2qX n  . The weights of the points are 

T

T

1

3 1 1 3 1 1
1 1 1

1

[0,0, ,0]

3 1 1 3 1 1
1 2 2

1

the type of [ ,0, ,0]

( 1) C ( 1 1 1) ( 1)

( 1) C ( 1 1 1) ( 1)

n
n

n
n

p

n n n

W
n

 

 

   




   






          


         









When 2q  , 

1

2
n

j

j

i n


  ,  

2

2

(3,1,1, ,1)(1,3,1, ,1) (1,1,1, ,3)

(2,2,1, ,1)(2,1,2, ,1) (1,1,1, , 2)

n

nn

C

N

 
  

  
 
  

 

Following the previous analysis, if only one of the accuracy 

level sequence is 3, the number of points is 4n ; if two 

accuracy levels are selected for 2 simultaneously, the number 

is 
2 2 2 2 ( 1)nC n n    , so 

2
2 2 2qX n n   . The 

weights of the points are 

T

3 1 2 3 1 2
1 3

1

3 1 2 3 1 2 2
1 1 1

2

2
3 1

[0,0, ,0]

3 1 2 3 1 2 1
1 1 1 2

2

( 1) C ( 1 1 1)

( 1) C C ( 1 1)

( 1)

2

( 1) C C ( 1 1)

n
n

n n
n

n n
n

n

n n
n

W



 

 

 

   




   




   
 



       

        


 

        

 T

1

T

1 1

1 2

the type of [ ,0, ,0]

3 1 2 3 1 2 2
1 2 2 2

2

the type of [ , ,0, ,0]

3 1 2 3 1 2
1 4

( 1)

( 1) C ( 1 1)

( 1) C ( 1

p

n
n

p p

n

n  

  





   




 

   




       

    

T

2

T

3

4
1

the type of [ ,0, ,0]

3 1 2 3 1 2
1 5 5

1

the type of [ ,0, ,0]

1 1)

( 1) C ( 1 1 1)

n

p

n
n

p



 





   

























  



        




 

As a result, the number of the SGQ points with 3L   is 

2
,3 2 4 1, 2nX n n n                                      (22) 

and the corresponding weights are 
T

2
1 3 1

T
1

2 1 2

T
1 13

2
2

T
2

4

T
3

5

(1) [0,0, ,0]

( 1)( 2) ( 1)
( 1)

2 2

(2) the type of [ ,0, ,0]

( 1) ( 1)

(3) the type of [ , ,0, ,0]

(4) the type of [ ,0, ,0]

(5) the type of [ ,0, ,0]

n n n n
n n n

p

n n

p pW

p

p

  

 










      




    

   


 








(23) 

Similarly, the number of the SGQ points with 2L   is 

,2 2 1, 2nX n n                                         (24) 

The weights 2W  are 

T

1

2 T
1

2

(1) [0,0, ,0]

( 1)

(2) the type of [ ,0, ,0]

n n
W

p








  
 





             (25) 

For example, the process of 2-dimensional point 

selection was shown intuitively in Fig. 1. 

SGQGHQ  
Fig.1 Sparse grid points and traditional points 

 

The quadrature points   and the weights W  obtained by 

SGQ rule were substituted in GHQF, then the SGQF was 

derived. 

According to the literature [18], the n-variate integral ,n LI  

in the Eq. (17) was exact for n-variate polynomials of the total 

order up to 2 1L . Then the SGQF with 3L   was 

superior to the EKF and the UKF, furthermore, its 

computation was far less than the GHQF. 
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III. STRONG TRACKING SPARSE GRID QUADRATURE FILTER 

The STF was introduced to improve the robustness of the 

SGQF. The STF showed significant reduction of system 

uncertainty to the system uncertainty like unpredictable 

disturbances created by external condition and model 

uncertainties [23]. 

A. Strong Tracking Filter 

The STF can timely adjust the gain matrix with a fading 

factor to deal with sudden changes. So the predicted 

covariance matrix | 1k kP  should be changed as 

T
| 1 | 1 1 | 1 1k k k k k k k k k     P F P F Q                             (26) 

where k  was the fading factor. Its suboptimal solution was 

0 0

0

, 1

1 , 1
k

 





 


                                                (27) 

where  

0

tr[ ]

tr[ ]

k

k

 
N

M
                                                       (28) 

T
1

T T
| 1 1 | 1

k k k k k k

k k k k k k k k
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  
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
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N V H Q H R

M H F P F H
                             (29) 

and  

1 1
| 1

1

| 1
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                                          (30) 

where tr( )  was the trace of matrix; kV  was the covariance 

matrix of the residual sequence, it was unknown and can be 

estimated by 

T
1 1

T
1

1

1
1

k k k k

k

k





 


  




V V

 

                                  (31) 

where 0 1   was the forgetting factor, usually, 

0.95  ; k  was the residual sequence as follows 

| 1
ˆk k k k z z                                                      (32) 

The revised predicted covariance matrix took the place of 

the original matrix, then we can get the STF. 

 

B. Strong Tracking Sparse Grid Quadrature Filter 

Before the fading factor was introduced, the predicted 

covariance matrix was marked as | 1k k

P , the innovation 

covariance matrix was marked as , | 1zz k k


P , the cross 

covariance matrix was marked as , | 1xz k k


P , and the predicted 

measurement was marked as | 1ˆk k


z .Process noise and 

measurement noise were independent, so 

T
, | 1 | 1 | 1

T
| 1 | 1

T T T
| 1 | 1

T
| 1

ˆ ˆE[( )( ) ]

ˆ ˆE{[ ( ) ] [ ( ) ] }
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=

zz k k k k k k k k

k k k k k k k k k k k k

k k k k k k k k k k k k

k k k k k


  

 

 




  

       

     



P z z z z

H x x w v H x x w v

H x x x x H w v w v

H P H R

                                                                          (33) 

and  

T
, | 1 | 1xz k k k k k

 
 P P H                                               (34) 

then 

T 1
, | 1 | 1[ ] ( )k xz k k k k

  
 H P P                                    (35) 

The Eq. (33), (34) and (35) were put into the Eq. (29), the 

equivalent expressions of kN  and kM  were given by 

T 1 1
, | 1 | 1 1 | 1 , | 1

, | 1

[ ] ( ) ( )k k k xz k k k k k k k xz k k

k zz k k k k

     
    




    


  

N V R P P Q P P

M P V N

(36) 

and the fading factor k  can be calculated by Eq. (27)~(36). 

The process of the STSGQF based on the SGQF was given 

as follows. 

1) | 1k k

P , , | 1zz k k


P , , | 1xz k k


P  and | 1ˆk k


z  can be 

calculated by Eq. (5)~(13); 

2) The fading factor k  is calculated by Eq. (27)~(36); 

3) The fading factor k  is introduced to the original 

predicted covariance matrix | 1k k

P , and it can be changed as 

T
| 1 , 1 | 1 , 1 | 1 1

1

ˆ ˆ= ( ( ) )( ( ) )
M

k k k i i k k k i k k k k

i

      



  P f x f x Q  (37) 

4) According to the Eq. (9)~(13), the new innovation 

covariance matrix , | 1zz k kP , the new cross covariance matrix 

, | 1xz k kP  and the new predicted measurement | 1ˆk kz  with 

fading factor are obtained; 

5) Update the filter with , | 1zz k kP , , | 1xz k kP  and | 1ˆk kz  

by the Eq. (14)~(16). 

 

IV. RESULTS AND DISCUSSION 

For both weak and strong maneuver, we compared the 

performances of different filters under the two conditions. 

A. Weak maneuver 

In Cartesian coordinate, we assumed that the underwater 

target is in motion with constant velocity of 

 10,  5,  0 /m s  at the initial position 

 200,  100,  100 m  in the directions of x , y   and z ; 

the period T  is 0.01s, and tracking the target 300 steps; 100 

Monte-Carlo simulations were carried out. 

When choosing CA model, the state vector is 

 
T

k x y z x y z x y zx  

State transition matrix is 
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Initial state covariance matrix is 
2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0diag([ ])x y z x y z x y zP =  

Process noise covariance matrix is 
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Measurement noise covariance matrix is 

diag([ ])  R  

Where   was the error of radial distance, and   was the 

pitch and azimuth’s errors. 

Five filters were compared, GHQFs with 2L   and 

3L  , SGQFs with 2L   and 3L   , and UKF with 

0   were marked as GHQF2, GHQF3, SGQF2, SGQF3 

and UKF(0), respectively. The Root Mean Square Error 

(RMSE) of position marked as RMSE-s and the RMSE of 

velocity marked as RMSE-v in Fig. 2 and Fig. 3. 
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Fig. 2   Position Root Mean Square Error 
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Fig. 3   Velocity Root Mean Square Error 

 

According to the result in Fig. 2, it is clear that the GHQF3 

performed the best and the tracking accuracy of the SGQF2 

was the worst. SGQFs performed worse than GHQFs with the 

same accuracy level. However, the SGQF3 was superior to 

the GHQF2 and the UKF (0). In Fig. 3, the relationship of five 

filters’ RMSE-v was similar to RMSE-s. 

The performance of algorithm was evaluated not only by 

considering its result but also its efficiency. The performance 

of filters was presented in Table Ⅱ. 

TABLE Ⅱ 

FILTERS’ RUNNING TIME 

Filter Time/s 

GHQF2 1371.311 

GHQF3 28295.863 

SGQF2 38.515 

SGQF3 197.390 

UKF(0) 25.498 

 

Result in TableⅡ showed that the GHQFs run much longer 

than the SGQFs with the same accuracy level, especially the 

GHQF3 has run nearly 8 hours. Although the GHQF3 

performs the best, it is the worst in terms of efficiency. The 

SGQF2 shortens about 97% running time contrasted with the 

GHQF2, only need more than half minute, yet its effect is not 

expected. The SGQF3 runs for more than 3 minutes, and 

shortens about 99% time contrasted with the GHQF3, 

furthermore, its tracking accuracy is slightly lower than the 

GHQF3 and better than the other 3 filters. The UKF (0) 

spends less than half minute on processing, but its accuracy is 

not high enough. Considering comprehensively, the SGQF3 is 

the best among the 5 filters. 

 

B. Strong maneuver 

In Cartesian coordinate, we assumed that the underwater 

target is in motion with velocity of (10, -5, -1)m/s at the initial 

position (200, 100, -100)m in the directions of x , y  and z , 

respectively; tracking the target 500 steps. Other parameters 
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and initial variables were presented in section A. Changes of 

acceleration of the target were shown in Table Ⅲ. 

TABLE Ⅲ 

CHANGE OF ACCELERATIONS 

step i  
x-acceleration 

/m/s2 

y-acceleration 

/ m/s2 
z-acceleration 

/ m/s2 

0-100 0 0 0 

100-200 -10 20 -5 

200-300 0 0 0 

300-400 -10 -20 15 

400-500 0 0 0 

 

In this test, the performances of the STF, the STUKF, the 

STSGQF3 and the SGQF3 were compared. Trajectory of the 

target was presented in Fig. 4. The RMSE-s and the RMSE-v 

are given by Fig. 5 and Fig. 6. 
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Fig.4 Target motion trajectory 
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Fig. 6 Velocity Root Mean Square Error 

 

In order to verify the effectiveness which reducing the 

computation load of STSGQF, the Monte Carlo method was 

used. We sampled 100,000 random numbers between 0 and 1. 

These values were combined with STF, STUKF, STSGQF 

and SGQF, respectively. The average run time of STF, 

STUKF, STSGQF3 and SGQF3 were 272.356s, 380.377s, 

583.798s and 710.254s respectively as seen in Table Ⅳ.  

It can be seen from Fig. 4 that the underwater target makes 

sharp turns. The results of tracking were shown in Fig. 5 and 

Fig. 6, the accuracy of strong tracking algorithms was higher 

than the SGQF3, especially when the state changes, and they 

converged more quickly than the SGQF3. Among the strong 

tracking algorithms, the STSGQF3 was the best overall. 

Considering the filters’ running time, the computational cost 

of the STF was the least, the STSGQF3 cost about 10 minutes. 

Compared with the SGQF3, the running time of the 

STSGQF3 increased, but the STSGQF3 was improved 

against the system uncertainties with increasing the running 

time. 
TABLE Ⅳ 

FILTERS’ RUNNING TIME 

Filter Time/s 

STF 272.356 

STUKF 380.377 

STSGQF3 583.798 

SGQF3 710.254 

 

V. CONCLUSIONS 

In this paper, the Strong Tracking Sparse Grid Quadrature 

Filter (STSGQF) is proposed. The STF is introduced to 

timely adjust the gain matrix, and the SGQ rule is used to 

select quadrature points flexibly and moderately. Simulation 

examples of weak and strong maneuver are provided for 

evaluating the performances of SGQF and STSGQF, 

respectively. We conclude that the SGQF can reduce the 

computational cost significantly compared with GHQF. After 

the STF is integrated into SGQF, the robustness of STSGQF 

is significantly improved despite the increase of running time. 
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Finally, in the strong maneuver case, we prove that the 

STSGQF can take tracking quickly and efficiently. 
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