
 

 
Abstract—In order to overcome the disadvantages of the 

traditional PD control in manipulator, a new point to point 
control of manipulator with interference and gravity 
uncertainty is proposed. On the Basis of PD control structure, 
the RBF neural network is introduced to realize the gravity 
compensation, and a robustness analysis is also given with 
respect to the approximation error of RBF neural network. The 
lyapunov method shows that the better performance can be 
obtained with the new scheme as compared to the present 
control methods. 
 

Index Terms—manipulator; RBF neural network; lyapunov 
function 
 

I. INTRODUCTION 

YNAMIC model of manipulator is a highly nonlinear, 
strong coupling, time-varying model, and its control 

problem has always been a hot research topic. Domestic and 
foreign scholars have proposed many control methods [1-2]. 
When the model of the manipulator is precisely known, 
combining feedback linearization with passive control, 
Romeo Ortega and Mark W. Spong [3] put forward two kinds 
of control schemes, and study the adaptive method of the two 
schemes, which make the robotic arm to reach the control 
target. However, due to the manipulator’s working 
environment and the load is always changing, the precise 
model is hard to get, uncertainty often exists in the model, 
which makes the controller is very difficult to achieve the 
ideal effect based on the accurate model [4].  

According to the model uncertainty, Le Tien Dung etc. [5] 
proposed on-line gravity compensation of the PD control, but 
simple PD control has a low accuracy, it is difficult to meets 
the requirement of manipulator control performance. Piltan [6] 
designed a PD-plus-gravity controller which has a nonlinear 
part to eliminate the term of gravity and fuzzy nonlinear 
equivalent part to eliminate the nonlinearity part. The 
proposed method can cancel the terms of gravity. But the 
fuzzy logic rules and membership functions is difficult to 
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determine. Huang [7] presented a nonlinear PD controller with 
gravity compensation for robot manipulators. The error of 
nonlinear function is used to change proportional and 
derivative gains so as to less the influence of the uncertainty 
of the dynamic parameters. Ernesto [8] combines iterative 
learning control with PID control with gravity compensation, 
and obtain global asymptotic stability.  

Neural network has the ability to approximate any 
nonlinear function, so it is widely used in the control of the 
manipulator system. Based on the lyapunov stability theory, 
Lu Lu etc. [9] put forward two BP networks to approximate 
the manipulator dynamic model, a certain effect is achieved. 
But BP network is a kind of global approximation network, it 
has long learning time and slow convergence speed, so it is 
difficult to meets the real-time requirements of control 
system. Yang [10] applied the RBF neural network to 
nonlinear robot manipulators with uncertain dynamics to 
approximate a desired control target.  

In this paper, the RBF neural network is used to 
approximate the gravity term of the dynamic equation, the 
adaptive control law is designed to adjust the network 
parameters. Then we apply the method to the system with the 
external disturbance. The simulation results prove the 
effectiveness and correctness of the method. 

II. PRESENTATION OF QUESTION 

A. Ideal PD controller 

A standard method for deriving the dynamics equations of 
a mechanical system is via the Euler-Lagrange equations. 
Using this method, the dynamics of an n-degree-of-freedom 
rigid manipulator can be described in the following general 
form: 

( ) ( , ) ( ) dD q q C q q q G q                 (1) 
Where ( )D q  is an n n  inertia matrix, which is a 

positive definite matrix. ( , )C q q  is an n n  matrix 

containing the centrifugal and coriolis forces. ( )G q is an 
1n  vector containing gravity torques. q is joint position, 

 is joint drive torques. d  denotes disturbance and 

0

T
d d dt 



  is bounded. 

The dynamic characteristics of manipulator system are as 
follows: 

Property 1: The matrix ( ) 2 ( , )D q C q q  is 

skew-symmetric. 
Property 2: Inertia matrix ( )D q  is a symmetric positive 

definite matrix bounded by 2 2

1 2( )Td x x D q x d x  , 
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where 1 2 d and d  are known positive constants. 
Property 3: The unknown disturbance satisfies d db


 , 

where db  is a known positive constant. 
Assuming that there is no external disturbance, the PD 

control law based on gravity compensation is as follows [12] : 

( )p dK e K e G q


                     (2) 
where pK is proportion coefficient, dK is differential 

coefficient, and ( )G q


 is the estimate value of the gravity 

term. 
dq  is a constant when the point to point control is used, so 

0d dq q   . Defining the tracking error for de q q  . Now, 

the manipulator equation is as follows: 
( )( ) ( , )( )

( ) ( ) 0

d d p

d

D q q q C q q q q K e

K e G q G q


   

   

    


          (3) 

The key to realize the control law (2) is to estimate the 

gravity term ( )G q . Assuming that the estimation is accurate, 

namely ( ) ( )G q G q


 , yield: 
( ) ( , ) p dD q e C q q e K e K e                     (4) 

Define the lyapunov function candidate: 

 
1 1

( )
2 2

T T
pL e D q e e K e                    (5) 

Because ( )D q  and pK  are the positive definite matrices, 

we can know L  is the global positive definite. 
The time derivative of the lyapunov function is given by 

the following equation: 

 
1

( ) ( )
2

T T T
pL e D q e e D q e e K e                     (6) 

According to the Property 1 of the manipulator, we can get 
2T Te De e Ce    , Substituting it into Equation (6), we can get: 

( ) 0

T T T
p

T T
p d

L e De e Ce e K e

e De Ce k e e K e

  

     

     

    
           (7) 

Because L  is negative semi-definite, dK  is positive 

definite, so when 0L  , we can get 0e  , 0e  . 
Substituting it into Equation (4), we get 0pK e  , so 0e  . 

By LaSalle theorem, we can know ( , ) (0,0)e e   is the global 

asymptotic stability equilibrium point of manipulator. 
But the manipulator system without any interference and 

external forces does not exist, the above method can be only 
considered as the foundation. In view of the above situation, 
in this paper, a new control method is proposed on the basis 
of the following premises: 

1. Gravity term is uncertain in the manipulator system. 
2. The system has the external disturbance. 

B.   RBF neural network approximation to gravity 
uncertainty term 

Radial Basis Function neural network was proposed by J. 
Moody and C. Darken in the 1980s, RBF neural network can 
approximate any continuous function with arbitrary precision. 

It is a three-layer feed forward network with a single hidden 
layer, the neuron of output layer has a linear characteristic, 
and the activation function of the hidden layer uses radial 
basis functions. It is generally a Gaussian function which is 
expressed as: 

 

2

2
exp( )

j

j
j

x c
h

b


                        (8) 

RBF neural network structure is shown in Fig. 1: 
 

2x

nx

1h

2h

mh

1
2

m

my

1x

 
Fig. 1. The RBF neural network structure 
 
 

The input-output mapping relationship is: 

( )Ty h x                          (9) 
Where x  is the network's input signal, y is the output 

signal, ( )h x is the output of the Gaussian basis function, 
 denote neural network weights.  

Under the condition of the following assumptions, RBF 
neural network can approximate continuous functions with 

any degree of accuracy in a compact set[13]. 

1. The neural network output ( , )f x 


 is continuous. 

2.The ideal approximation of the neural network output 

is *( , )f x 


, for a very small positive number 0 , which 

has: 
 

*
0max ( , ) ( )f x f x 



   (10) 

where *

( ) ( )
arg min { sup ( , ) ( ) }

x
M x h M

f x f x
 

 


 
  , it is a n n  

matrix, and denotes the best approximation of neural network 
weights. 

Taking the approximation error of ideal neural network, 
namely 

*( , ) ( )f x f x 


   (11) 
By the approximation capability of RBF network, the 

modeling error   is bounded, assuming that it is 0 . 
 

*
0 sup ( , ) ( )f x f x 



   (12) 

And                      * *( , ) ( )Tf x h x 


  
In this paper, RBF neural network is used to approximate 

the gravity term, and the formula is expressed 
as ( ) ( )f x G q . 

Manipulator equation is shown as Equation (1), a control 
law is as follows: 
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( , )
d pK e K e f x v 



                    (14) 

where 0( )sgn( )dv b e     is the robust term, it is used for 

overcoming the neural network approximation error. 
Substituting Equation (14) into (1), the manipulator 

equation becomes: 

 
( )( ) ( , )( )

( , ) ( ) 0

d d p d

d

D q q q C q q q q K e K e

f x f x v 


    

    

     
    (15) 

( ) ( , )

( )

p

T
d d

D q e C q q e K e

K e h x v  

 

     

  


             (16) 

Where  

 
* *

*

ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , ) ( )

ˆ ( ) ( )

( )

T T

T

f x f x f x f x f x f x

h x h x

h x

   

  

 

    

  

  
 (17) 

An adaptive law is designed as:  

 ˆ ( ) TFh x e  


                         (18) 
The design of the structure is shown as Fig. 2. In Fig. 2, 

RBFNN is the abbreviation of RBF neural network. 

e

e

 
 
 

q

q

 
 
 

ˆ ( )G q

v

dq

 
Fig. 2. The system control structure 

 
 

Let us introduce the candidate lyapunov function: 

 
11 1 1

( )
2 2 2

T T T
pL e De e K e tr F               (19) 

where F is a symmetric positive definite matrix, so L is 
global positive definite. 

Differentiating (19), we get 

 
11

( )
2

T T T T
pL e De e De e K e tr F    

              (20) 

Substituting 2T Te De e Ce     into Equation (20), yield: 
 

1( )T T T T
pL e De e Ce e K e tr F    

               (21) 
Substituting Equation (16) into Equation (21), yield:  

 
1

1

1

( ) ( )

( ) ( )

( ) ( )

T T T
d d

T T T T T
d d

T T T T
d d

L e K e h v tr F

e K e e h tr F e v

e K e tr F he e v

    

    

   







      

      

      







    

     

    

 (22) 

Substituting adaptive law (18) into Equation (22), we get:  

* ˆ ˆ0 ( ) TFh x e       
  
                 (23) 

Then   

( )T T
d dL e K e e v                        (24) 

where 

0

( ) ( )

( ) ( ) 0

T T T
d d

T
d d

e v e e v

e e b

   

  

    

    

  
 

where 0 , d db    . 

From the above analysis, we can obtain 0L  , so the 
equilibrium state of system is uniform stable. 

III. SIMULATION 

A.  The model of manipulator 

In this section, a simulation study is conducted to 
demonstrate the performance of our algorithm. A simple two 
degree of freedom manipulator is used in the simulation. The 
dynamic equation has been given in Equation (1), that is, 

( ) ( , ) ( ) dD q q C q q q G q         
For two degree of freedom manipulator,  

1 2 3 2 2 3 2

2 3 2 2

2 cos cos
( )

cos

p p p q p p q
D q

p p q p

   
   

 

3 2 2 3 1 2 2

3 1 2

sin ( )sin
( , )

sin 0

p q q p q q q
C q q

p q q

   
  
 

  



 

4 1 5 1 2

5 1 2

cos cos( )
( )

cos( )

p g q p g q q
G q

p g q q

  
   

 

2
1 1 2 1( )p m m l   

2
2 2 2p m l  

3 2 1 2p m l l  

4 1 2 1( )p m m l   

5 2 2p m l  

The manipulator parameters are:
1 2.04m kg , 

2 1m kg , 1 1l m , 2 0.87l m . So we get the parameter 

1 2 3 4 5[ ]TP p p p p p [2.9 0.76 0.87 3.04 0.87]T ,  

The structure of RBF neural network is 2 5 1  , and its  
input is [ ]z q q  . The parameters of Gaussian basis 

function is 
1 1 1 1

0.01 0.01 0.01 0.01
c

 
  
 

, 0.54b  . 

The initial state of system is[0 0 0 0] . 

 Position command is (0) [1.5 3.0]T
dq  . For the robust 

term, 0 0.5  , 0.2db  . SIMULINK and S function is used 

to design the control system. In order to compare the 
advantages of proposed control method, we also simulate the 
PID control method and PD control based fixed gravity 
compensation. 

B. PD control based on fixed gravity compensation 
without interference 

 For the PD control based on fixed gravity compensation, 
we can set up different gravity compensation items so as to 
understand the shortage of fixed gravity compensation. 

First, we set up the interference 0d  . The control 
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parameters are {90,90}pK diag , and {70,70}dK diag . 

The simulation results are shown from Fig. (3-1) to Fig. 
(3-6). For the inaccurate fixed gravity compensation, the 
gravity item is    1.2pG q G q ; For the accurate fixed 

gravity compensation, the gravity item is    pG q G q .  

Fig. (3-1) and Fig. (3-2) are respectively the position 
tracking trajectories of link 1 and link 2. Their adjusting time 
is similar, and they both reach a stable state after about 5s. 
However, compared with PD based accurate fixed gravity 
compensation, PD based on inaccurate fixed gravity 
compensation has a longer response time, and a larger error 
before the system becomes stable.  

Fig. (3-3) and Fig. (3-4) are respectively the tracking 
trajectory error of link 1 and link 2. The steady-state error of 
two methods is about zero. The error of beginning stage of 
PD based on accurate fixed gravity compensation is less that 
of PD based on inaccurate fixed gravity compensation.  

Fig. (3-5) and Fig. (3-6) are respectively the output torque 
of link 1 and link 2. The both output torque curves are 
basically same, which shows that the small difference in 
gravity compensation has little influence on the output 
torque. 

 
 (3-1) tracking trajectory of link 1 

 

 
(3-2) tracking trajectory of link 2 

 

 
 (3-3) tracking trajectory error of link 1 

 
 (3-4) tracking trajectory error of link 2 

 

 
 (3-5) output torque of link 1 
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 (3-6) output torque of link 2 

Fig. 3 Inaccurate fixed gravity compensation for    1.2pG q G q with the 

interference 0d   
 

If we set up the gravity compensation item 

   0.8pG q G q , we can get similar simulation diagram 

with Fig.3.  
Though the steady-state error is almost zero in Fig. (3-3) 

and Fig. (3-4), the difference is still large. Table I is the data 
of steady-state error of two links in three cases. The error is 
almost zero for PD based on accurate fixed gravity 
compensation, but the error of links under other two cases is 
very large, especially for link 2.  

From the above analysis, PD based on accurate fixed 
gravity compensation has better dynamic performance than 
PD based on inaccurate fixed gravity compensation. 

 
TABLE I 

THE STEADY-STATE ERROR OF TWO LINKS 

Control method Link 1(m) Link 2(m) 

PD based on accurate fixed gravity 
compensation 

0.0001  0 

PD based on inaccurate fixed gravity 
compensation for    1.2pG q G q  

0.0007 0.0041

PD based on inaccurate fixed gravity 
compensation for    0.8pG q G q  

0.0007 0.0041 

 

C. PD control based on fixed gravity compensation with 
interference 

However, it is impossible to get accurate gravity 
compensation because of the existence of interference.  

We set up the interference 1 2 3d d d e d e     , 

1 1.5d  , 2 2.0d  , 3 5d  . The control parameters are 

also {90,90}pK diag , and {70,70}dK diag . 

The simulation results are shown from Fig. (4-1) to Fig. 
(4-6). For the inaccurate fixed gravity compensation, the 
gravity item is    1.2pG q G q ; for the accurate fixed 

gravity compensation, the gravity item is    pG q G q .  

From Fig. (4-1) to (4-4), we know that the steady-state 
error is obviously increased due to the existence of the 
interference. Table II is the data of steady-state error of two 
links in three cases. For PD based on accurate fixed gravity 

compensation, it still has better performance, but it generates 
much larger steady-state error because of the interference. 

From Fig. (4-5) and Fig. (4-6), we know that the output 
torque doesn’t have great change. 

If we set up the gravity compensation item 

   0.8pG q G q , we can get similar simulation diagram 

with Fig.4. 
All in all, the inaccurate gravity item will result in poor 

dynamic response of system. Since the accurate gravity item 
is difficult to get, and the system always exists interference, it 
is necessary to use RBF neural network to compensate the 
gravity item. 

 
TABLE II 

THE STEADY-STATE ERROR OF TWO LINKS 

Control method Link 1(m) Link 2(m) 

PD based on accurate fixed gravity 
compensation 

0.0237  0.0161 

PD based on inaccurate fixed gravity 
compensation for    1.2pG q G q  

0.0262 0.022

PD based on inaccurate fixed gravity 
compensation for    0.8pG q G q  

0.0262 0.022 

 

 
(4-1) tracking trajectory of link 1 

 

 
(4-2) tracking trajectory of link 2 

 

Engineering Letters, 26:2, EL_26_2_06

(Advance online publication: 30 May 2018)

 
______________________________________________________________________________________ 



 

 
(4-3) tracking trajectory error of link 1 

 
(4-4) tracking trajectory error of link 1 

 

 
(4-5) output torque of link 1 

 

 
(4-6) output torque of link 2 

Fig. 4 Inaccurate fixed gravity compensation for    1.2pG q G q  with the 

interference 0d    
 
D. PD control based on  RBF neural network  gravity compensation 

RBF neural network is introduced to compensate the 
gravity item of system. The inputs of RBF neural network are 
the system position error and error change rate, so RBF 
neural network can quickly correct the position error, and 
track input position trajectory, which makes the system get 
better dynamic performance.  

For PD with RBF neural network gravity compensation, 
the control parameters {400, 400}pK diag , 

{170,170}dK diag , {10,10}F diag . For PID control, the 

control parameters {400, 400}pK diag , 

{7,7}dK diag , {3,3}iK diag {10,10}F diag . 

Fig. 5 is the simulation result. It compares the position 
tracking, velocity trajectory, tracking error, and output torque 
e of three control methods.   
 

 
 (5-1) tracking trajectory of link 1 
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(5-2) tracking trajectory of link 2 

 

 
(5-3) velocity trajectory of link 1 

 
(5-4) velocity trajectory of link 2 

 

 
(5-5) tracking trajectory error of link 1 

 

 
(5-6) tracking trajectory error of link 2 

 
(5-7) output torque of link 1 
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(5-8) output torque of link 2 

Fig. 5 PD with RBF neural network gravity compensation 

 
Fig. (5-1) and Fig. (5-2) are respectively the position 

tracking trajectories of link 1 and link 2. The traditional PID 
controller has very larger overshoot, which even reaches 80% 
for link 1. The larger overshoot is disadvantageous for 
manipulator system. For PD based on accurate fixed gravity 
compensation, the adjusting time of link 1 and link 2 is both 
about 4s, and is longer than that of other two methods. PD 
with RBF neural network gravity compensation has not 
overshoot, and its adjusting time is about 2s. So PD with RBF 
neural network gravity compensation has good dynamic 
performance. 

Fig. (5-3) and Fig. (5-4) are respectively the velocity 
trajectories of link 1 and link 2. The traditional PID controller 
can generate a larger velocity at the beginning stage. Other 
two methods also have an initial velocity, but it is acceptable.  

Fig. (5-5) and Fig. (5-6) are respectively the tracking 
trajectory error of link 1 and link 2. The steady-state error of 
three methods is almost about zero. The error of beginning 
stage of PD with RBF neural network gravity compensation 
is less that of PD based on accurate fixed gravity 
compensation.  

For PD with RBF neural network gravity compensation, it 
quickly response to the tracking trajectory error caused by 
inaccurate gravity and uncertainty. So it can acquire better 
dynamic performance than PD based on accurate fixed 
gravity compensation. 

Table III is the data of steady-state error of two links in 
five cases. Owing to the large fluctuation, PID control 
method uses the average value from 9s to 10s as its 
steady-state error. For other methods, the error of tenth 
second is regarded as steady-state error 

TABLE III 
THE STEADY-STATE ERROR OF TWO LINKS 

Control method Link 1(m) Link 2(m) 

Traditional PID control 0.0061  0.002 
PD based on accurate fixed gravity 
compensation 

0.0237  0.0161 

PD based on inaccurate fixed gravity 
compensation for    1.2pG q G q  

0.0262 0.022

PD based on inaccurate fixed gravity 
compensation for    0.8pG q G q  

0.0262 0.022 

PD with RBF neural network gravity 
compensation 

0.0015 0.0006 

 

For PD with RBF neural network gravity compensation, its 
steady-state error is the smallest. This is because the method 
not only compensates the gravity item, but also compensates 
the interference.  

Fig. (5-7) and Fig. (5-8) are respectively the output torque 
of link 1 and link 2. PD with RBF neural network gravity 
compensation has a larger initial torque than PD based on 
accurate fixed gravity compensation. So PD with RBF neural 
network gravity compensation has a high requirement for the 
actuator. It requires system to provide a larger initial torque, 
which is advantageous to the system. 

In order to lessen the initial torque of PD with RBF neural 
network gravity compensation, we can limit its maximum 
output toque to 100N.m. Then the simulation is done under 
same simulation parameters. The simulation figures of the 
tracking trajectory, the velocity trajectory and the tracking 
trajectory error are basically same. However, shown as Fig. 6, 
the initial output torque of PD with RBF neural network 
gravity compensation can be greatly reduced. 

 
(6-1) output torque of link 1 

 

 
 

(6-2) output torque of link 2 
Fig. 6 PD with RBF neural network gravity compensation after limiting the 
maximum output torque 
 

IV. CONCLUSION 

This paper puts forward a kind of gravity compensation 
PD control method based on RBF neural network for the 
manipulator with external disturbance and uncertainty. The 
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proposed algorithm doesn't need accurate dynamics model of 
the manipulator, and can adjust the network weights by 
online adaptive method. Through MATLAB simulation, the 
effectiveness of the RBF neural network in gravity 
compensation is confirmed.  
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