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Abstract—In this paper, a new actively controlled inertial-
based vibration absorber is proposed and used for controlling
the mechanical deformations of flexible structures. To this
end, a method for reducing the externally induced vibrations
of structural systems is developed. The method employed
in this paper is based on the numerical techniques of the
applied system identification field and is grounded in the
optimal control theory. A three-story shear building system
with a pendulum hinged on the third floor is the flexible
structure considered as the case study of this investigation.
This mechanical system is constructed using rigid and flexible
components in order to reproduce a simple three-dimensional
structure. The base of the structural system is excited by a
harmonic excitation combined with a noise excitation source in
order to simulate the earthquake. By doing so, the worst case
scenario in which the frequencies of the external excitation
are close to the natural frequencies of the flexible structure
is considered. The pendulum mounted on the third floor of
the flexible structure serves as an actively controlled inertial-
based vibration absorber. The control torque applied to the
pendulum is actively controlled by using a brushless motor
driven by a programmable digital controller. Therefore, the
inertial effects of the oscillating pendulum directly contrast
the externally induced vibrations of the three-story shear
building system. The feedback control torque applied on the
pendulum is obtained by monitoring the accelerations of the
three floors of the flexible structure and is designed employing
a realistic mechanical model of the dynamical system obtained
by using a time-domain system identification approach. The
numerical results found in this investigation by using a simple
computer program coded in MATLAB show that the modal
parameters identified for describing the dynamic behavior
of the flexible structure are consistent with those predicted
employing a simple lumped parameter model. Furthermore,
in this investigation, an optimal closed-loop controller based on
the Linear-Quadratic Regulator (LQR) method and an optimal
state observer based on the Kalman filtering approach, also
known as Linear-Quadratic Estimator (LQE), are designed
employing the state-space model obtained from experimental
data. Experimental results demonstrate that a considerable
reduction of the structural vibrations of the three-story shear
building system can be obtained by means of the introduction
of the feedback controller combined with the state estimator.

Index Terms—Three-story shear building system, System
identification, Optimal control, State estimation, Experimental
modal parameter identification.

I. INTRODUCTION

This paper is focused on the design and implementation
of a new inertial-based vibration absorber for the active
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vibration control of flexible structures. For this purpose, an
optimal controller is developed for reducing the mechanical
vibrations of structural systems considering the applied sys-
tem identification computational techniques. In this section,
background material, the formulation of the problem of
interest for this study, the scope and the contribution of
this investigation, and the organization of the manuscript are
provided.

A. Background Material

Applied system identification can be seen as the complex
process of developing mathematical models of dynamical
systems based on input-output data [1]–[3]. In general, a
mathematical model of a physical system can be used to pre-
dict by means of numerical simulations the system dynamic
behavior in response to known external excitations [4]–[8].
In the field of applied system identification, the basic laws of
mechanics are combined with statistical methods in order to
devise mathematical models of dynamical systems by using
experimental measurements. Model reduction techniques and
the methodologies for the optimal design of experiments
are also widely employed in the field of applied system
identification [9]–[12]. In this context, numerical experiments
obtained by means of dynamic simulations can be performed
by using a reliable mathematical model of a physical system
in order to reproduce the input-output relationships observed
experimentally [13]–[17].

In the field of mechanical engineering, the consistent
formulation of the equations of motion that describe the
nonlinear behavior of a mechanical system represents a
fundamental step in the solution of the optimal control,
estimation, and identification problems [18], [19]. In this
respect, the main challenge is represented by the fact that,
in general, the linearized version of the equations of motion
is inadequate for capturing the fully nonlinear physics of
the problem at hand and, therefore, more advanced control
algorithms, estimation techniques, and design methods are
necessary for solving these difficult tasks [20], [21]. On
the other hand, in several practical applications, using the
fully nonlinear dynamic equations for predicting the time
evolution of a mechanical system and calculating the control
actions for the mechanical system employing the numerical
solutions of the nonlinear set of dynamic equations can
be difficult, if not impossible, to achieve or implement in
real time [22]. One direction of research devoted to the
solution of these important issues is based on the direct
application of complex control strategies to a simplified, but
still nonlinear, version of the equations of motion of the
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mechanical system of interest [23]. To this end, one can use
the optimal control theory based on the Pontryagin minimum
principle leading to the Hamilton-Jacobi-Bellman partial
differential equation, that is the continuous-time analogue of
the discrete deterministic dynamic programming algorithm,
or to a set of nonlinear differential-algebraic equations which
form a nonlinear two-point boundary value problem which
can be numerical solved by using the adjoint approach.
Moreover, one can also use other effective analytical and
computational methods for the design of nonlinear control
actions. For instance, the feedback linearization approach,
the nonlinear H-infinity control method, the sliding mode
control algorithm, the nonlinear control strategies based on
the control-Lyapunov function, and the extended Kalman
filter approach represent, among the others, valid computa-
tional algorithms which can be effectively employed for the
construction of a nonlinear control and estimation scheme
[24]–[27]. However, as discussed in details in this paper,
the linear control method of interest for this investigation is
based on the optimal control and estimation approach since,
in the case of small deformations, the structural system of
interest can be adequately modeled as a linear dynamical
system.

B. Formulation of the Problem of Interest for this Study

In the fields of dynamic and control engineering, applied
system identification deals with the development of mechan-
ical models of physical systems necessary for the design of
open-loop (feedforward) and closed-loop (feedback) control
strategies by using experimental measurements [28]–[32].
Thus, several investigations based on system identification
techniques focused on the design of effective control strate-
gies for machines and structures can be found in the literature
[33]–[37]. However, all the identification analytical methods
and numerical procedures employed in this important field
of research have in common some fundamental principles
and mathematical tools [38], [39]. In particular, the time-
domain numerical procedures of applied system investigation
are of interest for this investigation because the first-order
dynamic models based on the state-space representation and
the second-order dynamic models based on the configuration-
space representation can be readily used for developing
optimal controller and observer systems by using effective
and robust control algorithms such as, for example, the
Linear Quadratic Gaussian (LQG) regulation method [40]–
[44]. For instance, important practical applications of the
system identification methodologies are the refinement of
finite element models of aerospace systems by using dy-
namic testing, the modal parameters identification of civil
structures based on environmental and artificial vibrations,
and the real-time identification of mechanical models of
suspension mechanisms for implementing the active and
semi-active control paradigms [45]–[53]. Furthermore, the
nonlinear control methods based on the techniques of ap-
plied system identification are also useful for determining
structural parameters of mechanical systems composed of
rigid and flexible bodies connected by kinematic constraints
that are referred to as multibody systems [54]–[59].

C. Scope and Contributions of this Investigation

This paper deals with the development of a control system
capable of reducing the vibration of flexible structures based
on a methodology for identifying first-order and second-order
dynamic models of mechanical systems using time-domain
input-output measurements. The proposed approach relies
on the optimal control theory, is based on the numerical
techniques of applied system identification, and is verified
experimentally by using a simple test rig. The flexible
structure considered for testing the proposed method is a
three-story shear building system. A pendulum is hinged on
the third floor of the flexible structure in order to operate
as an actively controlled inertial-based vibration absorber.
The pendulum is driven by a brushless motor connected to a
programmable digital controller. The floors of the three-story
system are instrumented with piezoelectric accelerometers
that are connected to the programmable digital controller.
Therefore, the torque applied on the pendulum can be
actively controlled allowing for the design of a feedback
control law based on a real-time estimation of the system
state. In order to correctly design the feedback controller and
the state estimator, a preliminary mechanical model of the
flexible structure is developed employing a lumped parameter
approach. After that, a refined mechanical model of the
three-story shear building system is derived from input-
output experimental data by using a system identification
procedure developed in this work. For this purpose, a method
for constructing mechanical models from identified state-
space representations is used for identifying first-order and
second-order dynamical models of the flexible structure.
Subsequently, a simple least-square method is employed
in order to obtain an improved estimation of the damping
model of the flexible structure. The identified mechanical
model of the three-story shear building system is effectively
used to design a feedback controller and a state estimator
by using the Linear Quadratic Gaussian (LQG) control
approach. Finally, the numerical procedure developed in the
paper is experimentally tested using the three-story shear
building model as a demonstrative example in order to verify
the effectiveness of the identification and control approach
proposed in this investigation.

D. Organization of the Manuscript

The remaining part of this paper is organized according
to the following structure. In Section II, a description of
the mechanical system analyzed in this paper is reported. In
Section III, a simple lumped parameter model for the three-
story shear building system that describes the mechanical
vibrations of the flexible structure considered as the case
study is developed. In Section IV, the computational steps of
the proposed system identification numerical procedure are
described. In Section V, the system identification numerical
procedure developed in the paper is used to determine a
discrete mechanical model of the flexible structure based
on input-output experimental measurements. In Section VI,
the development and the implementation of the control
scheme for reducing the structural vibration of the three-story
building system are described. In Section VII, a summary of
this investigation and the conclusions drawn in this study are
reported.
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II. SYSTEM DESCRIPTION

In this section, a description of the mechanical system
analyzed in this investigation is reported. The mechanical
system considered as the demonstrative example of the ap-
proach developed in the paper is a three-dimensional flexible
structure and is shown in figure 1. The flexible structure

Fig. 1. Experimental test rig.

used as test rig can be modeled as a three-story shear
building system. The structural system is composed of six
flexible beams and three rigid connecting rods. The flexible
beams are made of harmonic steel while the material of the
connecting rods is aluminum. The dynamic behavior of the
mechanical system considered as a case study is of interest
for this investigation and serves as a test rig for studying
the mechanical vibrations of real full-scale flexible structures
subjected to the earthquake. For this purpose, the frequency
range of interest for this study includes all the excitation
frequencies between 0 Hz and 15 Hz. In this frequency
range, the flexible beams deform as linear elastic continuum
bodies and the connecting rods behave essentially as rigid
bodies. Observing the geometric configuration of the three-
story system, this flexible structure is deployed in a plane.
Therefore, the lateral stiffness and the torsional stiffness of
the flexible structure are considerably larger than stiffness
along the plane. Consequently, this three-dimensional flexible
structure can be modeled as a planar three-story shear
building system with a very good approximation. The first
floor of the flexible structure is excited by a shaker that is
connected to the structure by means of a stinger. A load
cell is collocated between the first floor and the stinger
in order to measure the force transferred to the flexible
structure by the shaker. In order to minimize the inertial

influence of the shaker on the flexible structure, the shaker is
suspended through a steel cable fixed on an external support
isolated from the flexible structure of interest. The shaker
is connected to a power amplifier which is controlled by
an arbitrary wave function generator. In order to measure
the time response of the three-story shear building system,
piezoelectric transducers that sense the system accelerations
are collocated on each floor of the flexible structure. Fur-
thermore, the flexible structure is actively controlled by
using an inertial-based vibration absorber collocated on the
third floor. The actively controlled inertial-based vibration
absorber is realized by using a physical pendulum having
an additional mass concentrated on the pendulum tip as
shown in figure 2. The pendulum can oscillate along the

Fig. 2. Actively controlled inertial-based vibration absorber.

same plane in which the flexible structure is deployed in
order to contrast the mechanical vibrations of the structural
system by means of its inertial effects. The pendulum is
actively controlled employing a control actuator driven by
a brushless motor. The brushless motor is equipped with
an encoder that allows for measuring the pendulum angu-
lar displacement. The electromechanical actuator provides
a control torque that is computed in real time by using
a digital controller that communicates with the brushless
motor by means of a drive device. The digital controller
reads the acceleration signals coming from the piezoelectric
transducers and the force signal measured by the load cell.
The digital controller can be programmed and monitored
offline in order to calculate a feedback control law for the
control torque of the brushless motor based on the force
and acceleration measurements. A schematic representation
of the identification and control scheme for the test rig is
shown in figure 3. A detailed three-dimensional CAD model
of the flexible structure together with the actively controlled
inertial-based vibration absorber is represented in figure 4.
Furthermore, in order to develop an effective control law
for the digital controller, an experimental modal analysis of
the flexible structure was performed at first. To this end, the
three floors of the flexible structure were excited by using
an impact hammer instrumented with a load cell connected
to a spectrum analyzer. The acceleration signals measured
by the piezoelectric transducers in correspondence of the
external excitations of the impact hammer were recorded by
using the spectrum analyzer in order to obtain the input-
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Fig. 3. Identification and control scheme.

Fig. 4. Three-dimensional CAD model of the mechanical system.

output experimental data necessary for the use of system
identification numerical procedures [60]–[62].

III. DYNAMIC MODEL

In this section, a simple lumped parameter model for
the three-story shear building system that describes the
mechanical vibrations of the flexible structure is developed.
The analytical development of this preliminary mechanical
model of the flexible structure is necessary in order to guide
the subsequent identification process based on experimental
measurements. A schematic representation of the lumped
parameter model of the flexible structure is shown in figure
5. In the analysis of this preliminary mechanical model,
the flexible structure is modeled considering three lumped
masses that represent the connecting rods and three spring

Fig. 5. Lumped parameter model.

elements that represent the flexible beams. On the other hand,
the angular displacement of the pendulum is fixed in order
to model the behavior of the flexible structure in the case
in which the control system is not active. Therefore, the
lumped parameter model of the three-story shear building
system includes only n2 = 3 degrees of freedom. Denoting
the continuous time with t, the degrees of freedom of the
flexible structure are the horizontal displacements of the
system first, second, and third floors respectively indicated
as x1(t), x2(t), and x3(t). Thus, the generalized coordinate
vector that identifies the configuration of the three-story
shear building model is indicated with x(t) and is given
by x(t) =

[
x1(t) x2(t) x3(t)

]T
. Since in the fre-

quency range of interest and for the amplitudes of the inputs
considered as external excitations the dynamic behavior of
the flexible structure is linear, the equations of motion that
describe the lumped parameter model of the three-story
shear building system can be written in a compact matrix
form as M ẍ(t) + K x(t) = 0, where ẍ(t) is the system
generalized acceleration vector, x(t) denotes the system
generalized coordinate vector, M is the system mass matrix,
and K denotes the system stiffness matrix. In the analytical
derivation of the equations of motion of the flexible structure,
the effect of the structural damping is neglected. However,
a simple but realistic estimation of the viscous damping of
the flexible structure will be subsequently obtained in the
paper by using the proposed identification procedure. The
mass and stiffness matrices of the lumped parameter model
for the flexible structure can be readily obtained using the
classical methods of analytical dynamics. In particular, the
mass matrix is given by M = diag (m1,1,m2,2,m3,3), while
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the stiffness matrix is defined as follows:

K =

 k1,1 k1,2 0
k1,2 k2,2 k2,3
0 k2,3 k3,3

 (1)

It is important to note that the mass matrix M and the
stiffness matrix K of the three-story shear building model
are constant, symmetric, and positive-definite matrices. The
entries mi,j and ki,j for i = 1, 2, . . . , n2 and j = 1, 2, . . . , n2

of the system mass and stiffness matrices are given by: m1,1 = m1

m2,2 = m2

m3,3 = m3 +m4

,

 k1,1 = k1 + k2, k1,2 = −k2
k2,2 = k2 + k3, k2,3 = −k3
k3,3 = k3

(2)
where m1 = 1.281 (kg), m2 = 0.814 (kg), and m3 =
1.380 (kg) are the masses of the first, second, and third
connecting rods, respectively, whereas m4 = 0.083 (kg)
is the mass of the pendulum. The stiffness of each flexible
beam can be readily computed assuming a set of clamped-
clamped boundary conditions and a parallel configuration
of the resulting lumped spring elements to yield k1 =
24EJ

/
L3
1, k2 = 24EJ

/
L3
2, and k3 = 24EJ

/
L3
3, where

E = 207 · 109
(
N
/
m2
)

denotes the elastic modulus of
the flexible beams, J = 2.917 · 10−12

(
m4
)

represents the
second moment of area of the flexible beams, whereas L1 =
23 ·10−2 (m), L2 = 28 ·10−2 (m), and L3 = 23 ·10−2 (m)
are the lengths of the first, second, and third flexible beams,
respectively. A modal analysis can be readily performed
using the lumped parameter model of the three-story building
model in order to obtain the system natural frequencies fn,j
and the corresponding modal vectors ϕj associated with the
normal mode j which can be written as ϕj = eiθjρj , where
e is the Napier’s constant, i =

√
−1 is the imaginary unit, ρj

denotes the vector of relative amplitudes associated with the
mode j, and θj represents a diagonal matrix containing the
relative phases of the components of the mode j. Thus, the
modal parameters of the flexible structure obtained by using
the preliminary three-story shear building lumped parameter
model are given by:

fn,1 = 1.962 (Hz)

ρ1 =
[

1 2.509 3.085
]T

θ1 = diag (0, 0, 0)

(3)


fn,2 = 5.780 (Hz)

ρ2 =
[

1 0.2447 0.394
]T

θ2 = diag (0, 0,−3.141)

(4)


fn,3 = 8.807 (Hz)

ρ3 =
[

1 3.138 1.136
]T

θ3 = diag (0,−3.141, 0)

(5)

As expected, the lumped parameter model of the flexible
structure leads to a set of three mode shapes where the first
normal mode has no nodes, the second normal mode has one
node, and the third normal mode has two nodes. The modal
parameters obtained by using the simplified mathematical
model of the flexible structure will be used to guide and
corroborate the numerical results obtained employing the
proposed system identification method based on experimental
input-output data [63]–[66].

IV. SYSTEM IDENTIFICATION METHOD

In this section, the system identification method used in the
paper is described. To this end, consider a state-space model
of a mechanical system that describes the dynamic behavior
of the flexible structure of interest for this investigation. For
both linear and nonlinear systems, a state-space model of the
dynamic equations of a mechanical system can be obtained
by using a continuous-time approach or employing directly a
discrete-time representation [67]–[69]. In this investigation,
a discrete-time representation is used in order to facilitate the
subsequent computer programming of the digital controller.
In general, a discrete-time model of a mechanical system is
described by a set of dynamic and measurement equations
given by:  z(k + 1) = Az(k)+Bu(k)

y(k) = Cz(k)+Du(k)
(6)

where k represents the discrete time, z(k) is the discrete-
time state vector having dimension n = 2n2, n2 is the
number of generalized coordinates of the mechanical system
of interest, u(k) denotes the discrete-time input vector of
dimension r, y(k) is the discrete-time output vector having
dimension m, A identifies the discrete-time system state
matrix of dimension n × n, B denotes the discrete-time
input influence matrix having dimension n × r, C is the
output influence matrix of dimension m×n, and D denotes
the direct transmission matrix having dimension m × r.
These equations respectively represent the time evolution
of the system state due to its intrinsic dynamics and to
the variation in time of the physical quantities measured by
the instrumentation. In order to improve the accuracy of the
dynamic analysis, one can introduce a state estimator in the
state-space model of the mechanical system described by
an observed set of discrete-time dynamic and measurement
equations. By doing so, one obtains: ẑ(k + 1) = Āẑ(k)+B̄v(k)

ŷ(k) = Cẑ(k)+Du(k)
(7)

where ẑ(k) is the estimated state vector of dimension n, ŷ(k)
represents the estimated measurement vector having dimen-
sion m, Ā denotes the discrete-time observer state matrix of
dimension n×n, B̄ identifies the discrete-time observer state
influence matrix having dimension n× (r +m), and v(k) is
the generalized input vector of dimension r +m. The matrix
and vector quantities Ā, B̄, and v(k) are respectively defined
as follows: 

Ā = A + GC

B̄ =
[

B + GD −G
]

v(k) =
[

uT (k) yT (k)
]T

(8)

where G represents the observer matrix having dimension
n×m. The observer matrix G is aimed at adjusting the
eigenvalues of the observer state matrix Ā with respect to
the eigenvalues of the state matrix A. Consequently, the
observer state matrix Ā can be made asymptotically stable
employing an appropriate selection of the observer matrix G.
Furthermore, for a general linear time-invariant dynamical
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system, the input-output relationship of the discrete-time dy-
namic model represented in the state-space and the recursive
sequence of the discrete-time observer state-space model can
be respectively written as follows:

y(k) =
k∑
j=0

(Yju(k − j))

ŷ(k) =
k∑
j=0

(
Ȳjv(k − j)

) (9)

where the sequence of matrices Yk is formed by m× r
rectangular matrices that are known as discrete impulse
response functions or system Markov parameters, whereas
the sequence of matrices Ȳk is made of m× (r +m)
rectangular matrices called observer Markov parameters. The
sequences of system and observer Markov parameters Yk

and Ȳk are respectively defined as follows: Y0 = D

Yk = CAk−1B
,

 Ȳ0 = D

Ȳk = CĀk−1B̄
(10)

In order to facilitate the development of an effective
numerical procedure for performing in the time domain
the system identification of a discrete-time dynamic model
represented in the state-space, one can define for a mechan-
ical system the additional sequence of matrices Y0

0 = D
and Y0

k = CAk−1G, where the matrices Y0
k are m×m

rectangular matrices that are referred to as observer gain
Markov parameters. By using experimental input-output data,
the sequence of observer Markov parameters can be obtained
using a simple least-square computational approach. This
process leads to a sequence of matrices that represent the
set of observer Markov parameters identified experimentally.
Once that this process has been successfully performed,
one can obtain both the set of system Markov parameters
and the set of observer gain Markov parameters starting
from the identified observer Markov parameters. For this
purpose, consider the following input-output representation
of a dynamical system described by a discrete-time dynamic
model represented in the state-space:

y(k) +
p∑
j=1

(
Ȳ

(2)
j y(k − j)

)
=

p∑
j=1

(
Ȳ

(1)
j u(k − j)

)
+ Du(k)

(11)

where Ȳ
(1)
k and Ȳ

(2)
k are rectangular matrices having re-

spectively dimensions m× r and m×m that are defined as
follows: 

Ȳ
(1)
k = C(A + GC)k−1(B + GD)

Ȳ
(2)
k = C(A + GC)k−1G

(12)

It can easily proved that the sequence of matrices that
represents the observer Markov parameters can be written
in a block matrix form as Ȳk =

[
Ȳ

(1)
k −Ȳ

(2)
k

]
. The

constant coefficients of the recursive sequence can be numer-
ically calculated using a least-square approach based on input
and output experimental data. To this end, a computational

methodology based on the Observer/Kalman Filter Identifica-
tion Method (OKID) can be readily used. This method allows
for computing the sequence of Markov parameters from
experimental data employing experimental measurements.
Considering a data set having length l, the recursive rela-
tionship can be mathematically expressed in a matrix form as
L̄p = YV+

p , where Y, L̄p, and Vp are rectangular matrices
respectively of dimensions m× l, m× (r + (r +m)p), and
(r + (r +m)p)× l that are respectively defined as follows:

Y =
[

y(0) y(1) . . . y(l − 1)
]

L̄p =
[

Ȳ0 Ȳ1 . . . Ȳp

]

Vp =


u(0) u(1) . . . u(l − 1)

0 v(0) . . . v(l − 2)
...

...
. . .

...
0 0 . . . v(l − p− 1)


(13)

where p is an integer number that denotes the discrete time
at which the estimated output vector ŷ(k) approaches the
actual measured output vector y(k). The sequence of first p
observer Markov parameters Ȳk are included in block matrix
L̄p. Therefore, a simple least-square estimation method can
be used for obtaining an approximate solution for the ob-
server Markov parameters Ȳk employing experimental input-
output measurements as L̄p = YV+

p , where V+
p represents

a rectangular matrix having dimension m× (r + (r +m)p)
that identifies the Moore-Penrose pseudoinverse matrix cor-
responding to the matrix Vp. By using simple recursive
relationships, one can obtain the system Markov parameters
and the observer gain Markov parameters using the estimated
observer Markov parameters. Subsequently, the combination
of the identified system and observer gain Markov parame-
ters, which are denoted respectively as Yk and Y0

k, can be
readily used for developing an applied system identification
algorithm based on time domain data. For this purpose,
a computational procedure based on the Eigensystem Re-
alization Algorithm (ERA) can be employed for deriving
a state-space set of characteristic matrices A, B, C, and
D. These matrices characterize the state-space model of a
general linear mechanical system obtained using a discrete-
time representation based on the system Markov parameters
identified from experimental data. To this end, consider the
following block matrix that contains the system and observer
gain Markov parameters Pk =

[
Yk Y0

k

]
, where Pk

is a block matrix having dimensions m× (r +m). The
identification of the matrix Pk is necessary for constructing
a generalized block Hankel matrix defined as:

N̄(k − 1) =


Pk Pk+1 . . . Pk+δ−1

Pk+1 Pk+2 . . . Pk+δ

...
...

. . .
...

Pk+γ−1 Pk+γ . . . Pk+γ+δ−2

 (14)

where N̄(k − 1) denotes a block Hankel matrix having
dimensions γm× δ(r +m) in which both the set of system
Markov parameters and the set of observer gain Markov
parameters Yk and Y0

k are included, while γ and δ are
two integer parameters that can be assumed as γ = p and
δ = l − p, where l is the length of the data set used for
the numerical implementation of the system identification
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algorithm. Considering the case in which k = 0, the
generalized Hankel matrix N̄(0) can be factorized using the
Singular Value Decomposition (SVD) and can be written as
N̄(0) = R̄Q̄S̄T , where the rectangular matrix Q̄ contains
the singular values of the generalized Hankel matrix N̄(0),
while the columns of the matrices R̄ and S̄ form orthonormal
vectors. In particular, the block matrix Q̄ can be expressed
as Q̄ = block

[[
Q̄n̂,O

]
; [O,O]

]
, where the submatrix

Q̄n̂ is a square diagonal matrix that is given by Q̄n̂ =
diag (q1, q2, . . . , qn̂), where qi , 1 = 1, 2, . . . , n̂ represent
the nonzero singular values associated with the generalized
Hankel matrix N̄(0). Indicating respectively with R̄n̂ and
S̄n̂ the rectangular matrices formed by the first n̂ columns
of the rectangular matrices R̄ and S̄, the generalized Hankel
matrix N̄(0) and its Moore-Penrose pseudoinverse matrix
N̄+(0) can be respectively written as N̄(0) = R̄n̂Q̄n̂S̄Tn̂
and N̄+(0) = S̄n̂Q̄−1n̂ R̄T

n̂ . The analysis of the spectrum of
the singular values qi , 1 = 1, 2, . . . , n̂ of the generalized
Hankel matrix N̄(0) allows for determining the order n̂ of
the identified dynamical model of the mechanical system
under consideration based on the sequences of input-output
data. By doing so, an identified discrete-time dynamic model
represented in the state-space associated with the mechanical
system under consideration is given by the discrete-time
state-space matrices Â, B̂, Ĉ, and D̂ as well as by the
observer matrix Ĝ resulting from the system identification
algorithm. Thus, one can obtain the identified discrete-time
dynamic model in the state-space of the dynamical system
under consideration employing the following equations:



Â = Q̄
−1/2
n̂ R̄T

n̂ N̄(1)S̄n̂Q̄
−1/2
n̂[

B̂ Ĝ
]

= Q̄
−1/2
n̂ S̄Tn̂Er+m

Ĉ = ET
mR̄n̂Q̄

−1/2
n̂

D̂ = Y0 = Ȳ0

(15)

where Em and Er+m are Boolean matrices with appropriate
dimensions. The set of identified matrices Â, B̂, Ĉ, D̂, and
Ĝ represents a minimum order, controllable, and observable
state-space realization of a general mechanical system having
a linear mathematical structure. In particular, although the
numerical values of the entries of the identified character-
istic matrices Â, B̂, Ĉ, and D̂ are not equal to those of
the actual discrete-time dynamic model represented in the
state-space of the mechanical system given by A, B, C,
and D, the modal parameters of the identified mechanical
model coincide with the actual modal parameters of the
dynamical system [70], [71]. Moreover, the discrete-time
dynamic model represented in the state-space of the mechan-
ical system can be readily transformed in its continuous-
time counterpart. Denoting with L̂c the diagonal matrix
containing the eigenvalues of the continuous-time state-space
model and indicating with Ŵ the matrix of eigenvectors
associated with the system generalized coordinates, a second-
order mechanical model of the dynamical system can be
derived by using the identified modal parameters of the state-

space model as follows:

M̂ =
(
ŴL̂cŴ

T
)−1

K̂ = −
(
ŴL̂

−1
c ŴT

)−1
R̂ = −

(
M̂ŴL̂

2

cŴ
TM̂

)
(16)

where M̂ is the identified mass matrix, K̂ represents the iden-
tified stiffness matrix, and R̂ denotes the identified damping
matrix of the mechanical system under study. However, the
estimate values of the entries of the system damping matrix
R̂ are considerably influenced by the noise that affects
the input-output data set. For lightly damped mechanical
systems, an improved estimation of the identified damping
matrix of the mechanical system can be obtained by using the
proportional damping assumption given by R = αM +βK.
By doing so, one can employ a least-square approach for the
estimation of the proportional damping coefficients α̂ and β̂
which characterize the the proportional damping hypothesis.
To this end, the improved estimation of the system damping
matrix R̂ can be written as R̂ = α̂M̂ + β̂K̂, where the esti-
mated proportional damping coefficients α̂ and β̂ can be ob-
tained using the a least-square approach given by x̄ = Ā+

f b̄ξ,

where x̄ =
[
α̂ β̂

]T
, b̄ξ =

[
ξ̂1 ξ̂2 . . . ξ̂n̂2

]T
, and:

Āf =
1

2


1

2πf̂n,1
2πf̂n,1

1
2πf̂n,2

2πf̂n,2
...

...
1

2πf̂n,n̂2

2πf̂n,n̂2

 (17)

where Ā+
f denotes the Moore-Penrose pseudoinverse matrix

of the coefficient matrix Āf , f̂n,j represents the identified
natural frequency associated with the mode j of the mechan-
ical system, and ξ̂j is the identified damping ratio relative to
the mode j of the linear dynamical system [72]–[76].

V. EXPERIMENTAL INVESTIGATION

In this section, the system identification numerical proce-
dure developed in the paper is used to determine a discrete
mechanical model of the flexible structure based on input-
output experimental measurements. The numerical results
proposed in this section are obtained using a simple com-
puter program coded in MATLAB, while the experimental
results reported in this section are obtained by means of the
experimental apparatus described previously in the paper. For
this purpose, an impact hammer instrumented with a load cell
was used to excite impulsively the first floor of the three-story
shear building system and the corresponding accelerations of
the three floors of the flexible structure were recorded using
piezoelectric transducers. The force signal recorded by the
load cell of the impact hammer is shown in figure 6. The
acceleration signals of the floors of the flexible structure are
recorded by the piezoelectric transducers placed on each floor
and are respectively shown in figures 7, 8, and 9. The time
span considered is Ts = 64 (s) while the sampling frequency
used for acquiring the experimental data is fs = 32 (Hz).
Thus, the sampling time step is ∆t = 3.125 · 10−2 (s) and
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Fig. 6. Force input measurement.

Fig. 7. Acceleration output measurement of the first floor.

the corresponding Nyquist frequency is fN = 16 (Hz). By
using this set of parameters for acquiring the experimental
measurements, the frequency range of interest from 0 Hz to
15 Hz is correctly captured by the experimental data. Further-
more, the set of input and output data was first filtered in the
time domain and subsequently in the frequency domain. In
the time domain, since the action of the impact hammer took
place around t = 10 (s), the sections of the input and out
signals before t = 10 (s) were set equal to zero because the
information contained in this interval of the measured data
had no physical meaning. In the frequency domain, a low-
pass Butterworth filter having a cut-off frequency of fc =
16 (Hz) was used in order to eliminate the effect of high-
frequency noise. The proposed identification procedure was
applied to the set of input-output data obtained by means of
experimental measurements. By doing so, the system Markov
parameters Yk and the observer gain Markov parameters Y0

k

were recovered from the identified sequence of the observer
Markov parameters Ȳk. The identified Markov parameters
Ȳk and the identified observer gain Markov parameters Y0

k

were used to construct the matrix sequence of the combined
Markov parameters Pk. The combined Markov parameters

Fig. 8. Acceleration output measurement of the second floor.

Fig. 9. Acceleration output measurement of the third floor.

Pk were used to assemble the sequence of Hankel matrices
N̄(k − 1) based on experimental data. In particular, a SVD
of the Hankel matrix N̄(0) was computed and figure 10
shows the magnitude of the identified singular values. As
expected, figure 10 shows that only 6 singular values have
a relatively large magnitude and, consequently, the order of
the identified state-space model that mathematically represent
the three-story shear building system is n̂ = 6. Subsequently,
the identified discrete-time state-space matrices Â, B̂, Ĉ, D̂,
and Ĝ representing the identified linear dynamical model of
the flexible structure and the identified observer matrix were
computed yielding to the following set of identified modal
parameters:

f̂n,1 = 1.934 (Hz) , ξ̂1 = 0.0395

ρ̂1 =
[

1 2.503 2.851
]T

θ̂1 = diag (0,−0.0186,−0.1053)

(18)


f̂n,2 = 5.690 (Hz) , ξ̂2 = 0.0030

ρ̂2 =
[

1 0.1492 0.4221
]T

θ̂2 = diag (0,−0.0365,−3.170)

(19)
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Fig. 10. Magnitude of the singular values of the identified Hankel matrix.


f̂n,3 = 8.793 (Hz) , ξ̂3 = 0.0042

ρ̂3 =
[

1 3.443 1.476
]T

θ̂3 = diag (0,−3.144,−0.0296)

(20)

where f̂n,j is the identified natural frequency of the mode
j, ξ̂j denotes the identified damping ratio corresponding
to the mode j, ϕ̂j = eiθ̂j ρ̂j represents the identified
modal vector of the normal mode j, ρ̂j is the identified
vector of relative modal amplitudes of the mode j, and θ̂j
represents the relative phase matrix of the mode j. Figures
11, 12, and 13 respectively show the first, second, and third
mode shapes identified by using the computational procedure
developed in the paper. It is important to note that the
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Fig. 11. Identified first mode shape.

modal parameters of the identified continuous-time state-
space model are consistent with those obtained by using the
preliminary lumped parameter model. Since the identified
modal damping is small, the identified mode shapes are
approximately in phase or out of phase. Therefore, the
hypothesis of proportional damping can be assumed and the
proposed method for identifying the proportional damping
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Fig. 12. Identified second mode shape.
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Fig. 13. Identified third mode shape.

coefficients can be applied to yield:

α̂ = 0.9751, β̂= −2.8815 · 10−4 (21)

where α̂ and β̂ denote the identified proportional damping
coefficients. Furthermore, a second-order physical model can
be constructed from the identified mathematical sate-space
representation by using the algorithm discussed in the paper
to yield:

M̂ =

 0.3871 −0.0156 0.0011
−0.0156 0.2621 −0.0323
0.0011 −0.0323 0.3790

 (22)

K̂ =

 534.061 −221.931 25.696
−221.931 614.564 −432.792

25.696 −432.792 422.005

 (23)

R̂ =

 9.960 −4.823 1.018
−4.823 12.480 −8.366
1.018 −8.366 7.017

 (24)

where M̂ is the identified mass matrix, K̂ denotes the
identified stiffness matrix, and R̂ represents the identified
damping matrix. An improved estimation of the identified
damping matrix R̂ can be obtained by using the proportional
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damping assumption and employing the identified propor-
tional damping coefficients α̂ and β̂ as well as the identified
mass and stiffness matrices M̂ and K̂ as follows:

R̂ = α̂M̂+β̂K̂ =

 0.22356 0.0487 −0.0063
0.0487 0.0785 0.0932
−0.0063 0.0932 0.2480

 (25)

The identified second-order mechanical model of the flex-
ible structure will be used in the paper for designing an
effective control strategy for reducing the system vibrations
induced by external excitations [77]–[80].

VI. CONTROL DEVELOPMENT

In this section, the development and the implementation of
the control scheme for reducing the structural vibration of the
three-story building system are described. For this purpose,
the Linear Quadratic Gaussian (LQG) control approach is
employed by using the identified second-order mechanical
model of the flexible structure. Thus, the design of the control
system based on the Linear Quadratic Gaussian (LQG) regu-
lation methodology is performed by combining the identified
second-order model of the vibrating structure with a linear
lumped parameter model of the actuated pendulum that
works as an actively controlled inertial-based vibration ab-
sorber. Therefore, the resulting mechanical model used to de-
sign the control system includes n2 = 4 degrees of freedom
contained in a new generalized coordinate vector x(t) given
by x(t) =

[
x1(t) x2(t) x3(t) ϕ(t)

]T
, where x1(t),

x2(t), and x3(t) represent the linear displacements of the
system first, second, and third floors, respectively, while ϕ(t)
identifies the angular displacement of the actively controlled
pendulum that serves as an inertial-based vibration absorber.
By using the analytical methods of classical mechanics,
the mechanical model of the three-story shear building sys-
tem with the pendulum hinged on the third floor can be
mathematically expressed as Mẍ(t) + Rẋ(t) + Kx(t) =
B2,eue(t)+B2,cuc(t), where ẍ(t) is the system generalized
acceleration vector, ẋ(t) represents the system generalized
velocity vector, x(t) denotes the system generalized coor-
dinate vector, M is the system mass matrix, R represents
the system damping matrix, K denotes the system stiffness
matrix, ue(t) is the vector of uncontrollable inputs, uc(t) is
the vector of controllable inputs, B2,e is a Boolean matrix
that identifies the locations of the uncontrollable inputs, and
B2,c is a Boolean matrix that identifies the locations of the
controllable inputs. The system mass, damping, and stiffness
matrices of the flexible structure combined with the actively
controlled inertial-based vibration absorber are respectively
defined as follows:

M = BT
x M̂Bx + BT

4 M4B4

K = BT
x K̂Bx + BT

4 K4B4

R = BT
x R̂Bx + BT

4 R4B4

(26)

where M̂, R̂, and K̂ denote respectively the identified
mass, damping, and stiffness matrices, while M4, R4, and
K4 represent respectively the mass, damping, and stiffness
matrices associated with the actively controlled pendulum

given by:

M4 =

[
m4 m4L4

m4L4 m4L
2
4 + Izz,4

]
(27)

K4 = m4gL4, R4 = 0 (28)

where g = 9.81 (m
/
s2) represents the gravity acceleration,

L4 = 8.25 · 10−2 (m) is half the length of the pendu-
lum, m4 = 0.083 (kg) denotes the pendulum mass, and
Izz,4 = 8.32 · 10−4 (kg · m2) identifies the mass moment
of inertia of the pendulum referred to its center of mass.
The matrices Bx and B4, on the other hand, are appropriate
Boolean matrices that serve for assembling the mechanical
model of the flexible structure with the actively controlled
pendulum. For the three-story shear building system, the
vector of uncontrollable inputs ue(t) contains an external
excitation force applied on the first floor of the three-story
shear building system, whereas the vector of controllable
inputs uc(t) includes a control torque applied on the pen-
dulum that works as a vibration absorber. The Boolean
matrices B2,e and B2,c respectively identify the locations
of the input actions ue(t) and uc(t). In the experimental
testing, the uncontrollable input vector ue(t) is equal to an
external force Fe(t) defined by the superposition of three
harmonic components having considerable amplitudes and
characterized by a set of excitation frequencies close to
the first three natural frequencies of the flexible structure.
Furthermore, a noise excitation source is considered in
order to simulate the earthquake in the worst case scenario
in which external excitation frequencies are close to the
system natural frequencies. Therefore, the external force
Fe(t) considered as an uncontrollable input is defined as
Fe(t) = F0,1 sin(2πf1t)+F0,2 sin(2πf2t)+F0,3 sin(2πf3t),
where F0,1 = 0.1 (N), F0,2 = 0.1 (N), and F0,3 = 0.1 (N)
are the amplitudes of the first, second, and third harmonic
forces, respectively, while f1 = 1.9 (Hz), f2 = 5.7 (Hz),
and f3 = 8.8 (Hz) represent the frequencies of the first,
second, and third harmonic forces, respectively. The external
excitation force can be measured using a load cell collocated
between the shaker and the stinger connected with the first
floor of the flexible structure. On the other hand, the measur-
able output variables of the three-story shear building system
are the accelerations of the three floors and the angular
displacement of the actively controlled pendulum. These
output variables are included in a output vector y(t) given
by y(t) =

[
ẍ1(t) ẍ2(t) ẍ3(t) ϕ(t)

]T
. Consequently,

the set of measurement equations can be readily written
as y(t) = Cdx(t) + Cvẋ(t) + Caẍ(t), where Cd is the
generalized displacement influence matrix on the measured
output, Cv is the generalized velocity influence matrix on
the measured output, and Ca is the generalized acceleration
influence matrix on the measured output. Considering a
time span equal to Ts = 64 (s) and a time step equal
to ∆t = 3.125 · 10−2 (s), an optimal state estimator and
an optimal controller can be obtained by using the LQG
approach leading to the following set of discrete-time state-
space equations:

ẑ(k + 1) = Aẑ(k) + Beue(k) + BcF∞ẑ(k)
+K∞ (y(k)− ŷ(k))

ŷ(k) = Cẑ(k) + Deue(k) + DcF∞ẑ(k)

(29)
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where ẑ(k) is the estimated discrete-time state vector and
ŷ(k) denotes the estimated discrete-time measurement vec-
tor. The discrete-time dynamic model represented in the
state-space given by the set of matrices A, Be, Bc, C,
De, and Dc can be easily derived from the mechanical
model of the flexible structure combined with the actively
controlled inertial-based vibration absorber. Moreover, the
matrices K∞ and F∞ represent respectively a discrete-
time infinite-horizon Kalman filter gain and a discrete-time
infinite-horizon optimal feedback gain which can be readily
computed by using the LQG method. In order to analyze the
dynamic behavior of the three-story shear building system
with and without the action of the control system, the control
actuator is deactivated in the time range between t = 0 (s)
and t = 32 (s), while the control actuator is activated
in the time range between t = 32 (s) and t = 64 (s).
Figures 14, 15, and 16 show, respectively, the estimated
displacements of the first, second, and third floors of the
flexible structure resulting from the implementation of the
control system. Figure 17 shows the control torque used

Fig. 14. Estimated displacement of the first floor.

Fig. 15. Estimated displacement of the second floor.

as a controllable input signal for the mechanical system

Fig. 16. Estimated displacement of the third floor.

that forms the activelly controlled inertial-based vibration
absorber. It is apparent from the estimated displacements

Fig. 17. Control torque

shown in figures 14, 15, and 16 that the action of the control
system allows for obtaining a large amplitude reduction of
the system mechanical vibrations. In fact, the reduction of
the system vibrations can be estimated quantitatively by
comparing the maximum amplitude values of the system
displacements with and without the action of the vibration
absorber as follows:

(
xu1,max − xc1,max

)/
xu1,max = 74.82 (%)(

xu2,max − xc2,max

)/
xu2,max = 63.91 (%)(

xu3,max − xc3,max

)/
xu3,max = 58.40 (%)

(30)

where xu1,max, xu2,max, and xu3,max denote the maximum ab-
solute values of the estimated displacements when there is no
control action, whereas xc1,max, xc2,max, and xc3,max represent
the maximum absolute values of the estimated displacements
when the actively controlled inertial-based vibration absorber
acts on the three-story shear building. It can be noticed

Engineering Letters, 26:3, EL_26_3_11

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



that the numerical results found by using the state estimator
and employed for assessing the amplitude reductions of the
mechanical vibrations of the flexible structure are consistent
with the system actual dynamic behavior observed in the
experimental testing [81], [82].

VII. SUMMARY AND CONCLUSIONS

The principal topics of interest for the research of the
authors are nonlinear control, multibody dynamics, and
system identification [83]–[86]. Thus, the research efforts
of the authors are devoted to the development of new
optimal control actions for dynamical systems, new methods
for obtaining accurate analytical modelling of rigid-flexible
multibody mechanical systems, and new numerical param-
eter identification approaches based on experimental data
[87]–[90]. This investigation deals with the development of
a new actively controlled inertial-based vibration absorber
suitable for controlling the mechanical vibrations of flexible
structures. To this end, a system identification method based
on the time domain is developed in the paper. For this
purpose, the set of the system Markov parameters is used
in the paper for obtaining from experimental data the modal
parameters of structural systems and, at the same time, in
order to derive reliable first-order state-space and second-
order mechanical models driven from input-output measure-
ments. Furthermore, a least square estimation method for
improving the estimation of the system structural damping
is also proposed in this work. Subsequently, a methodology
for reducing the system mechanical vibrations induced by
external excitation sources by using an actively controlled
inertial-based vibration absorber is developed in the paper.
The proposed inertial-based vibration absorber is realized
by using an actively controlled pendulum system mounted
on the third floor of the flexible structure. This device is
programmed with both an optimal feedback controller and
an optimal state observer. The optimal closed-loop controller
and the optimal state estimator were designed by using the
Linear Quadratic Gaussian (LQG) algorithm. In order to
achieve this goal, the dynamic parameters obtained from the
application of the system identification numerical procedure
developed in this work were used. Moreover, the proposed
approach is corroborated by means of dynamic simulations
carried out by using a computer code developed in MATLAB
and is experimentally verified employing a simple test rig.
In particular, the analytical derivation and the experimental
testing of the active control strategy developed in this work
for reducing the vibrations of flexible structures are carried
out in two steps. In the first step of the analysis, the
flexible structure is modeled as a three-story shear building
system mathematically represented by using a three-degree-
of-freedom lumped parameter model obtained by means of
the analytical methods of classical mechanics. Once that
an accurate mechanical model was obtained in the first
step of the present analysis, an optimal feedback controller
and an optimal state estimator were designed in the second
part of this work considering the identified state-space and
configuration-space dynamic models obtained by using the
system identification approach elaborated in the paper. Nu-
merical results and experimental measurements showed that
the action of the actively controlled inertial-based vibration
absorber leads to a considerable reduction of the vibrations

of the flexible structure considered as the case study. The
numerical and experimental results obtained in this paper also
demonstrated that the use of applied system identification
numerical techniques can considerably facilitate the develop-
ment of effective control systems for reducing the externally
induced vibrations of machines, mechanisms, and structures.
Future research will be devoted to the experimental testing of
the proposed methodology in the case of the active vibration
control problem of complex three-dimensional mechanical
systems.
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