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Abstract—This paper proposes an approach to dynamic
output feedback guaranteed cost control problem for linear
nominal impulsive systems. Sufficient conditions for the exis-
tence of the guaranteed cost control are presented in terms
of linear matrix inequalities (LMI). Upon satisfaction of the
conditions presented, a dynamic output feedback controller is
easily calculated. Finally, an example is given to illustrate the
effectiveness of the results.

Index Terms—linear nominal impulsive system; asymptotic
stability; dynamic output feedback; linear matrix inequality
(LMI).

I. INTRODUCTION

IT is known to all that, in any control design, a controller
is sought not only to stabilize the system but also to

ensure satisfactory performance. The guaranteed cost control
aims at stabilizing the system while maintaining an adequate
level of performance represented by the quadratic cost. Great
efforts were made to investigate guaranteed cost control
problems; for example, the optimal guaranteed cost control
of uncertain linear systems was studied in [1], while the
designed controller for uncertain discrete-time systems with
both state and input delays was obtained in [2], and an
LMI approach of robust H∞-control for uncertain impulsive
systems was presented with state feedback control; more
researches, see [3,4,5] and relevant references therein. On the
other hand, all the states of a system are not always observed
in practical designs, so the dynamic feedback designs need
to be considered, see [6,7,8].

The control of impulsive or nonlinear systems received
more recently researchers’ special attention due to their ap-
plications. However, in many literatures, the results obtained
are based on the assumption that the state jumping at the
impulsive time instant has a special form; see, for example,
[9]. This assumption is not satisfied for most impulsive
systems.

The main purpose of this paper is to propose a new
design method for guaranteed cost control for linear nominal
impulsive systems. The proposed guaranteed cost control
method can be said general in a sense that it can also be
applied to uncertain impulsive systems.

The organization of this paper is as follows. In section
2, problem formulation and some preliminaries are given.
In section 3, guaranteed cost control for linear nominal
impulsive systems is considered. In section 4, our main
results on constructing a dynamic feedback controller design
were presented in order to optimize the quadratic upper
bound. A numerical example is provided in section 5.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider linear nominal impulsive systems represented by
the following state equations

ẋ(t) = A1x(t) +B1uc(t), t ̸= tk,
∆x(t) = (A2 − I)x(t) +B2ud(t), t = tk,
yc(t) = C1x(t), t ̸= tk,
yd(t) = C2x(t), t = tk,
x(t0) = x0,

(1)

where x(t) ∈ Rn is the state vector, yc(t) ∈ Rrc and yd ∈
Rrd are the measurable outputs, uc(t) ∈ Rlc and ud(t) ∈
Rld are the control inputs, A1, A2, B1, B2, C1, C2 are all real
constant matrices.

Given positive-definite symmetric matrices Q1, Q2, R1,
R2 and a scalar d > 0, we shall consider a cost function
represented by

J =

∫ ∞

0

[xT (t)Q1x(t) + uT
c (t)R1uc(t)]dt

+
1

d

∞∑
j=1

[xT (tj)Q2x(tj) + uT
d (tj)R2ud(tj)]. (2)

Associated with the cost (2), the guaranteed cost controller
is defined as follows:

Definition 1. Consider the uncertain system (1), if there
exist control laws uc(t), ud(t) and a positive scalar r, such
that the closed-loop system is asymptotically stable and the
closed-loop value of the cost function (2) satisfies J ≤ r,
then r is said to be a guaranteed cost and uc(t), ud(t) are
said to be guaranteed cost controllers for the system (1).

In this paper, the problem we consider is that determining
a dynamic output feedback controller of the form:

˙̂x(t) = Ac1 x̂(t) +Bc1yc(t), t ̸= tk,
x̂(t+) = Ac2 x̂(t) +Bc2yd(t), t = tk,
uc(t) = Ccx̂(t), t ̸= tk
ud(t) = Cdx̂(t), t = tk,

(3)

where x̂(t) ∈ Rn is the controller state, then we will obtain
the closed-loop systems by applying the controller (3) to
system (1)

˙̄x(t) = Āc1 x̄(t), t ̸= tk
x̄(t+) = Āc2 x̄(t), t = tk,

(4)

where

Āc1 =

[
Ac1 Bc1C1

B1Cc A1

]
, Āc2 =

[
Ac2 Bc2C2

B2Cd A2

]
,

x̄(t) =

[
x̂(t)
x(t)

]
,
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and the cost function (2) became the following form

J =

∫ ∞

o

[xT (t)Q1x(t) + uT
c (t)R1uc(t)]dt

+
1

d

∞∑
i=1

[xT (tj)Q2x(tj) + uT
d (tj)R2ud(tj)]

=

∫ ∞

o

[x̄T (t)C̄T
1 C̄1x̄(t)dt

+
1

d

∞∑
i=1

[x̄T (tj)C̄
T
2 C̄2x̄(tj)],

where

C̄1 =

[
Q

1
2
1 0

0 R
1
2
1 Cc

]
, C̄2 =

[
Q

1
2
2 0

0 R
1
2
2 Cc

]
,

that asymptotically stabilizes the uncertain system (1) and
satisfies J ≤ r.

III. GUARANTEED COST CONTROL

We are interested in find the least upper bound for the cost
function. The following theorem presents an asymptotical
stability condition with a guaranteed cost.

Theorem 1. If for prescribed scalars β > 0, µ ∈ (0, 1], there
exists a positive definite symmetric matrix P ∈ R2n×2n such
that the following matrix inequalities hold:

ĀT
c1P + PĀc1 +

lnµ

β
P + C̄T

1 C̄1 < 0, (5)

ĀT
c2PĀc2 − µP + C̄T

2 C̄2 ≤ 0, (6)

then the closed-loop system (4) is asymptotically stable for
any impulsive time sequence {tk} satisfies sup

k
{tk−tk−1} ≤

β when d ≥ µ such that the cost function (2) satisfies the
following bound J ≤ 1

µ trace(Px̄0x̄
T
0 ) and for any impulsive

time sequence tk satisfies sup
k
{tk − tk−1} ≤ β when d < µ

such that the cost function (2) satisfies the following bound
J ≤ 1

d trace(Px̄0x̄
T
0 ).

Proof: From (5), there exists a sufficient small δ > 0,
such that

ĀT
c1P + PĀc1 + (

lnµ

β
+ δ)P + C̄T

1 C̄1 < 0. (7)

Define a Lyapunov function as follows

V (t) = x̄T (t)Px̄(t), (8)

for all t ∈ (tk, tk+1]. Calculating the derivative of V (t) along
the solution of system (4), we can conclude

V̇ (t) = x̄T (t)(ĀT
c1P + PĀc1)x̄(t) < 0. (9)

Applying (5) and (7) to (8) yields

V̇ (t) < −(
lnµ

β
+ δ)V (t), t ∈ (tk, tk+1], (10)

which implies that

V (t) < V (t+k )e
−( lnµ

β +δ)(t−tk), (11)

that is
V (t) > V (tk+1)e

lnµ
β (tk+1−t), (12)

or

V (t) < V (t+k )e
− lnµ

β (t−tk). (13)

Using (6), we have

V (t+k ) = x̄T (tk)Ā
T
c2PĀc2 x̄(tk) ≤ µV (tk). (14)

On the basis of (11) and (14), we obtain

V (t) < µke(−
lnµ
β +δ)(t−t0)V (t0)

=
1

µ
e(k+1) lnµ

β [β− t−t0
k+1 ]−δ(t−t0), (15)

where t ∈ (tk, tk+1].

The above inequality shows that system (4) is asymptoti-
cally stable for µ ∈ (0, 1] and sup

k
{tk − tk−1} ≤ β. In the

case of µ = 1, (11) becomes V (t) ≤ e−δ(t−t0)V (t0), t ≥ t0,
which implies system (4) is asymptotically stable for any
impulsive time sequence tk.

Now let us consider the cost function

J =

∫ T

0

[
xT (t)Q1x(t) + uT

c (t)R1uc(t)
]
dt

+
1

d

∞∑
j=1

[
xT (tj)Q2x(tj) + uT

d (tj)R2ud(tj)
]
,

where T ∈ [tk, tk+1).

On the basis of (5), (6), (9) and (10), we obtain

J ≤ −
∫ T

0

[
V̇ (t) +

lnµ

β
V (t)

]
dt

+
1

d

k∑
j=1

[
µV (tj)− V (t+j )

]
≤ V (t0)− V (T )− lnµ

β

∫ T

0

V (t)dt

+

k∑
j=1

[
(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)

]

≤ V (t0)− V (T )− lnµ

β
[

∫ t1

0

e−
lnµ
β (t−t0)V (t+0 )dt

+

∫ t2

t1

e−
lnµ
β (t−t1)V (t+1 )dt+ · · ·

+

∫ tk

tk−1

e−
lnµ
β (t−tk−1)V (t+k−1)dt

+

∫ T

tk

e−
lnµ
β (t−tk)V (t+k )dt]

+
k∑

j=1

[
(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)

]
≤ V (t0)− V (T )

+
k∑

j=1

[(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)]

+
k−1∑
j=1

(e−
lnµ
β (tj+1−tj) − 1)V (t+j )

+(e−
lnµ
β (t1−t0) − 1)V (t0)
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≤ 1

µ
V (t0)− V (T )

+
k∑

j=1

[(
1

µ
− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)]

=
1

µ
V (t0)− V (T )

+(d− µ)
k∑

j=1

[
1

µd
V (t+j )−

1

d
V (tj)]. (16)

If d ≥ µ,

J ≤ 1

µ
V (t0)− V (T ).

If d < µ,

J ≤ 1

µ
V (t0)− V (T )

+(d− µ)

k∑
j=1

[
1

µd
V (t+j )−

1

d
V (tj)]

≤ 1

µ
V (t0)− V (T )

+(d− µ)
k∑

j=1

[
1

µd
V (t+j )−

1

µd
V (t+j−1)]

≤ 1

µ
V (t0)− V (T ) +

d− µ

µd
V (t+k )

≤ 1

µ
V (t0)− V (T )

+
d− µ

µd
exp

Inµ

β
(T − tk)V (T )

≤ 1

µ
V (t0)−

µ

d
V (T ). (17)

Then we have J ≤ 1
dV (t0) if d < µ and J ≤ 1

µV (t0) if
d ≥ µ. The proof is complete.

Next we consider the case of µ ∈ (1,∞).

Theorem 2. If for prescribed scalars β > 0, µ ∈ (1,∞),
there exists a positive definite symmetric matrix P ∈ R2n×2n,
such that the matrix inequalities (5) and(6) hold, then the
closed-loop system (4) is asymptotically stable for any im-
pulsive time sequence {tk} satisfying inf

k
{tk − tk−1} ≥ β.

Moreover, the cost function (2) satisfies the following bounds:

J ≤ trace(Px̄0x̄
T
0 ), d ≥ 1,

and

J ≤ 1

d
trace(Px̄0x̄

T
0 ), d < 1.

Proof: Similar to the proof of Theorem 1. The in-
equalities (11)-(15) show that the closed-loop system (4) is
asymptotically stable for µ > 1 and inf

k
{tk − tk−1} ≥ β.

Now let us consider the cost function

J =

∫ ∞

o

[x̄T (t)C̄T
1 C̄1x̄(t)dt

+
1

d

∞∑
j=1

[x̄T (tj)C̄
T
2 C̄2x̄(tj)],

where T ∈ (0,∞).

On the basis of (5), (6), (12), (13), (14), we imply

J ≤ −
∫ T

0

[V̇ (t) +
lnµ

β
V (t)]dt

+
1

d

k∑
i=1

[µV (tj)− V (t+j )]

≤ V (t0)− V (T )− lnµ

β

∫ T

0

V (t)dt

+
k∑

i=1

[(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)]

≤ V (t0)− V (T )− lnµ

d
{
∫ t1

0

e
lnµ
β (t1−t)V (t1)dt

+

∫ t2

t1

exp{ lnµ
β

(t2 − t)}V (t2)dt

+ · · ·+
∫ tk

tk−1

exp{ lnµ
β

(tk − t)}V (tk)dt

+

∫ T

tk

exp{ lnµ
β

(tk+1 − t)}V (tk+1)dt

+
k∑

i=1

[(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)]

≤ V (t0)− V (T )

+
k∑

i=1

[(1− 1

d
)V (t+j ) + (

µ

d
− 1)V (tj)]

+

k∑
i=1

[(1− exp{ lnµ
β

(tj − tj−1)})V (tj)]

+[e
lnµ
β (tk+1−T ) − e

lnµ
β (tk+1−tk)]V (tk+1)}

≤ V (t0)− V (T )

+
k∑

i=1

[(1− 1

d
)V (t+j ) + (

µ

d
− µ)V (tj)]

+(e
lnµ
β (tk+1−T ) − µ)V (tk+1)

≤ V (t0)− V (T )

+
d− 1

d

k∑
i=1

[V (t+j )−
µ

d
V (tj)]

+(e
lnµ
β (tk+1−T ) − e

lnµ
β (tk+1−tk))V (tk+1).

which follows that J ≤ V (t0) − V (T ) for d ≥ 1 and for
d < 1,

J ≤ V (t0)− V (T ) +
d− 1

d

k∑
j=1

[V (t+j )− µV (tj)]

+[e
lnµ
β (tk+1−T ) − e

lnµ
β (tk+1−tk)]V (tk+1)

≤ V (t0)− V (T ) +
d− 1

d

k∑
i=1

[V (t+j )− V (t+j−1)]

+[e
lnµ
β (tk+1−T ) − e

lnµ
β (tk+1−tk)]V (tk+1)

≤ 1

d
V (t0)− V (T ) +

d− 1

d
V (t+k )

+[e
lnµ
β (tk+1−T ) − e

lnµ
β (tk+1−tk)]V (tk+1)

≤ 1

d
V (t0) + (µ− 1− µ

d
)V (T ). (18)
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Then we have J ≤ V (t0) for d ≥ 1 and J ≤ 1
dV (t0) for

d ∈ (0, 1). The proof is complete.

Remark 1. Theorem 1 and Theorem 2 can be used to
dynamic out put feedback guaranteed cost control for linear
uncertain impulsive systems, and the similar results can be
obtained.

Remark 2. It is easy to see the condition in (5) and (6) is
not an LMI with respect to the parameters P > 0, and an
LMI can be obtained in the following steps (see Section IV).

IV. EXISTENCE CONDITION AND PARAMETERIZATION

In this section, we present sufficient conditions for the
existence of guaranteed cost controller for linear nominal
impulsive systems using the positive definite solutions of
LMI’s.

Using the Schur complement [10] to (5), we have[
ĀT

c1P + PĀc1 +
lnµ
β P C̄T

1

C̄1 −I

]
< 0, (19) −µP ĀT

c2P C̄T
2

PĀc2 −P 0
C̄2 0 −I

 ≤ 0. (20)

Let

P =

[
P11 P12

PT
12 P22

]
, P−1 =

[
S11 S12

ST
12 S22

]
,

where P11, P22, S11, S22 ∈ Rn×n and definite the matrix

M =

[
S11 I
ST
12 0

]
, N =

[
I P11

0 PT
12

]
,

then P12S
T
12 = I − P11S11, PM = N , and MTPM =[

S11 I
I P11

]
.

Pre- and Post-multiplying (19) by diag{MT , I}, combin-
ing with Schur complement yields

Γ11 A1 + Â+ lnµ
β I S11Q

1
2
1 ĈTR

1
2

∗ Γ22 Q
1
2
1 0

∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, (21)

where Â = S11A
T
1 P11 + S11C

T
1 B

T
c1P

T
12 + S12C

T
c B

T
1 P11 +

S12A
T
c1P

T
12, B̂ = P12Bc1 , Ĉ = CcS

T
12 and Γ11 = A1S11 +

B1Ĉ +(A1S11 +B1Ĉ)T , Γ22 = P11A1 + B̂C1 +(P11A1 +
B̂C1)

T + lnµ
β P11.

Similarly, Pre- and Post-multiplying (20) by diag{MT ,
MT , I}, combining with Schur complement yields

−µS11 −µI S11A
T
2 + ĈdB

T
2

∗ −µP11 AT
2

∗ ∗ −S11

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ÂT
d S11Q

1
2
2 ĈdR

1
2

AT
2 P11 + CT

2 B̂
T QT

2 0
−I 0 0
−P11 0 0
∗ −I 0
∗ ∗ −I

 < 0. (22)

where ÂT
d = S11A

T
2 P11+S11C

T
2 B

T
c2P

T
12+S12C

T
d B

T
2 P11+

S12A
T
c2P

T
12, B̂d = P12Bc2 , Ĉ = S12C

T
d .

Then we obtained S11, Ĉ, B̂, Â, P11 from the LMIs (21)-
(22), so we can get P12, S12 from I−P11S11 = P12S

T
12 and

the solutions of the controller

AT
c1 = S−1

12 (ÂT − S11A
T
1 P11

−S11C
T
1 B

T
c1P

T
12 − S12C

T
c B

T
1 P11)(P

T
12)

−1,

Bc1 = P−1
12 B̂,

Cc = Ĉ(ST
12)

−1,

AT
c2 = S−1

12 (Âd
T
− S11A

T
21P11

−S11C
T
2 B

T
c2P

T
12 − S12C

T
d B

T
2 P11)(P

T
12)

−1,

Bc2 = P−1
12 B̂d,

CT
d = (ST

12)
−1Ĉ.

Now we suggest the following nonlinear minimization
problem involving LMI conditions instead of the original
convex minimization problem

when β > 0, µ ∈ (0, 1], d ≥ µ, we have

min
P11,S11,d,µ

1

µ
trace(P x̄0x̄

T
0 )

subject to

(i) (21)-(22); (ii)
[

S11 I
I P11

]
< 0.

when β > 0, µ ∈ (0, 1], d < µ, we have

min
P11,S11,d,µ

1

d
trace(P x̄0x̄

T
0 )

subject to

(i) (21)-(22); (ii)
[

S11 I
I P11

]
> 0.

when β > 0, µ > 1, d ≥ 1, we have

min
P11,S11,d,µ

trace(P x̄0x̄
T
0 )

subject to

(i) (21)-(22); (ii)
[

S11 I
I P11

]
< 0.

when β > 0, µ > 1, d < 1, we have

min
P11,S11,d,µ

1

d
trace(P x̄0x̄

T
0 )

subject to

(i) (21)-(22); (ii)
[

S11 I
I P11

]
> 0.

V. NUMERICAL EXAMPLE

Consider the linear nominal impulsive systems (1) with
parameters as follows:

A1 =

[
0 1
1 −2

]
, A2 =

[
1.3 0.1
0 1.3

]
,

B1 =

[
1 0
0 1

]
, B2 =

[
0.3 0
0 0.1

]
,

C1 =

[
0.5 1
0 1

]
, C2 =

[
1 0.5
0 0.5

]
.

Assume that β = 0.2, µ = 0.8, the initial state x̄(0) =
(−2.5, 2.1)T . By using Matlab2014a, we get the solutions of
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the guaranteed cost controller

P =

[
0.6105 −0.0028
−0.0028 0.7518

]
,

Ac1 =

[
−12.1178 −0.1817
−217.5018 188.7909

]
,

Ac2 =

[
−18.7039 −0.2553
−135.3866 8.8084

]
,

Bc1 =

[
−1.0517 −1.8333
−168.0540 −60.2795

]
,

Bc2 =

[
−8.0523 −11.7441
−129.4567 −53.5444

]
,

Cc =

[
6.0479 0

0 11.0301

]
,

Cd =

[
1.9476 0

0 1.6740

]
.

Furthermore,

ĀT
c1P + PĀc1 +

lnµ

β
P + C̄T

1 C̄1 = −0.0167 < 0,

ĀT
c2PĀc2 − µP + C̄T

2 C̄2 = −0.0813 ≤ 0.

From Theorem 1, the closed-loop system (4) is asymptot-
ically stable for any impulsive time sequence {tk} satisfies
sup
k
{tk − tk−1} ≤ 0.2. Let d = 1, d ≥ µ, the cost function

(2) satisfies J ≤ 17.7. Let d = 0.5, d < µ, the cost function
(2) satisfies J ≤ 20.3.

VI. CONCLUSION

This paper studied an approach to dynamic output feed-
back guaranteed cost control problem for linear nominal
impulsive systems. The existence results of the guaranteed
cost control are obtained. Our method is helpful to improve
the existing technologies used in the analysis and control for
linear nominal impulsive systems. Moreover, it is important
to notice that the methods and technologies used in this paper
can be extended to many other types of dynamic systems
with impulses; see, for example, [11-15]. Future work will
include impulsive dynamic systems modeling and analysis.
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