
 

 

Abstract—In this work, the design, analysis, and 

implementation of an algorithm for automatic parallel parking 

for a nonholonomic mobile robot is presented. The mobile robot 

is a four-wheeled scaled vehicle and it is assumed that there is 

space limitation for the parking maneuver. The main objective 

was to design a parallel parking path trajectory avoiding 

collisions. We designed a fuzzy PD+I controller for driving the 

error generated between the real position and the previously 

generated objective position to the origin. We presented 

simulations results to validate the analysis and demonstrating 

how the fuzzy controller solved the tracking problem for the 

derived path trajectory to follow. 

 
Index Terms—Automatic parking, fuzzy-PID control, mobile 

robots, nonholonomic system 

I. INTRODUCTION 

In recent years, many car manufacturers have implemented 

an intelligent driver assistance system to its vehicles. These 

systems consist of an array of sensors to get information of 

the environment supporting the driver in different tasks. 

Some of these applications are lane keeping, blind spot 

detection, proximity indicators, driver drowsiness detectors, 

and assisted parallel parking systems, among others [1-4]. 
With the increase of vehicles in big cities and urban 

development, the availability of parking spaces is becoming 

a day to day issue, and parallel parking in confined areas can 

be a difficult task [5]. When trying to perform parking 

maneuvers, drivers can cause accidental damage to their cars 

such as scratches or slight dents to the vehicle. 

In the last decade, much interest has been put by 

researchers and car companies to develop assisted or 

automatic parking systems. The system aims to improve the  
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security and comfort of inexperienced and disable drivers, in 

this challenging operation [6,7]. 

Assisted parking systems facilitate the parking operation 

for the driver, the level of assistance varies, and commonly 

the driver has some control of the procedure.  Some 

companies have introduced parallel parking assistance in 

their vehicles. For example, Toyota Motor Company 

launched the Toyota Prius in the early 2000’s while Lexus, 

with their model LS, also includes an option of parking 

assistance, and Renault is researching Autonomous Valet 

Parking [7,8].  

Motivation: The fact is that parallel parking of autonomous 

cars is a challenging task that has allowed neither the 

complete welcome nor the confidence of such vehicles in the 

worldwide market. Most advanced systems are automatic 

parallel parking systems, where there is no need for driver 

input.  Such algorithm consists in, once a free space is 

validated, the parking routine is performed by controlling the 

steering angle of the vehicle and following a collision-free 

trajectory from the origin point to a desired point in the 

parking spot.  

There exist two main approaches reported in the literature 

for automatic parking. The first one is based on the 

stabilization of the vehicle to a target point, where the vehicle 

travels without a planned path and the objective is to reduce 

the distance between the reference point of the vehicle and 

the goal. The second approach consists of performing a path 

planning that takes the vehicle from an initial point to the 

target point and then follows the path [9].  

Existing path planning strategies for automatic parking in 

vehicles have three main steps. First, the vehicle sensors 

check for available space for parking. After that, a collision-

free path is calculated. In the last step, a control strategy to 

follow the calculated path and to evade any unexpected 

obstacle is used. The existence of unexpected obstacles can 

lead to a path recalculation [1,9,10]. There have been reported 

different approaches for planning the collision-free path used 

by the parking maneuver, being the geometric approach the 

most common one [9-11]. This methodology is based on 

human driver’s heuristics when parking: first the drivers turn 

all the steering wheel to maximum angle in the same direction 

as the parking space; at a middle point, the driver steers the 

maximum angle in the opposite direction till the vehicle is 

parallel to the parking spot. Hence, the whole a path consists 

of two identical curvatures that connect in the middle point. 

The geometrical approach works when the length of the 

parking space is big enough. Under constrained parking 

spaces, modifications to the trajectory is needed. The 

identical curvatures remain the same, but in a third step, the 

steering wheel moves slightly to the opposite side and then 

moves forward until the vehicle is in the middle of the parallel 

spot or at a safe distance of the car front of us.   
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Fuzzy controllers have been widely used for automatic 

parallel parking. Li and Tseng [10] implemented automatic 

parallel parking for an autonomous vehicle using a Fuzzy-

PID. The system has the following stages: place searching, 

steering control, path tracking, and wireless communication. 

Ultrasonic sensors obtain the data from the surroundings. 

Then the information about the suitable parking spot is 

recorded and sent to the driver’s smartphone. Finally, the 

parking routine using the Fuzzy-PID is executed.  

Another work using a fuzzy controller was presented by 

Aye [12], who constructed the fuzzy rules based on the skills 

of an experienced human driver. The path was followed using 

camera information to obtain the position of the vehicle, and 

the fuzzy controller corrects the position based on the error of 

the actual position with respect to the desired position. Their 

membership functions were tuned using a genetic algorithm 

to minimize the position error. 

Filatov et al. [6] used a Fuzzy controller to adjust the speed 

of a car-like robot when parking.  The vehicle follows a path 

generated by a geometric approach, with the position of the 

robot tracked by a camera, the speed is estimated using 

distance sensors as the input for the fuzzy controller. In a 

similar approach, Lee et al. [13] used a Fuzzy controller to 

adjust the acceleration and the speed of an autonomous 

vehicle in the parking operation, but they used a LiDAR 

distance sensor to get more information of the surroundings. 

Scicluna [14] also used a LiDAR and Fuzzy Logic 

implemented into an FPGA to enhance the processing speed.   

Fuzzy logic controllers have been successfully applied to 

different tasks and architectures of mobile robots.  For 

example in Castillo et al. [15] a fuzzy logic controller was 

developed for a nonholonomic unicycle mobile robot based 

on a backstepping approach to ensure the stabilization of the 

robot’s position and orientation around a desired path. For the 

same kind of mobile robots,  Astudillo et al. [16] used a type-

2 fuzzy logic controller to control the torque of an 

autonomous mobile robot when following the desired path.      

Contribution of the paper: This work uses the path-

following approach for parallel parking controlled by a Fuzzy 

PD+I controller, with the fuzzy rules and membership 

functions based on the experience of human drivers. We are 

using the geometrical approach to calculate the desired path, 

which is based on the three-step movement heuristics for 

parallel parking. The contribution of this work is the design 

of a Fuzzy PD+I controller for automatic parallel parking and 

the mathematical formulation to find the parking route. The 

controller is tested experimentally in a laboratory scaled car-

like robot.  

This paper is organized as follows: In Section II, we 

introduce the kinematics of car-like robots, the theoretical 

framework of fuzzy controllers for path following, the 

geometrical approach to obtain the path that the robotic car 

must follows, the design specifications of the Fuzzy PD, and 

the prototype used for the test.   In Section III, the results of 

the Fuzzy PD+I controller and the comparison using a 

classical PID control are presented and discussed. Finally, in 

Section IV we present the conclusions. 

II. MATERIALS AND METHODS 

A. Kinematics of a car-like robot 

A car-like robot, from a kinematic point of view, is a 

constrained driven system since it has less controllable 

degrees of freedom than the total amount of degrees in the 

system. Therefore, these robots are called underactuated [17] 

and can be explained by analyzing how the constraints of the 

system are expressed. A system is called holonomic, if its 

constraints are expressed without any time derivative, using 

the form 𝒇(𝒒, 𝒕) = 𝟎, where 𝒒 are the constraints of the 

system.  On the other hand, if the constraints of the system 

have derivatives in the form 𝑓(𝒒, �̇�, �̈�, 𝑡) = 0, the system is 

called nonholonomic. Since the equations of nonholonomic 

systems are non-integrable, the total amount of degrees-of-

freedom in the system is greater than the degree of freedom 

that can be controlled [10,17].   

 The kinematics constraints of car-like robots arise from the 

wheels that control the steering of the robot. Wheeled robots 

operate in a two-dimensional plane, which gives them three 

degrees of freedom: x and y-axis, and orientation around one 

of the axes (typically the x-axis). The relation between the 

position of the car-like robot in the x and y-axis depends on 

the orientation given by the wheels for steering; this causes 

kinematics constraints with derivative relations, which 

classifies this type of robots as a nonholonomic system. 

 As mentioned above, the position of car-like robots is 

described by a point in a two-dimensional plane where the 

reference point is in the middle of the rear axle. The 

orientation angle concerning the two-dimensional plane (x,y) 

is denoted by 𝜃. At any given time and point P, the system 

has an instantaneous linear velocity 𝑣 and an angular velocity 

 for the wheels when steering (see Fig. 1).   

 

 

Fig. 1.  Kinematic scheme of a front-steered car-like robot.  L denotes 

the wheelbase of the model, p is the distance between the rear axle and the 

rear bumper and W the axle width. 

As mentioned before, the nonholonomic constraints are 

imposed by the steering angle represented by 𝜙, which 

constrains the position and orientation of the robot [18-20]. 

The restrictions of a front-steered robot are described as 

follows:  

 

�̇�1 cos 𝜃 − �̇�1 sin 𝜃 = 0 ,                   (1) 

�̇�2 cos(𝜃 + 𝜙) − �̇�2 sin(𝜃 + 𝜙) = 0,                      

 

where 𝑥2 = 𝑥1 + 𝐿 cos 𝜃 and 𝑦2 = 𝑦1 + 𝐿 sin 𝜃. From (1), 

the constrained variables are 

 

𝒒 = [

𝑥1
𝑦1
𝜃
𝜙

].                                       (2) 
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   To neglect the influence of slippage, i.e., the wheels roll 

without slip and also cannot have side slip [21], the kinematic 

model considers a robot with low mass and low velocities 

[22]. After this consideration, the instantaneous curvature 𝑘 

of the robot is only affected by the steering angle of the front 

wheels 𝜙, and the length 𝐿 between axles.  The instantaneous 

curvature is calculated as follows: 

 

     𝑘 =
tan𝜙

𝐿
.                                    (3)                                                         

 
Once the instantaneous curvature is defined, the next step 

is to determine the relationship between the elements of 𝒒 to 

obtain the kinematics equations of the system. Since the rate 

of change for the steering angle �̇� only depends on the 

angular velocity of the front wheels, the rate of change of the 

steering angle is represented by the first order differential 

equation �̇� = 𝜔 [1,22,23]. Using the system described in Fig. 

1, and the provided instantaneous curvature and linear 

velocity equations (1)-(3), the following kinematic model of 

the car-like robot is obtained: 

 

     �̇� =

[
 
 
 
�̇�1
�̇�1
�̇�
�̇� ]
 
 
 
=

[
 
 
 
cos 𝜃 0
sin 𝜃 0
tan𝜙

𝐿
0

0 1]
 
 
 

[
𝑣
𝜔
].                           (4)                                                   

  

We assume that the linear and angular velocities and the 

steering angle are bounded, that is, there are apriori known 

positive constants 𝑣𝑚𝑎𝑥 ,  𝜙𝑚𝑎𝑥 , 𝑤𝑚𝑎𝑥 , such that 

 

{

|𝑣| ≤ 𝑣𝑚𝑎𝑥 ,
|𝜙| ≤ 𝜙𝑚𝑎𝑥 ,
|𝜔| ≤ 𝜔max.

                                    (5) 

 

B. Fuzzy controllers 

Fuzzy logic can emulate the approximate reasoning of the 

human brain based on natural language with uncertainty, 

which allows the handling of vague information and an 

imprecise set or rules.  The main advantage of these systems 

is that they can use human knowledge in problems where it is 

difficult or sometimes impossible to build accurate 

mathematical models. 

A fuzzy set is represented by: 

 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑋)},                        (6) 

 

where 𝜇𝐴(𝑥) is called the membership function of the fuzzy 

set 𝐴. The membership function maps each element of 𝑿 to a 

membership grade between 0 and 1. Set 𝑿 is referred as the 

universe of discourse, and it can be a discrete or continuous 

space [24]. 

A Fuzzy inference system (FIS) can implement a non-

linear mapping of its input to an output space. This mapping 

is achieved through the IF—THEN fuzzy rules, where each 

rule describes the local behavior of the mapping. A fuzzy 

IF—THEN rule is a sentence that is divided into two parts 

and has the next form: 𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵. The first part is 

the antecedent or premise (x is A), while the second part is the 

consequence or conclusion (y is B).  

The Inference system (see Fig. 2) has a knowledge base that 

includes the information given by the expert in the form of 

linguistic control rules. The fuzzification interface transforms 

the crisp data (inputs) into fuzzy sets based on the 

membership functions (MF) and gives this data to the 

knowledge base. The last stage of the FIS is the 

defuzzification interface and translates the fuzzy control 

actions into a real control action [24].  

 

 
Fig. 2.  Fuzzy Inference System. 

 

FIS has been widely used as control systems [24, 25] in 

many applications, and because their properties, FISs are 

candidates to be mixed with classical control techniques such 

as the proportional-integral-derivative (PID) controller. The 

PID controller, in the discrete time domain, is given by [26]: 

 

𝑢(𝑘) =  𝐾𝑃𝑒(𝑘)⏟    
𝑃

+ 𝐾𝐼 ∑ 𝑒(𝑖)𝑘
𝑖=0⏟      
𝐼

+ 𝐾𝐷∆𝑒(𝑘)⏟      
𝐷

        (7)     

                     

where Kp, Ki, KD are the system’s gains and e is the error 

generated by the difference between the current value and the 

desired value. The main objective of the controller is to 

minimize the control error by adjusting the process controller 

output; then the system should reach a point of stability. 

Stability means the set point is held on the output without 

oscillations around it [27]. This controller offers fast response 

proportional to the error, while it has an automatic reset from 

the integral part that eliminates the steady-state error. The 

derivative action allows the controller to respond fast to 

changes in the error [7, 28]. 

The fuzzy PD+I controller is in the discrete time domain 

(see Fig. 3). It mixes a fuzzy PD controller with two inputs 

— the error and the derivative of error (𝑒,∆𝑒) multiplied by 

their respective constants (𝐾𝑃, 𝐾𝐷)— with the integral of the 

error. The output of the FD is added to the integral of the error 

multiplied by 𝐾𝐼 , as shown by the I term of (7). The final 

output u is then multiplied by KU to obtain U that is the input 

of the process to be controlled. The error given by the 

measurement of the desired state and the actual state is then 

the new error for the Fuzzy PD+I controller.  

 

 
Fig. 3.  Fuzzy PD+I controller in discrete domain time. 

 

Opposite to the PID controller based on difference 

equations, in the PD+1 controller, the PD part is achieved by 

a FIS without including the integral controller to reduce the 

fuzzy controller complexity. This kind of controllers has been 

applied successfully to many control problems [25]. 
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C. Path planning for parallel parking 

For our implementation, the path planning is based on the 

geometric approach of Choi [9]. To assure that the moving 

robot will not impact the already parked front vehicle, a 

perfectly aligned robot at the minimum distance 𝑥𝑚𝑖𝑛 and 

𝑦𝑚𝑖𝑛 in both axes is considered. The design of the full path 

consists of three segments: two identical curves that connect 

at a breaking point and a small straight segment to keep the 

vehicle in the middle of the parking spot (see Fig. 4). The 

steering angle only changes its direction only at the junction 

of  pair segments, and depends on the arc segment 𝛼 [7]. 

 

 

 
Fig. 4. Parking maneuver using the geometric approach. 

 

The desired path is integrated by four points (A, B, C, D), 

that are the components of the three segments: curves 𝐴𝐵̅̅ ̅̅  and 

𝐵𝐶̅̅ ̅̅ , and a straight-line 𝐶𝐷̅̅ ̅̅  (see Fig. 5). Both curves, 𝐴𝐵̅̅ ̅̅  and 

𝐵𝐶̅̅ ̅̅ , have identical length 𝑆 and angle 𝛼. Therefore, the path 

planning stage aims to calculate �̅�  which is the full path that 

the controlled car must follow to get parked correctly. The 

full path is given by (8). 

 

�̅� = 𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅        (8) 

 

 
 

 
Fig. 5.  The segments  𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , and 𝐶𝐷̅̅ ̅̅  conform the full path for parallel 

parking of the autonomous car. The first two segments are driven in reverse 

whereas the last segment is driven forward.   

 

A geometrical analysis is needed to get the relations 

between the dimensions and the kinematic model of the car-

like robot with respect to the desired paths. To obtain these 

relations, a steady steering angle should be set. If the steering 

angle is different of zero, then a circle of radius 𝑅 is formed, 

getting bigger at lower angles and smaller at bigger steering 

angles.  

The minimum arcs for the curves 𝐴𝐵̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  (see Fig. 5) 

depend strongly on the dimensions of the robot. If the 

distance of the arc radius is too small, the inner part of the car 

being parking can hit with the front parked car. On the other 

hand, if the radius is too big, then the vehicle will hit the back 

car.  

Two circles can be obtained from arcs 𝐴𝐵̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ , with 

center 𝐶2 and 𝐶1, respectively (see Fig. 6), which are tangent 

to the point (𝑋𝑇 , 𝑌𝑇). The origin is the center 𝐶2 with respect 

to our coordinate system that is aligned with the initial point 

of the system, where 𝑋𝑆 = 0 and 𝑌𝑆 = 𝑅. The center 𝐶2 is the 

vertex of the first arc of the path �̅�, whereas  𝐶1 is the vertex 

of the second arc of the path �̅�.The distance from the 

intersection point to both centers is denoted by 𝑅, which is 

the same distance of the point (𝑋𝑆, 𝑌𝑆) to 𝐶2, and the distance 

from the point (𝑋𝐹 , 𝑌𝐹 ) to 𝐶1. The distance 𝑅 is defined as: 

 

 

  𝑅 =
𝐿

tan𝜙
            (9) 

 

 

 
Fig. 6.  Parking path components.  

 

Since both arcs are identical, and they share a common 

point, it is possible to calculate their aperture angle 𝛼 of the 

arc if the coordinates of the common point are known. If we 

use as a restriction that point (𝑋𝑇 , 𝑌𝑇) must be at the same 

height that the parking spot (see Fig. 6), the reference point 

of the system is 𝐶2, and using: 

 

𝑋𝑇 = 𝑅 cos 𝛼,                                  (10)                                            

   𝑌𝑇 = 𝑅 sin 𝛼,                                   (11) 

 

the height of the intersection can be calculated as follows 

𝑌𝑇 = 𝑅 − (𝑦𝑚𝑖𝑛 +
𝑊

2
). Because the height of the point is 

known, the angle α can be found using the following relation: 

 

𝛼 = |sin−1 (
𝑅−(𝑦𝑚𝑖𝑛+

𝑊

2
)

𝑅
)|.           (12) 

 

The last two values to calculate are the minimum length of 

the parking space 𝑀𝑚𝑖𝑛 and the location of (𝑋𝐺 , 𝑌𝐺). The 

length of the parking space must be long enough to allow the 

vehicle to perform the parking operation without impacting 

the rear vehicle. Using Fig. 4 and Fig. 6, the length 𝑀𝑚𝑖𝑛 can 

be calculated as follows, where p is the distance between the 

rear axle and the rear bumper as is illustrated in Fig. 1, 

  

𝑀𝑚𝑖𝑛 = 2𝑋𝑇 + 𝑝 − 𝑥𝑚𝑖𝑛 .                 (13) 

 

The height of the goal point 𝑌𝐺  is the same 𝑌𝐹 , or the 

position in the circle with center at 𝐶1 at 3π/2 radians. An 

easier way to calculate this position is with the geometric 

information that is already known (see Fig. 4 and Fig. 6), and 

the algebraic result is: 
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𝑌𝐺 = 𝑅 − (𝑊 + 𝑦𝑚𝑖𝑛).                   (14) 

 

Using the same idea, and the minimum length for the parking 

space, the 𝑋𝐺 is obtained from the following relation: 
 

 

𝑋𝐺 =
𝑀𝑚𝑖𝑛

2
+ 𝑥𝑚𝑖𝑛 +

𝐿

2
+ 𝑝.            (15) 

 

Algorithm 1 shows step-by-step the calculus of the desired 

path using the geometrical approach. 

 

Algorithm 1. Steps to obtain the full path �̅� 

     Input: Steering angle 𝜙, wheelbase 𝐿, the width of the 

robot 𝑊, the distance between the rear axle and the rear 

bumper 𝑝, the initial points 𝑋𝑆, 𝑌𝑆 and the minimum distance 

𝑥𝑚𝑖𝑛 and 𝑦𝑚𝑖𝑛 

    Output: The whole path �̅� 

 

1 Calculate the distance 𝑅 

𝑅 =
𝐿

tan (𝜙)
 

2 Find the intersection point 𝑌𝑇 using 

𝑌𝑇 = 𝑅 − (𝑦𝑚𝑖𝑛 +
𝑊

2
) 

3 Calculate the aperture angle 𝛼 using (10) 

4 Find the intersection point 𝑋𝑇 using (8) 

5 Calculate the parking length space 𝑀𝑚𝑖𝑛 using (11) 

6 Find the goal point 𝑋𝐺 using (13)  

7 Calculate the goal point 𝑌𝐺  using (12)  

8  𝑌𝐹 = 𝑌𝐺  

Calculate the 𝑋𝐹 point using  
𝑋𝐹 = 𝑀𝑚𝑖𝑛 − 𝑝 

9 Calculate the full path �̅�  

�̅� = (𝑋𝑆, 𝑌𝑆)(𝑋𝑇 , 𝑌𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + (𝑋𝑇 , 𝑌𝑇)( 𝑋𝐹 , 𝑌𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ ( 𝑋𝐹 , 𝑌𝐹)(𝑋𝐺 , 𝑌𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
10 end 

 

D. Control strategy 

The control strategy to solve the path tracking problem is a 

Fuzzy PD+I. The aim of the Fuzzy PD+I system is to reduce 

the difference between the desired path �̅� and the actual 

position modifying the steering angle of the robot (see Fig. 

7). The sensor to measure the position of the vehicle is an 

odometer, which calculates the position based on the 

orientation and velocity of the vehicle.  

 

 
Fig. 7.  Proposed Fuzzy PD+I controller system for path following. 

 

The path created with the designated steering angle is 

discretized, and it gives the desired position �̅�(𝜙) at a given 

steering angle 𝜙. The odometer measures the actual position  

𝑂(𝜙), and then, the error between both is calculated 𝑒(𝜙)  =
𝑝(𝜙) − 𝑂(𝜙). The objective control of the system 

considering the time can be expressed as lim
𝑡→∞

‖𝑒(𝜙, 𝑡)‖ = 0.  

The error 𝑒(𝜙) is multiplied by 𝐾𝑃 and the derivative of the 

error by 𝐾𝐷, the results are the inputs for the FIS. The input 

for the Fuzzy PD+I controller are 𝐸𝑝, 𝐸𝐷, and  𝐸𝐼; and the 

output is the correction of the steering angle 𝑈(𝜙) (see Fig. 

3). Fig. 8 gives more detail of the Fuzzy PD controller.   

Since the output of the FIS is the raw correction for the 

steering angle 𝑢(𝜙), then the integral of the error Σ𝑒(𝜙) is 

added and multiplied by the variable scaling factor 𝐾𝑈, that 

is, 

 

𝑈(𝜙) = 𝐾𝑈(𝑢(𝜙)  + 𝐾𝐼Σ𝑒(𝜙)).              (16) 

 

The new value of the steering angle would be 

 

𝜙′ = 𝜙 + 𝑈(𝜙),                                  (17) 

 

that includes the correction of the current direction 

considering any unwanted displacement of the desired 

trajectory. 

 

 
Fig. 8. Fuzzy PD for path following. 

 

E. Fuzzy Inference System design 

The membership functions (MFs) of the FIS are shown in 

Figs. 9, 10, and 11. Table I shows the type and parameter 

values of the MFs. Table II shows the rule matrix.  

As mentioned before, there are two input variables: the first 

one is the error (e) multiplied by 𝐾𝑃 and the second is the 

derivative of the error by 𝐾𝐷 (𝐸𝑝, 𝐸𝐷 respectively). For each 

input variable, there are four linguistic terms: NB, N, Z, P, 

and PB. The input variables are measured in centimeters. 

 

 
Fig. 9. Input membership functions for the error 𝐸𝑝. 

 

For the output variable 𝑢, there are four membership 

functions: BI, I, Z, D, and BD (see Fig. 11). The aim of these 

membership functions is to correct the position of the robot 

based on the actual position of the reference point and the 

steering wheels. The universe of discourse of the output is in 
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radians, the maximum value was based on the physical 

limitations of the model. 
 

 
Fig. 10. Input membership functions for the derivative error 𝐸𝐷. 

 

 
Fig. 11. Output membership functions of the variable 𝑢. 

 

 
TABLE I  

LINGUISTIC INPUT VARIABLES AND TERMS FOR THE FIS 

Variable 

name 

Term 

name 

Type Parameters 

𝐸𝑃 NB Trapezoidal [-20, -20, -6.7, -3.35] 

𝐸𝑃 N Triangular [-6.7, -3.35,0] 

𝐸𝑃 Z Triangular [-3.35, 0, 3.35] 

𝐸𝑃 P Triangular [0, 3.35, 6.7] 

𝐸𝑃 PB Trapezoidal [3.35, 6.7, 20, 20] 

𝐸𝐷 NB Trapezoidal [-20, -20, -8.75, -5] 

𝐸𝐷 N Triangular [-8.75, -5, 0] 

𝐸𝐷 Z Triangular [-5, 0, 5] 

𝐸𝐷 P Triangular [0, 5, 8.75] 

𝐸𝐷 PB Trapezoidal [5, 8.75, 20, 20] 

u BI Trapezoidal [-1, -1, -0.1833, -0.06109] 

u I Triangular [-0.1833, -0.09163, 0] 

u Z Triangular [-0.06109, 0, 0.06109] 
u D Triangular [0, 0.09163, 0.1833] 

u BD Trapezoidal [0.06109, 0.1833, 1,1] 

 

The fuzzy rules summarized in Table II were created to 

ensure the correct amount of correction is computed 

depending on the behavior of the error through the parking 

operation. 
TABLE II  

FUZZY RULE MATRIX OF THE FIS  

 NB N Z P PB 

NB BI BI BI I Z 

N BI I I Z D 
Z BI I Z D BD 

P I Z D D BD 

PB Z D BD BD BD 

 

F. Materials 

The mobile robot used for this paper is a 1:10 scale vehicle 

(see Fig. 12). The dimensions and physical limitations are 

shown in Table III. The main computer is an Odroid board 

(XU4 64 GB) controlled using ROS (Robotic Operating 

System). The vehicle has a 15-volt motor for traction and a 

servomotor for steering control. The vehicle has a laser-type 

sensor (RPLidar 360), which detects the available parking 

spaces and possible obstacles when the parking process is 

performed. An Intel SR300 camera module is part of the 

system that allows the detection of obstacles on the front. This 

camera module has three cameras: an RGB, an infrared, and 

a depth camera. 

 

 
Fig. 12.  Some of the main of components of the prototype: (i) Frontal 

camera, (ii) Lidar, (iii) CPU, (iv) traction, (v) and steering. 

 
TABLE III 

 CAR-LIKE ROBOT DIMENSIONS 

L[m] W[m] LF[m] p[m] 𝜙𝑚𝑎𝑥[°] 𝜙𝑚𝑖𝑛[°] 𝑣𝑚𝑎𝑥[m/s] 

0.26 0.20 0.43 0.085 38 -38  0.58 

 

III. RESULTS AND DISCUSSION 

 Through experimentation 𝑥𝑚𝑖𝑛  and 𝑦𝑚𝑖𝑛 are estimated, 

obtaining 𝑥𝑚𝑖𝑛 = 0.02 m and  𝑦𝑚𝑖𝑛 = 0.1 m.  Based on the 

dimensions of the robot and its physical limitations (see Table 

III), a steering angle of 0.5235 rad (30 degrees) was chosen. 

For the simulations, the starting angle was 0.6108 rad (35 

degrees).  The values for 𝐾𝑃, 𝐾𝐷, 𝐾𝐼 , and 𝐾𝑈 were found 

experimentally for both arcs. For the first arc we obtained 

𝐾𝑃 = 0.3, 𝐾𝐷 = 1, 𝐾𝐼 = 0.01, and 𝐾𝑈 = 0.016. For the 

second arc, the values were 𝐾𝑃 = 0.3, 𝐾𝐷 = 1,  𝐾𝐼 = 0.001, 

and 𝐾𝑈 = 0.001. 

To compare the proposed controller, a classical PID 

controller manually tuned was implemented. The values for 

the constants for the first arc are 𝐾𝑃 = 1.4, 𝐾𝐷 = 1.4, 𝐾𝐼 =
0.001, and 𝐾𝑈 = 0.012; and for the second arc are 𝐾𝑃 =
1.16, 𝐾𝐷 = 1.4, 𝐾𝐼 = 0.001, and 𝐾𝑈 = 0.001. 

The results of our proposed controller and the PID 

controller can be seen in Table IV and Table V, the results 

show that both controllers lasted the same time to perform the 

parking task, they took 4.646 seconds for the first arc, and 

4.364 for the second arc. However, Table V shows that the 

parking task with less error in both arcs was achieved by the 

Fuzzy PD+I controller.  

The performance indices, provided in Table V, were 

obtained using the ℓ2-norm defined as ‖𝑒‖2 = √∑ |𝑒𝑖|
2𝑛

𝑖=1  to 

calculate the mean squared error (MSE) of the steady-state 

error of the first and second curvatures, whereas we used the 
‖ℓ‖∞ norm defined as ‖𝑒‖∞ = max

1≤𝑖≤𝑡
|𝑒𝑖| to report the 

maximum error shown in the fourth column. 

 
TABLE IV 

 COMPARISON OF RESPONSE TIME BETWEEN FUZZY PD+I 

CONTROL AND PID CONTROL 

Control Time to reach stable 

state first curvature (s) 

Time to reach stable 

state second curvature 
(s) 

PID 4.626  4.364 

Fuzzy PD+I 4.626 4.364 
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TABLE V 
 ERROR COMPARISON BETWEEN FUZZY PD+I CONTROL AND 

PID CONTROL 

Control Steady-state 

error for first 
curvature (cm) 

Steady-state 

error for 
second 

curvature (cm) 

Maximum 

error (cm) 

Mean 

square error 
(cm) 

PID 0.0195 0.0112 0.4565 0.0420 

Fuzzy PD+I 0.0232 0.0068 0.4224 0.0266 

 

The behavior of the fuzzy PD+I controller and the PID 

controller versus the desired parking trajectory is shown in 

Fig 13 and Fig 14, respectively.  The upper part of both 

figures represents the first curve while the lower part is the 

second curve. In these figures, we show only the path of the 

two arcs since the last segment is just driving forward to park 

the car in the center of the parking space.  Both controllers 

decreased the path error satisfactorily preventing the vehicle 

from crashing during the parking process.  

 

 

 
Fig. 13.  Comparison between the real trajectory vs. the desired 

trajectory with the Fuzzy PD+I control. 

 

 

 
Fig. 14.  Comparison between the real trajectory vs. the desired 

trajectory with the PID control. 

 

Comparative results of the transient response and steady-

state error can be seen in Fig 15, where the fuzzy PD+I 

controller has an underdamped response hence it has the 

faster rising time with a very small overshoot with no 

oscillations; on the other hand, the PID controller has an 

overdamped response with a low rising time. The fuzzy PD+I 

get very close around the steady-state almost two seconds. 

Table V shows that the maximal error occurred at the 

beginning of the path when the transient response took place, 

the Fuzzy PD+I had an undershoot of 0.4224 cm, and the 

undershoot of the PID was 0.4565 cm. In the first curvature, 

the MSE of the steady-state is approximately 19% higher in 

the fuzzy PD+I controller. However, in the second curvature, 

in the fuzzy PD+I controller the MSE of the steady-state error 

is approximately 83% smaller than in the PID controller. The 

overall MSE error for the fuzzy PD+I is 0.4224 and for the 

PDI is 0.4565. 

To better understand the difference in the steady-state error 

of both controllers, we plotted the steering error (EP) vs. the 

error change (ED); we show the results in Figures 16 and 17. 

In the fuzzy PD+I the plot of the error radius is smaller than 

in the PID controller, and the plot of the fuzzy PD+1 finish 

closer to zero than in the PID.  

 

 

 
Fig. 15.  Fuzzy PD+I error vs PID error. 

 

 

Fig. 16.  Error and error change behavior through time with a Fuzzy 

PD+I control. 
 

IV. CONCLUSIONS 

In this paper, we have developed the mathematical basis for 

the route tracking for the parallel parking of an autonomous 

vehicle as well as the Fuzzy PD+I controller. Simulation 

results of the closed-loop system demonstrate the 

effectiveness of the proposed methodology. Mathematical 

tools such as geometry were used to calculate the parking 
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arches of the vehicle, while the steering angle was calculated 

using heuristic methods as well as the parking start position. 

 In the literature there are previous works on parallel 

parking, even already implemented in real vehicles. The 

experiments of this work are based in a 1:10 scaled prototype 

car. We have presented a direct comparison of the fuzzy PD+I 

controller with a digital PID controller, where the 

experiments have shown that the fuzzy PD+I controller has 

the better performance to achieve the parking maneuver in 

parallel. In general, the experiments demonstrated that the 

fuzzy PD+I controller can track the entire path with a 

maximal error around 7.5% and an overall MSE around 37% 

smaller than using the PID controller. This results will have 

more impact when the proposed controller be implemented in 

a real car, where for example, an error of 0.5 cm will represent 

5 cm, which is a considerable amount for many cars and 

parking spaces. 

 

 
Fig. 17.  Error 𝐸𝑃 and error change 𝐸𝐷 behavior through time with a PID 

control. 
 

To properly adjust the fuzzy controller parameters we had 

to perform several tests, hence as future work, we are 

planning to use evolutionary computation embedding the 

system into a GPU to adapt online different membership 

functions for a real vehicle, in this way more accidents could 

be avoided due to the optimal tuning of the fuzzy controller.  
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