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Abstract—Aiming at the guidance problem with attack angle 

when missiles impact ground targets, a sliding mode guidance 

law with autopilot second-order dynamic lag compensation is 

proposed based on the backstepping method. A fast sliding 

mode surface is presented to certify the finite-time convergences 

of the line-of-sight (LOS) angle rate and attack angle. In 

addition, the differential expansion problem of backstepping 

method is settled via designing integration Lyapunov functions, 

which is helpful for expanding engineering application fields of 

this method. In terms of Lyapunov stability theory, it is 

demonstrated that all states in the closed-loop system converge 

to equilibrium point in finite time. Finally, the presented 

guidance law is simulated in different situations and the results 

indicate that the control law can compensate autopilot dynamic 

lag and obtain the desired LOS angle. 
 

Index Terms—guidance law, sliding mode control, attack 

angle constraint, backstepping control, differentiation 

expansion, finite-time convergence 

 

I. INTRODUCTION 

certain type of homing anti-tank missile is configured 

for top attack to destroy targets. In order to raise 

warhead’s lethality, small miss distance and desired attack 

angle are expected. Under different application backgrounds, 

many scholars have studied a variety of guidance laws with 

angle constraints on the basis of different theories, such as 

optimal guidance law[1]-[2], biased proportional guidance 

law[3]-[4], differential game guidance law[5], and so on. 

However, the guidance laws above are limited by 

assumptions, their demands on precision of target motion 

model and accuracy of status information are higher, and 

their disturbance rejection capabilities are not strong. The 

sliding mode variable structure control is not strictly 

dependent on precise target motion model, which can 

compensate the system uncertainties by the discontinuous 

switching term. It has strong robustness and stability to 
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external disturbances and system parameter uncertainties, 

and is extensively used in the guidance law design. The 

guidance law with attack angle constraint can be easily 

obtained via introducing attack angle constraint in the sliding 

mode surface design. Linear sliding hyperplane[6]-[7] is 

normally chosen in traditional sliding mode design. The 

tracking error of system state on traditional sliding mode 

surface converges to zero gradually, and the convergent 

speed is regulated via the parameter matrix of the sliding 

mode surface. Obviously, this design method cannot meet the 

requirement of finite-time convergence. To solve the 

problem that enforces system states converge in finite time, 

nonlinear term was introduced to construct terminal sliding 

mode surface[8]-[9] by some scholars when designing 

sliding mode surface, which achieved the finite-time 

convergence of tracking error on the sliding mode surface. 

While, the derivative of terminal sliding mode surface has a 

negative exponent term that may cause singularity problem 

due to improper parameter selection or system state value. 

Hence, in practical applications, non-singular terminal 

sliding mode surface is more often used [10]-[12]. 

The autopilot dynamic is an important factor influencing 

the guidance accuracy. The guidance law considering 

autopilot dynamics can achieve seamless integration between 

the guidance law and the control law, which is favorable for 

improving overall system performance. The control 

instructions generated by the guidance law are tracked using 

the autopilot to adjust the actuator, such as steering gears. 

According to the characteristics of aerodynamic control 

surfaces, the process from deflecting rudder surface to 

building a new projectile posture is influenced by the 

autopilot dynamics and the hardware of missile, which 

causes the delay from guidance instruction to actual 

acceleration. For the light homing anti-tank missile, due to 

the limitations of seeker performance, missile structure size, 

engine thrust and other factors, its range is short, and the 

terminal guidance time is finite. In order to hit the target 

accurately at a desired attack angle, a high-precision 

guidance law is required to drive the LOS angle rate to zero 

in finite time. However, the delay mentioned above will lead 

to a decrease in guidance accuracy. Generally, in the design 

process of sliding mode guidance law, the missile autopilot 

dynamics is considered as an ideal link without delay. In fact, 

introducing autopilot dynamics in the design of guidance law 

can help to cope with the mentioned delay effect. 

Considering the autopilot dynamics will add the order of 

guidance system state equations, the backstepping method 
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with front-to-rear and layer-by-layer recursion is generally 

used to transform control law design of high-order system 

into the interaction design of a series of low-order systems. 

Zhaoshi Diao regarded the autopilot dynamics as a first-order 

inertial link, and designed a terminal guidance law with 

attack angle constraint for attacking fixed ground targets by 

the backstepping method [13]. He regarded the autopilot loop 

as a second-order dynamic link, and constructed a 

non-singular sliding mode surface with the LOS angle rate 

and the LOS angle. Besides, a terminal guidance law with 

attack angle constraint is designed using the backstepping 

method in [14]. 

However, after multiple derivations for virtual variables, 

the backstepping method easily leads to a problem of 

“differentiation expansion”, which limits its engineering 

application. In order to solve the “differentiation expansion” 

problem caused by multiple backstepping recursive motions, 

the dynamic surface control method was proposed by 

Swaroop[15], which combined the advantages of integral 

backstepping and multi-sliding mode control. It does not 

require the system disturbance terms to satisfy the Lipschitz 

continuous condition. Through the dynamic surface control, 

Yao Zhang designed a global non-linear integral sliding 

mode guidance law(SMGL) with attack angle constraint by 

the dynamic surface control. The effectiveness and 

superiority of the proposed guidance law were verified [16]. 

Jing Yang took the autopilot second-order dynamic lag into 

account, used integral sliding mode to design the dynamic 

surface, and estimated the target maneuvering disturbance 

through the observer [17]. The effect was better, but each 

step of dynamic surface design was asymptotically 

convergent, and the closed-loop system also asymptotically 

converges to the steady-state error bound. At the present 

stage, obviously, the dynamic surface control is an effective 

way to solve the problem of “differentiation expansion”.  

Along the technology mentioned above, in this paper, a 

fast sliding mode surface converging in finite time is 

proposed according to the requirement of terminal attack 

angle constraint. In consideration of the autopilot 

second-order dynamic delay, the guidance equations 

regarding the fast sliding mode surface as system state are 

established. The backstepping method is used to gradually 

recurse the control quantities, in the meanwhile, by designing 

integration Lyapunov function, derivations of the virtual 

quantities are eliminated, which avoids the problem of 

“differentiation expansion”. The nonlinear tracking 

differentiator STD is applied to estimate the missile 

acceleration derivation. Finally, the closed-loop system is 

proved to be globally finite-time stable and simulation results 

illustrate the effectiveness of the method.  

II. PRELIMINARY CONCEPTS 

Before the guidance law design, the finite-time stability 

criteria and some lemmas are introduced to provide a 

theoretical basis for the subsequent proof. 

Lemma 1[18]: Consider the following nonlinear system 

 ( , )x f x t , (0, ) 0f t  , nxR  (1) 

where
0

U
n

f  R R：  is continuous on 0U R , and 0U  

is an open neighborhood of the origin 0x  . Suppose there is 

a 1
C smooth and positive definite function ( , )V x t  defined 

at nU R , which is the neighborhood of the origin, and 

exist real numbers 0  and 0 1  , making ( , )V x t be 

positive definite on U and ( , ) ( , )V x t V x t


  be negative 

semi-definite on U , then the system origin is finite-time 

stable. If nU R and ( , )V x t  is radially unbounded, then 

the system origin is globally finite-time stable. The 

convergence time, denoted by rt , depends on the initial 

value 0x , the following inequality holds 

 

1

0
r

( ,0)

(1 )

V x
t



 






 (2) 

where 0x  is any point in the open neighborhood of the 

origin. 

Lemma 2[19]: For 1 0  , 2 0   and (0,1) , the 

smooth and positive definite Lyapunov function ( )V x  that 

defines on nU R  satisfies 

 1 2( ) ( ) ( ) 0V x V x V x     (3) 

then the system state x  can converge to the origin in the 

finite time rt , and 

 
11

0

1 2

1
ln[1 ( )]

(1 )
rt V x

  

 


 (4) 

where 0( )V x  is the initial value of ( )V x .  

Lemma 3[20]: For ,  x y R , / 1p a b  , a  and b  

are both positive odd numbers, the following inequality holds 

 
12

pp p px y x y    (5) 

Lemma 4[20]: For  ,  x y R , 0c  and 0d  , the 

following inequality holds 

 
c d c d c dc d

x y x y
c d c d

 
 

 
 (6) 

Lemma 5[20]: For  ix R （ 1,2, ,i n  ） , 

and 0 1p  , the following inequality holds 

 1 2 1 2

p p p p

n nx x x x x x         (7) 

III. PROBLEM FORMULATION 

A. Missile-target Relative Motion Equations 

The skid-to-turn missile has axially symmetrical shape, 

and adopts the roll angle position stability design, so the three 

channels can be decomposed into vertical plane motion and 

lateral plane motion. In flights at little angles of attack and 

side slip angles, the design method of vertical plane motion is 

similar to the lateral plane motion, therefore, this paper takes 

missile-target motion in vertical plane as an example to 

analyze, which is shown in Fig.1. 
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Fig.1 Missile-target relative motion in vertical plane 

In Fig.1, the kinematic engagement equations are 

 t t m mcos( ) cos( )R V q V q      (8) 

 t t m msin( ) sin( )Rq V q V q       (9) 

where R is missile-target relative distance; R is 

missile-target relative distance change rate; tV and mV  

represent the speeds of target and missile respectively; LOS 

angle is denoted as q ; LOS angle rate is represented as q ; 

t  and m  are flight-path angles of the target and the 

missile, respectively. 

Set that RV R   and q
V Rq  , get the first order 

derivatives of RV  and q
V  with respect to time as follow 

 
2

t mR q R RV V R a a    (10) 

 t mq R q q qV V V R a a     (11) 

where tRa  and mRa  respectively are components of the 

target acceleration and missile acceleration in LOS direction, 

tqa and mqa are respectively used to represent the components 

of missile acceleration and target acceleration in normal 

direction of LOS. 

The relative two-degree dynamics between the control 

input mqa  and the LOS angle q  is given by 

 
m t

2 1 1
q q

R
q q a a

R R R
   


   (12) 

In the terminal guidance process, the relative velocity 

0R   is essential to satisfy the condition for missile-target 

approach. In the mean while, considering that the target has a 

certain size, the following inequalities are established [21] 

 0R  , min maxR R R   (13) 

where maxR  is the maximum missile-target distance, minR  is 

the minimum missile-target distance formed by the target 

size. 

The axial velocity is not controllable in the terminal 

guidance section, so the key of the guidance law design is to 

control the LOS angle rate q by mqa , and drive it approach 

a small neighborhood near zero [22]. 

B. Autopilot Model 

The acceleration instruction generated by guidance law 

needs to be tracked by the autopilot. In order to avoid the 

impact of high-frequency un-modeled dynamics, the 

bandwidth of autopilot is generally not high, so its dynamics 

may cause a certain dynamic lag for the execution of 

acceleration instruction and affect the guidance performance. 

Hence, the autopilot dynamics should be incorporated into 

the guidance law design. Simplify the missile autopilot 

dynamics as a second-order link given by 

 

2
m n

2 2

n n2

qa

u s s



 


 
 (14) 

where   and n  respectively are the relative damping 

coefficient and natural frequency of the missile autopilot, 
u  is the normal acceleration instruction for the missile 

autopilot. Formula (14) can be expressed as a differential 

equation given by 

 
2 2

m n m n m n2q q qa a a u        (15) 

C. Description of Attack Angle 

Generally, attack angle is defined as the angle between the 

velocity vectors of missile and target at the time of 

interception. Ignoring the smaller incident angle, attack angle 

also can be regarded as the included angle between missile 

attitude angle and target attitude angle[23]. Denote the 

guidance end time as ft , the expected attack angle as d , and 

the expected LOS angle as dq , there are 

 
f

lim ( ) ( ) 0
t t

R t q t


  (16) 

 m t d
( ) ( )t t     (17) 

 m f d
( ) π/2t q    (18) 

The inequality in (18) ensures that the missile can capture 

target, in other words, the target is within the seeker's field of 

view during guidance process. It can be obtained from (9) 

and (16) that 

 m d m t d tsin( ) sin( ) 0V q V q      (19) 

Substituting (17) into (19) yields 

 m d t d t d tsin( ) sin( ) 0V q V q        (20) 

By using (20) and applying trigonometric algebra, following 

equation can be written 

 
1 d

d t

d t m

sin
tan ( )

cos
q

V V






 


 (21) 

where t m/ 1V V  . Formula (21) shows that for the given t  

and d , there is an unique desired LOS angle dq  

corresponding to them, so the attack angle constraint problem 

can be converted to a LOS angle tracking problem. 

Accordingly, the goal of guidance law design translates into 

driving 0q   and dq q . 

D. Establishment of Guidance Equations 

 

Fast Sliding Mode Surface Design 

In order to make the system states on the sliding surface 

converge in a finite time and avoid the singular value 

problem of the terminal sliding mode surface, the formula 

 
1 2e sgn( )

e
s e e e


     (22) 
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is selected as the fast sliding mode surface, where de q q   

is the LOS angle tracking error and there is e q  , the LOS 

angle rate is represented by e q  , 1 0  , 2 0   and 

0   is the sliding coefficient to be designed. 

Note that the time when the system state ( )e t  reaches the 

sliding mode surface is r1t , then there is ( ) 0s t  ( r1t t ). 

On the sliding mode surface, the time that the system state 

converges from r1( ) 0e t   to r1 r2( ) 0e t t   is r2t , then 

by 0s  , e  varies with time according to the following 

formula 

 
1 2e sgn( )

e
e ee


    (23) 

Consider the following smooth and positive definite 

Lyapunov function 

 
21

2
V e  (24) 

Getting the time derivation of  V  along (23), V  is shown 

in the form 

 

1 2

2

1 2

1

2 2

1

2

1 2

1 2

e sgn( ))

e

2 2 e

(

2 2

e

e

V

V ee

e

e

V

e

V

V V

e

e







 

 

 

 









 

  

 

 

 

 (25) 

According to Lemma 2, we can get the convergence time 

given by 

 

1

1 2
r2 r1

1 2

21
ln 1 ( ( ))t V e t



 

 
  

  
 (26) 

By (26), e  on the sliding surface can converge to zero in 

finite time, at the same time, by (23), e  also converges to 

zero in finite time, in conclusion, the use of sliding mode s  

guarantees 0e e   in a finite time  of r2t . As is shown in 

(26), the adjustment of parameters 1  and 2  can affect the 

convergence time of the sliding mode, as described in Fig.2, 

hence, the proper increase of 1  and 2  can appropriately 

shorten the time that e  and e  converge to zero. 
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Fig.2 Curves of 
r2t changing with

1
 and

2  

Guidance Equations 

Define state variables 1x s , 2 mqx a  , and 3 mqx a   . 

Considering that target acceleration is difficult to measure by 

the on-board device, its normal component on the LOS, 

denoted by tqa , is regarded as an external disturbance. At the 

same time, taking the uncertainty nd caused by the autopilot 

model simplification error and aerodynamic parameter 

change into consideration [24], the guidance equations taking 

second-order autopilot dynamics into account are given by 

1 2 1

2 3

2 2

3 n 2 n 3 n

2

1 2

n

1 1

2

e 2
e

x x d
R

e
R R

x x

x x x u d

e
R



 

  




 







 
   



 

   










 (27)  

There are physical limitations for energy and response 

speed in target motion process [25], so it is assumed that the 

disturbances 1d  and nd  are differentiable and have upper 

bounds. 

To achieve the attack angle constraint and hit the target, we 

need to design a control law to drive 1 0x   in finite time. 

IV. GUIDANCE LAW DESIGN 

The nonlinear time-varying system in (27) presents a strict 

feedback form, therefore, the guidance law is designed based 

on backstepping recursion idea and finite-time control 

technique. 

A. Improved Backstepping Method of The Guidance Law 

Design 

Firstly, design an integration Lyapunov function for the 

first subsystem of system (27) as follow 

 
1

1 11/ 2

1
0

( 0)
x

r rV y dy   (28) 

Calculating the time derivation of 1V  along  (27), we get 

 

1 1

1

(2 )

2

/

1 1 1

2

1 2

1

2

2

2

1

1 1
[ (

e 2

)

1
]

r r

e

r

V x x

x x x
R R

R
e e

RR
d


 











  

 
   









 

 (29) 

where 11/

1 1

r
x  , 1 1r  . Design virtual control 2x  as follow 

 

1

2 1 2

2

2 1 1

2 2

1 1 1

2

1

1

1

2 (

sgn( ) sgn( )

e )
r

r r

e

r

e ex R R k R

N




   

  

 

 
 



  




 (30) 

where 1 0k  ; 1 0  ; 1 1 max
N d ; 2 1r r   , 

( 1 3,0)    and 1 2/    , 2 1  , 1  is a positive 

even number and 2  is a positive odd number. Substituting 

(30) into (29) yields 

 

1

2

2 22

1 1 1 1 1 1 2 2

2

1 1 1

1
[( )

sgn( ) ]

r

r

V k x x
R

N d


   



 



   








 (31) 

Secondly, design an integration Lyapunov function for the 

second subsystem in  (27) as follow 
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2

2 2 2

2

1/ 1/ 2

2 1 2( )
x

r r r

x
V V y x dy    (32) 

Calculating the time derivation of 2V  along  (27), we get 

 

2 2 2

2

1/ 1/ 2

2 1 2 2 2

2

1 2 3 3 3

( )

( )

r r r

r

V V x x x

V x x x





  

   

  


 (33) 

where 2 21/ 1/

2 2 2

r r
x x   . Design the virtual control 3x  in the 

form 

 2 3 22

2 2 23 2 2 sgn( )
r rrx k        (34) 

where 2 0k  , 2 0  , 3 2r r   . Substituting (34) into 

(33) yields 

 2
2 22

2 1 2 2 2 2 2 3 3( )rV V k x x


   
       (35) 

Thirdly, design an integration Lyapunov function for the 

third subsystem in (27) as follow 

 
3

3 3 3

3

1/ 1/ 2

3 2 2( )
x

r r r

x
V V y x dy


    (36) 

Calculating the time derivation of 3V  along (27), we get 

 

3 3 3

3

1/ 1/ 2

3 2 3 3 3

2 2 2

2 3 n 2 n 3 n n

( )

( 2 )

r r r

r

V V x x x

V x x u d   





  

     

  


 (37) 

where 3 31/ 1/

3 3 3

r r
x x   . Design the real control u  in the 

form 

 

3

4 3 4

2

n 2 n 3 3 32

n

2 2

3 3 3 2 3

1
[ 2

sgn( ) sgn( )]

r

r r r

u x x k

N

  


    

   

 

 (38) 

where 3 0k  , 3 0  , 2 n max
N d , 4 3r r   . Substituting 

(38) into (37) yields 

 
3 4

22

3 2 3 3 3 3

2 2

3 2 3 n( sgn( ) )
r r

V V k

N d


  

 



 

  

  

 
 (39) 

B. Proof of Positive Semi-definite Characteristic of The 

Lyapunov Functions 

By the definition of 2r , there is the equation 

that 2 2 1 2 1 2( )r        , in which 1  and 2  are 

positive odd numbers and 1 2  . Hence, the function 

21/

1( )
r

g x x ( x R ) increases monotonically. Note that 

2
2 2 2

2

1/ 1/ 2

1 2( )
x

r r r

x
W y x dy  , then discuss the symbol of 1W  

according to two situations as follow 

(1) When 2 2x x , considering the monotonous increase 

of 1( )g x , we can get the inequality that 

1 1 2( ) ( ) ( ) 0m y g y g x   ( 2 2[ ,  ]y x x  ). Therefore, 

1 0W   is satisfied. 

(2) When 2 2x x , there is 22 r = 1 2 2( ) /   = 3 4/  , 

in which 3  and 4  are positive odd numbers and 3 4  . 

Therefore, 22

2 ( )
r

g x x


 is an odd function, then we have 

2 2( ) ( )g x g x    and 1W  can be rewritten as 

 

2
2 2 2

2

2
2 2 2

2

1/ 1/ 2

1 2

1/ 1/ 2

2

( )

( )

x
r r r

x

x
r r r

x

W x y dy

x y dy





  

 




 (40) 

Due to the monotonous increase of 1( )g x , we get 

1 2 1( ) ( ) ( ) 0n y g x g y   ( 2 2[ ,  ]y x x  ), which makes 

1 0W  . 

In summary, we can get 1 0W  . Using the same method 

we can prove that 1 0V  , 
3

3 3 3

3

1/ 1/ 2

2 3( ) 0
x

r r r

x
W y x dy


   , 

hence, there are 2 1 1 0V V W    and 3 2 2 0V V W   .  

C. Closed-loop System Stability Proof 

Function 3V  is a Lyapunov function of the closed-loop 

system, 
3V  can be obtained by (31), (35) and (37) 

1 2

31

2 22 2 2

3 1 1 2 2 3 3 1 1 2 2

2 2 2

3 3 1 2 2 2 3 3

22

1 1 1 2 n 3

1
( ) ( )

1
( ) ( )

r r

rr

V k k k

x x x x
R

N d N d
R

 



      

   

 

 

  



   

    

   

 

 (41) 

According to Lemma 3 and Lemma 4, we can obtain the 

following inequalities 

   
2 211 2 2

212 2 2

1 22

2

22 1 1

1 2 2 1 2 2

21 1 1

1 2 2

21

1 2

1
2 2

1 1 2 2

( )

2

2

2
(2 )

2

r rrr r r

rrr r r

r rr

r

x x x x

x x

r r 

 



 

 









 

  

 



    

 (42) 

3

2

1
2 2 2

2 3 3 2 2 3 3

2
( ) (2 )

2

r
r x x r r   




       

 (43) 

Substitute (42) and (43) into (41), and rewrite 
3V  as 

2

32

3

1

3

1
2 2 2 2

3 1 1 2 2 3 3 1 1 1

min

11
2

2 2 2 2

min

1
22

3 3 3 1 1 1

max

2

2 n 3

2 2 2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

2
(2 )

(2 )

2 2
(2 )

(2 ) 2

2 1
( ) ( )

2

( )

r

rr

r
r

r

V k k k r
R

r r
R

r N d
R

N d

k k k







  

    


 
 

  




        












  

 
       

 

 
    

  

   


 

      



31 22

1 1 1 2 n 3

max

1
( ) ( )

rrN d N d
R

     

 

 (44) 

where 1 , 2  and 3  are expressed respectively as 
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3

1

1 1 1

min

11

2 2 2 2

min

1

3 3 3

2
(2 )
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2 2
(2 )

(2 ) 2

2

2

r
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r

r
R

r r
R

r

 


 
 

 









  




   
 


  
 

 (45) 

1k , 2k  and 3k are valued like (46) , then we have 

0 ( 1,2,3)i i   .  
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32

3

1

1 1

min

11

2 2 2

min

3 3

2
(2 )

(2 )

2 2
(2 )

(2 ) 2

2

2

r

rr

r

r
R

r r
R

r





 











 




  
 


 
 

 (46) 

Note that min 1 2 3min( ,  ,  )    , then min 0  , 
3V  

can be rewritten in the following way 

 
1

3

2 2 2

3 min 1 2 3

2 2 2

min 1 2 3

2

1 1 1

max

2

2 n 3

( )

( )

1
( )

( )

r

r

V k

N d
R

N d

  

  

   





  





   

  

 

 



  (47) 

Substituting  (28) and (32) in (36), we get 

1 2
1 1 2 2 2

2

3
3 3 3

3

1/ 2 1/ 1/ 2

3 2
0

1/ 1/ 2

2

( 0) ( )

( )

x x
r r r r r

x

x
r r r

x

V y dy y x dy

y x dy

 



   

 

 


 (48) 

From the proof of 1 0W   in the previous section, there is 

2 2 21/ 1/ 2

1 2 2 2 2( )( )
r r r

W x x x x


    when 2 2x x . 

When 2 2x x , from (40), we get 

 

2 2 2

2 2 2

1/ 1/ 2

1 2 2 2 2

1/ 1/ 2

2 2 2 2

( )( )

( )( )

r r r

r r r

W x x x x

x x x x





  

  
 (49) 

Over all, 2 2 21/ 1/ 2

1 2 2 2 2( )( )
r r r

W x x x x


   . 

Considering the above analysis of 1W  and Lemma 3, 3V  

can be rewritten in the form 

 

 
1

1 2 2 2

3 3 3

1 2 3

31 2

2
1/ 1/ 1/ 2

3 1 1 2 2 2 2

1/ 1/ 2

3 3 3 3

2 2 2

1 1 2 2 2 3 3 3

11 12 2 2

1 2 3

2 2 2

max 1 2 3

( )( )

( )( )

2 2 2

( )

r
r r r r

r r r

r r r

rr r

V x x x x x x

x x x x

x x x x x  

  

   






  

 

   

  

    

  

  

(50) 

where max = 31 2
11 1

max(2 , 2 ,  2 ) 0
rr r  
 . Take the 2 (2 )  

power of both sides of (50), in which 2 (2 ) (0,  1)  . 

According to Lemma 5, we get 
(2 ) 2 (2 ) 2 2 2 2 (2 ) 2

3 max 1 2 3

(2 ) 2 2 2 2

max 1 2 3

( )

( )

V   

   

   

   

  

   

  

  
 (51) 

, then there is 

 
(2 ) 2 (2 ) 2 2 2 2

3 max 1 2 3V                (52) 

Substituting (52) in (47), the function 
3V is now given by 

31

(2 ) 2 (2 ) 2

3 min max 3 min max 3

22

1 1 1 2 n 3

max

1
( ) ( )

rr

V k V V

N d N d
R

   

 

 



  

   



 (53) 

Formula  (53) is further modified to the following form 

31

(2 ) 2 (2 ) 2

3 min max 3 min max 3

22

1 1 1 2 n 3

max

1
( ) ( )

rr

V k V V

N d N d
R

   

 

 



 

    



 (54) 

Through the value ranges of 1N  and 2N , there is 

(2 ) 2 (2 ) 2

3 min max 3 min max 3 0V k V V         during the 

guidance process. By Lemma 2, it is proved that the 

closed-loop system is globally finite-time stable, and it can be 

deduced that the system states 1 0x s  , 2 2x x  and 

3 3x x  within a finite-time interval. It is known from the 

properties of new fast sliding mode surface proposed, there 

are dq q  and 0q   in finite time. 

Considering the above analysis, we can get that the sliding 

mode surface s  ultimately reach and enter in a little  

neighborhood of the origin denoted as Φ . Set the boundary 

of Φ to be a positive number q  and the value of s  to be 

q  , then there is 

 1 2e sgn( )
e

qe e e


      (55) 

where q q   . When 0e  , we have 

 
1 2e sgn( ) 0

e
e e e


     (56) 

where 1 and 2  are expressed respectively as follow 

 

1 1

2 2

2

2e sgn( )

q

q

e

e

e



 


 


 



  


 (57) 

When e is in the interval as (58) 

 
1 2

1
max ,  ln( )

2 2

q q
e

  

  
  

 
 (58) 

there is 1 0  and 2 0  . From (24) to (26), the LOS 

angle tracking error e will enter in the following region of 

convergence represented by q  

 
1 2

1
max ,  ln( )

2 2

q q

q e e
  

    
   

   

  (59) 

Set  1 2max (2 ),  ln( (2 ))e q q      , then 

from (55), we get 

 1 2e sgn( )
e

qe e e


      (60) 

According to q q   and ee   , the inequality bellow 

is established 
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e
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q e

e e
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  

  

  
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
 (61) 

From (59), we know that, properly selecting 1 , 

2 and  to reduce the range of q  is a key to ensure that 

e is as close as possible to zero. However, as can be seen 

from (61), too large 2 cannot be used to avoid a large e . 

Therefore, adjustment of parameters should be done 

according to the actual convergence conditions of  e and e . 

D. Acquisition of Missile Acceleration Derivative 

The realization of control quantity requires system state 

3x , which is the derivative of missile acceleration component, 

but it is difficult to obtain this value from the on-board 

equipment. The numerical difference method in (62) will 

result in serious deviation due to the noise amplification 

effect. 

 
( ) ( )

( )
v t v t T

v t
T

 
  (62) 

In order to obtain accurate derivative information, a 

nonlinear tracking differentiator STD with good dynamic 

characteristics, strong filtering capability and fast 

convergence of tracking error in [26] is used to differentiate 

the missile acceleration component to obtain 3x̂ , which is the 

estimation of 3x . The expressions of STD are 

 

1 2

2 2
2 1 1 1 2 2

1

[sig( ), , ) sig( , , )]

sig( , , ) [(1 ) 0.5]bx

z z

z
z r z v a b a b

r

x a b a e 





   

   



  (63) 

where the input signal to be tracked is denoted by v , and the 

output differential signal is represented by 2z . 0r   is the 

speed adjustment factor which can increase the tracking 

speed with increasing its value, however, the bigger 0r   

impairs the noise suppression capability of the differential 

signal. a  is an amplitude adjustment factor which adjusts the 

amplitude of sig( , , )x a b  function. b is an index adjustment 

factor that adjusts the range of approximate linear interval of 

sig( , , )x a b  function. 

V. SIMULATION VERIFICATION 

To verify the validity of guidance law designed in this 

paper, this section conducts mathematical simulation for the 

terminal guidance segment. In the simulation, the missile and 

target are both moving in vertical plane, and the guidance 

period is 10ms. The origin values of various parameters used 

in simulation are chosen to be m0X =0, m0Y =200m, 

mV =110m/s, m0 =5º,  =0.7, n =8rad/s, t0X =1200m, 

t0Y =0, t0V =2m/s, t =0º. A desired attack angle of -35º is 

selected. The design parameters of guidance law are chosen 

as 1 =0.6, 2 =0.006, 1.2  , 1k =0.35, 2k =15, 3k =15, 

2 19   , 1 =0.5, 2 =0.5, 3 =0.5,  1N =2 and 2N =2. 

The parameters of tracking differentiator are set as follow: 

r =80, 1a = 2a =30 and 1b = 2b =0.1. A technique that has 

been used to reduce chattering is to adopt a continuous 

approximation of the discontinuous control when the 

function x  . Following this technique, the discontinuous 

function sgn( )x  is approximated by the sigmoid function in 

[12] as follow 

 

1 1
2

sgmf ( ) 1 2

sgn( )

cxx e

x



  
  

  



 
x

x








 (64) 

where   is the boundary layer, and the constant 0c   is 

inversely proportional to  .  is assigned to 0.6 and 

8c  . 

In combination with the requirements of design indexes 

and the actual situation on the battlefield, the ground motion 

target cannot make complex motion form because of the 

battlefield environment limitation, so we set up 3 kinds of 

typical situations suitable for the ground targets in 

mathematical simulation: (1) stationary targets; (2) the target 

is accelerated from 2m/s to 25m/s with a constant 

acceleration of 5m/s2, then it moves at a constant speed; (3) 

the target is accelerated from 0m/s to 25m/s with a varying 

acceleration t 5 sin( )xa t m/s2, then it moves at a constant 

speed. Simulation results are given in TableⅠ. In TableⅠ, 

ft is the end time of guidance. 

TABLEⅠ 
f

( )R t  AND 
f

( )q t  UNDER 3 TARGET MOTION SITUATIONS 

Motion Situation 
f

( )R t (m) 
f

( )q t (  ) 

Situation 1 -0.0180 -35.00 

Situation 2 -0.5112 -35.01 

Situation 3 -0.3486 -34.99 

 

As shown in TableⅠ, the guidance law adapts well to 

different target motion situations. In situation 1, because the 

target is still, the miss distance is minimal. In situation 2, this 

distance is maximal because of the maximal acceleration of 

target. But, the miss distances in three situations are all less 

than 0.6m. The LOS angle is very close to the desired value 

of -35º, and the angle deviation is less than 0.1º. 
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Fig.3 Curves of missile trajectories 
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Fig.4 Curves of missile overloads 
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Fig.5 Curves of fast sliding mode surface s  
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Fig.6 Curves of LOS angle rates 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-35

-30

-25

-20

-15

-10

-5

Time(s)

L
O

S
 a

n
g

le
(°

)

 

 

Situation1

Situation2

Situation3

 

Situation3

Situation2

Situation1

 

Fig.7 Curves of LOS angles 

As can be seen in Fig.3, in order to obtain a larger terminal 

LOS angle, a higher trajectory height occurs, which obtains 

relatively straight terminal trajectory after satisfying the LOS 

angle rate and LOS angle constraints. As shown in Fig.4, 

during the terminal guidance stage, the overload demand of 

missile varies from more than 10 to very close to 0, which is 

advantageous to the flight stability of missile and the 

improvement of guidance precision.  

It can be observed from Fig.5 to Fig.7 that, the fast sliding 

mode surface s  converges to nearly zero in finite time, so 

that before the target is hit, the LOS angle rate also 

approaches zero, and the LOS angle reaches the desired value. 

As shown in Fig.5, s  in both laws converge to the interval 

(-0.01, 0.01) after the 6th second. In Fig.6, the LOS angle 

rates converge to the interval (-0.05, 0.05) after the 11th 

second. It can be seen from Fig.7, the LOS angles converge 

to the interval (-35.1º, -34.9º) after the 9th second.  

At the same time, in simulation process, the STD can 

effectively estimate 3x , as shown in Fig.8 and Fig.9. 
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Fig.8 STD tracking effect 
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Fig.9 Estimation effect of 
3x  

Good tracking effect is a guarantee of effective estimation. 

As shown in Fig.8, STD can quickly track the dramatic 

changes of 2x . In Fig.9, 3x  decreases rapidly when 2x  

decreases. Then the increase speed of 2x  decreases, at the 

same time, the absolute value of 3x  decreases quickly but it 

is still negative. When 2x  increases quickly, 3x  changes 

from a negative value to a positive value and its value 

increases rapidly. At last, after the change magnitude of 

2x decreases, 3x  also decreases accordingly. It can be seen 

from the above analysis that STD can effectively obtain 

variable differentiation and provide strong support for 

algorithm implementation. 

In this subsection, comparison of the guidance law 

proposed in this paper is done with a non-singular terminal 

sliding mode guidance law in [12], which is shown as  

 d( )s q q q     (65) 
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 (66) 

where 5 3  , 10   and 80M  .The parameter values 

of function sgmf are the same as (64). 

For ease of differentiation, the guidance law in [12] is 

denoted as "NTSMGL", and the guidance law derived in this 

paper is called "NBSGL". After carefully adjusting the 

parameters, the simulation results under situation 3 are 

shown from Fig.10 to Fig.14 and in Table Ⅱ. 
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Fig.10. Curves of missile trajectories 
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Fig.11 Curves of sliding mode surfaces 
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Fig.12 Curves of LOS angles 
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Fig.13 Curves of LOS angle rates 
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Fig.14 Curves of missile overloads 

 

TABLE Ⅱ 
f

( )R t  AND 
f

( )q t  OF TWO GUIDANCE LAWS 

Guidance Law f
( )R t (m) 

f
( )q t (  ) 

NTSMGL 0.6574 -34.9939 

NBSGL -0.3486 -34.9998 

NBSGL -0.3486 -34.9998 

 

As can be observed from Fig.10 to Fig.14, the two 

guidance laws differ in the trajectory ascent section, and have 

similar flight trajectories in the descending section. The 

landing time of the missile using NTSMGL is 14.99s, 

simultaneously, this time of the missile using NBSGL is 

15.07s. Both guidance laws can enforce the LOS angles and 

LOS angle rates to approach zero in finite time to satisfy the 

attack angle constraint. The terminal overload requirements 

of these two guidance laws are small and close to zero in the 

end, which is beneficial to improve the attack accuracy. It can 

be easily observed that the convergence rates of sliding mode 

surface, LOS angle, LOS angle rate, and overload of NBSGL 

are all slower than those of NTSMGL. However, for the 

process of missile attacking target, the miss distance and 

attack angle are the two most critical indicators that directly 

determine the attack effect. From the enlarged images of Fig. 

11 to Fig.14 and the data in Table Ⅱ, it can be seen that 

although NTSMGL adopts a constant reaching law with large 

parameter value, and the convergence times of the indexes 

above are less than NBSGL, but since NTSMGL does not 

consider the autopilot second-order dynamics, which results 

to worse convergence effect on the expected values. That is 

the reason why NTSMGL has a larger miss distance. 

In conclusion, the guidance law designed in this paper can 

make the closed-loop system stable in a finite time. The 

simulation results verify the effectiveness of the proposed 

guidance law. 

VI. CONCLUSION 

In order to solve the terminal guidance problem of the 

anti-tank missile impacting the ground target with attack 

angle constraint, a finite time convergence guidance law 

considering the autopilot second-order dynamics is designed 

based on the sliding mode control and backstepping method. 

According to Lyapunov stability theory, it is proved that all 

states in the closed-loop system converge to zero within a 

finite time. The proposed guidance law is able to intercept 

stationary and maneuvering targets at desired attack angle 

within a finite time. The performance of the designed 

guidance law is shown to be comparable to the existing laws 

and yields a better attack accuracy, a smaller attack angle 

error, and a well overload demand. 

The "differentiation expansion" problem is an important 

factor restricting application of backstepping method. This 

paper solves this problem by designing integration Lyapunov 

functions, which can effectively expand the engineering 

application of the backstepping method. 

Otherwise, in the simulation, it is found that in order to 

achieve the attack angle constraint within a finite time, the 

missile climbs higher and the trajectory curvature is larger, 

which requires a better performance for the missile power. At 

the same time, the trouble above may make the missile fly at a 

large incident angle, which can lead to nonlinear 

aerodynamic problems. In addition, a large trajectory 

curvature may enforce the seeker to touch its frame, which 

affects the target tracking performance of seeker. 
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