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Abstract—The problem of mode mixing in the empirical mode 

decomposition (EMD) vastly restricts extraction of the useful 

signal and the performance of denoising. An adaptive and 

convenient demixing algorithm to promote the separation ability 

of noise and expected signal is proposed. After decomposing the 

original signal, a multiple-input and multiple-output mechanism 

is designed to realize optimal reconstruction and decomposition 

of the first order intrinsic mode functions (imfs). The correlation 

of each imf is utilized to ascertain appropriate reconstruction 

order without additive introduction of parameters and 

components. Compared with EMD, the proposed algorithm 

maintains the better demixing performance indicated in the 

measurement results of synthetic signals and real-life frequency 

modulated continuous wave radar signal. 

 
Index Terms—Mode mixing, Empirical mode decomposition 

(EMD), Adaptive demixing, Frequency modulated continuous 

wave  

 

I. INTRODUCTION 

HE empirical mode decomposition (EMD) has been 

extensively employed to analyse non-linear and 

non-stationary signals. Recent works have demonstrated that 

the empirical mode decomposition acts essentially as a 

dynamic filter bank.  It can split composite signals adaptively 

into narrow subbands. However, as an off-line approach, the 

main problems of EMD are low frequency resolution, mode 

mixing and inseparability of informative components and 

noise. To improve performance of denoising, many 

EMD-based denoising approaches have been proposed while 

the limitation of denoising effect is still the mode mixing [1-5]. 

Thus, the salient task in this paper is to pursuit an adaptive and 

effective method to solve the mode mixing. 

 Mode mixing, a well-recognized limitation in EMD, 

means that one or more components appear in a single 

intrinsic mode function (imf) [6], [7]. The phenomenon is 

caused by intermittency of a signal component or closely 

spaced spectral tones. When mode mixing occurs, the imfs 

obtained by decomposition can be devoid of any physical 

meaning and it is not benefited for signal denoising or 
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frequency analysis. To solve the problem of mode mixing, 

Huang et al [8] proposed a noise-assisted method, namely 

ensemble empirical mode decomposition (EEMD). R. 

Deering and J. F. Kaiser proposed a masking signal method to 

improve EMD [6]. EMD combined with independent 

component analysis was put forward in [9]. However, except 

EEMD, other methods could overcome mode mixing merely 

under certain conditions [10]. The EEMD deals with noise 

interference that has been shown to change the zero and 

extremes point of signal distribution [11]. EEMD, 

considering the Gauss white noise, alleviates affection of 

mode mixing whereas the ensemble number and parameters 

of noise are difficult to choose. Meanwhile, the ensemble 

average procedure of white noise inevitably reduces the 

computational efficiency. Actually, the goal of decomposition 

is to separate noise and desired signal effectively so as to 

acquire useful information. Hence, we design a multiple-input 

and multiple-output (MIMO) system to realize second order 

decomposition. Without redundant addition of other 

components, the method could also be applied commendably 

to extract target information in the frequency modulated 

continuous wave (FMCW) radar system.  

In this study, the relevant theory of EMD is firstly 

introduced in section II. Then, the proposed demixing method 

is presented in section III. In section IV, to verify the effect of 

the proposed method, three typical measured signals 

contaminated by noise were simulated to compare 

performance with different techniques. Finally, the practical 

FMCW signal was conducted to verify the feasibility of the 

proposed method. 

  

II. BASIS OF EMD 

EMD is a time-frequency analysis approach that adaptively 

decomposes a signal into a series of intrinsic mode functions 

permuted in the descending order of frequency. Normally, 

any one-dimensional discrete signal with multiple modes of 

oscillation can be decomposed into different imfs and a 

residual component after EMD. The imf must satisfy two 

conditions: (1) Zero-crossing condition, namely the number 

of extrema(including maximum and minimum) and 

zero-crossings is required to be equal or differs by one at 

most. (2) Mean condition, it means that the mean value of the 

envelope constructed by the local maximum and local 

minimum is zero at any point. The EMD is a total data 

processing method based on the local characteristics of the 

time scale, which the basis function or the parameters of 

filters are not determined in advance. Therefore, the 

instantaneous frequency obtained by EMD possesses a strong 
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physical meaning. The sifting process is described as Table. I. 

Detail introduction can be found in [12]. 

 
TABLE I 

Sifting process of EMD 

Algorithm：Sifting process of EMD 

Step1：Find out all local maximum and local minimum value of the 

original signal ( )s t  

Step2： Form the upper envelope ( )ue t and lower envelope ( )de t  

using the cubic spline interpolation curve constructed by the local 

maximum and minimum of  ( )s t respectively 

Step3：Calculate the local mean 
1( )m t of the 

( )s t ,namely
1( ) ( ( ) ( )) / 2u dm t e t e t   

Step4：Calculate the difference between ( )s t and 

1( )m t :
1 1( ) ( ) ( )h t s t m t   

Step5：Repeat Step1~Step4 until 
1( )h t  satisfy the conditions of imf 

Step6：After obtaining the first imf
1( )h t , calculate the residue 

1( )r t :
1 1( ) ( ) ( )r t s t h t    

Step7：If the
1( )r t  is either monotonous or a constant, terminate the 

decomposition. If not, repeat Step1~Step5 

 

After decomposing, the original signal can be expressed as 

follows: 

1

( ) ( ) ( )
n

i n

i

s t h t r t


                       (1) 

Where ( )ih t  represents the imf, ( )nr t  is the residual 

component. 

III. PROPOSED DEMIXING METHOD 

 Conventional EMD processing is regarded as an example 

of Single-Input and Multiple–Output system. It means that an 

input signal produces multiple imfs after decomposing. 

However, the obtained imfs inevitably suffer from mode 

mixing problem. Inspired by the solution of interference 

problem in multi-channel digital transmission system, we 

design a Multiple-Input and Multiple-Output system to 

perform the demixing. 

The proposed method consists of the consecutive 

application for each pair of adjacent imfs. The kernel of the 

MIMO is to determine the segment that needs reconstruction. 

Utilizing the correlation between imfs, the proper remixing is 

performed adaptively. The whole procedure of the MIMO can 

be described briefly as follows: remixing, applying classic 

EMD, splitting new imfs into non-overlapping subsets, and 

reconstructing to acquire the demixed imfs. The entire 

procedure is also called the optimal decomposition 

reconstruction (ODR) in this proposed method. 

The first order imfs are reconstructed to different new 

signals (Sn) according to the correlation between the original 

signal and the estimated signal that has been removed noise 

component. Each pair of adjacent imfs that are decided to 

remix need to experience classical EMD again so that the 

overlapped information is separated as much as possible. The 

new imfs are divided into two parts with the smallest 

correlation. Then, sum each imf within respective part to 

obtain the ultimate imfs. The detailed description of the 

proposed method is shown in Fig. 1. 
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Fig. 1 Schematic diagram of proposed method  

(a) Procedure of demixing  

(b) Principle of MIMO 

 

The correlation is depicted by the correlation coefficient (CC) 

that is defined as follows: 

* 2 * 2

0 0 0

( ) ( ) ( ) / ( ) ( ) ( )
N N N

m m

t t t

m s t s t s t s t
  

            (2) 

Where * ( )ms t  is the estimated signal given by [13]: 

*

1

( ) ( ) ( )
m

m i

i

s t s t h t


                       (3) 

Where m=p-1, the value for p is the critical order that 

determines whether imf need remix. Generally, p is the last 

value in CC bigger than C. As mentioned in [13], C belongs to 

[0.75, 0.85], here, C is set to 0.85 in the proposed method due 

to its optimal performance [14]. 

After the second decomposition, the key of reconstruction 

is to find a critical position in the set of imfs. Hence, the value 

for k denotes the minimum correlation between the sum of 

higher order imfs and the sum of lower order imfs. It is 

defined as follows [15]: 

_ _
1

1

arg  min  | ( , ) |i i
k n

i k k i n

k corr imf imf
 

   

           (4) 

From Fig. 1, it can be found that the lower orders imfs after 

the p-th imf are not altered severely. Considering less noise 
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contained in lower orders has a little effect on the desired 

signal, we sum the lower orders imfs after the p-th imf directly 

to maintain the calculation efficiency of the system. 

IV. VERIFICATION 

A. Classical Test Signals Verification 

To explore the performance of the proposed method, three 

synthetic signals, namely ‘Bumps’, ‘Doppler’ and ‘Blocks’ 

signals with different signal-noise-ratio (SNR), are conducted 

to simulate by MATLAB. As an example, signals 

contaminated by white Gaussian noise are simulated in this 

paper, where the number of samples is 1000 and the input 

SNR is 5dB. The three synthetic signals are demonstrated in 

Fig. 2(a). For the decomposition results, here, we merely 

demonstrate ‘Bumps’ signal as shown in Fig. 2(b) and Fig. 2(c) 

due to limitation of the paper length. 

The aim of the simulation experiment is to compare the 

conventional method of the EMD-based denoising with the 

proposed method in this study. The decomposition results of 

‘Bumps’ signal applying classic EMD and proposed method 

are given in Fig. 2(b) and Fig. 2(c), respectively. From Fig. 

2(b) (Only the first five imfs are illustrated), we can notice 

that the phenomenon of mode mixing is extremely serious 

especially in the lower order components with the classic 

EMD. Most useful information is still engulfed in the noise. 

However, it is obvious that the characters of signal are 

manifested clearly in the proposed method shown in the Fig. 

2(c).  

To verify the performance of separating noise in different 

decomposition methods (EMD, EEMD and Proposed 

method), three kinds of synthetic signals are simulated with 

the input SNR varied from -3dB to 7 dB in steps of 2dB. 

Discarding the same high order noise, the output SNR results 

after denoising are presented in Table II~Table IV. As seen in 

the Tables, each technology significantly denoises the signal, 

but it can be found that the proposed method provides the 

highest output SNR and the better performance compared 

with other methods. For example, the denoised Bumps signals 

are illustrated in Fig. 3. When the input SNR is set to 5 dB 

with the noisy Bumps signal, the output SNR achieved by 

EMD, EEMD and proposed method are 10.9590, 11.9418, 

12.9543 dB, respectively.  

The root mean square error (RMSE) with different input 

SNR, index of orthogonality (IO) and costing time are also 

used to evaluate the effect of different methods. The RMSE 

can be computed as: 

2

1

1
RMSE ( ( ) '( ))

N

n

x n x n
N 

                    (5) 

The RMSE is usually employed to compute the error of the 

decomposed component with the real component. Less 

RMSE value means a more accurate component. 

The IO is defined as [11]: 

2

0 1 1

IO ( ) ( ) / ( )
T n n

j i

t j i

I t I t x t
  

 
  

 
                    (6) 

Where ( )x t denotes the original signal, ( )iI t denotes the imf 

component. When i n or j n , namely the last ( )nI t  

represents the residue ( )nr t . Less IO means that the 

decomposing result is more orthogonal with less frequency 

mixing [10]. 
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Fig. 2 Three signals and corresponding results of decomposition  

(a) Original ‘Bumps’, ‘Doppler’ and ‘Clocks’ signals (The black line is pure 

signal and the red lines are contaminated by noise signal with the SNR=5) 

(b) Decomposition results of Bumps signal with classic EMD 

(c) Decomposition results of Bumps signal with proposed method 
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TABLE II 

Results of three methods on the noisy Bumps signal 

SNR(dB) EMD(dB) EEMD(dB) 
Proposed 

method(dB) 
-3 0.8897 0.9723 1.1180 

-1 1.5472 1.9892 3.0032 

1 5.3428 6.5342 7.9934 

3 8.4106 9.4445 11.4598 

5 10.9590 11.9418 12.9543 

7 11.6988 12.2955 14.1852 

TABLE III 

Results of three methods on the noisy Doppler signal 

SNR(dB) EMD(dB) EEMD(dB) 
Proposed 

method(dB) 
-3 0.5301 0.3944 0.3898 

-1 1.7831 2.0034 3.1087 

1 5.2865 6.3525 8.0211 

3 8.4245 9.4087 10.7728 

5 10.5630 11.1069 11.8592 

7 11.4036 12.0507 13.9096 

 

TABLE IV 

Results of three methods on the noisy Clocks signal 

SNR(dB) EMD(dB) EEMD(dB) 
Proposed 

method(dB) 
-3 3.2673 3.2623 3.4073 

-1 1.9235 2.4463 3.9987 

1 5.7638 6.4826 7.9956 

3 8.1392 9.1021 10.2110 

5 10.1636 10.6916 10.6284 

7 11.3874 12.45388 14.0042 

 

-5

0

5

10
EMD

EEMD

-5

0

5

10

0 200 400 600 800 1000
-5

0

5

10
Proposed

method

Output SNR=12.9543dB

Output SNR=10.9590dB

Output SNR=11.9418dB

Samples

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

A
m

p
li

tu
d

e

 
Fig.3 Denoised Bumps signal with the input SNR=5dB 

 

We choose the input SNR varied from -3dB to 13 dB in 

steps of 2dB to conduct tests. The RMSE of three synthetic 

signals are shown in Fig. 4~Fig.6. Moreover, operate the three 

methods to decompose the three signals in the same computer 

with CPU: Intel(R) Core(TM), Memory: 4.0 GB, and 

compute the IO and the costing time.  

The IO of the three signals with different input SNR is 

depicted in Fig.7~Fig.9. The costing time of operating is 

presented in Table V. 

 

-3 -1 1 3 5 7 9 11 13

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

SNR/dB

R
M

S
E

EMD

EEMD

Proposed 
method

EMD

EEMD

Proposed 
method

 
Fig. 4 The RMSE of different methods in ‘Bumps’ signal 
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Fig. 5 The RMSE of different methods in ‘Doppler’ signal 
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Fig. 6 The RMSE of different methods in ‘Blocks’ signal 

 

TABLE V 

The costing time of three methods in three signals 

 EMD(ms) EEMD(ms) 
Proposed 

method(ms) 

Bumps 1.05 38.42 5.32 

Doppler 2.43 39.72 6.73 

Blocks 2.78 39.89 7.95 
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Fig. 7 The IO of ‘Bumps’ signal with different input SNR 
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Fig. 8 The IO of ‘Doppler’ signal with different input SNR 
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Fig. 9 The IO of ‘Blocks’ signal with different input SNR 

 

From Fig.4~Fig.6, it can be found that the proposed 

method has the least RMSE. That means the proposed method 

maintains more accurate component. The results of IOs 

presented in Fig.7~Fig.9 indicate that the proposed method 

has the best orthogonality and the least IO value among the 

three methods for the three signals. Additionally, the IO value 

varies little with the input SNR. It implies that the proposed 

method could reserve orthogonality no matter what the input 

SNR is. 

From the Table V, it is obvious that the EEMD consumes 

the most time while the proposed method costs the least time. 

Without abundant ensemble computing like EEMD, the 

proposed method only conducts twice EMD. Thus, it saves 

more computing time 

. 

B.  Synthetic Signals Verification 

In order to illustrate the capability of our proposed method in 

mode demixing in synthetic signals, the test signal composed of 

multiple monotone signals is continuously simulated. 

Considering that most signals could be decomposed into 

several monotone signals, here, we set the test signal containing 

three different frequency as an illustration. The synthetic signal 

is described as, 

1 2 3( ) cos(2 ) cos(2 ) cos(2 ) ( )x t f t f t f t n t         (7) 

Where, 
1 5 Hzf  ,

2 10 Hzf  ,
3 20 Hzf  and ( )n t is 

the additive white Gaussian noise. The samples length is set to 

300 and the sampling frequency satisfy the Nyquist sampling 

frequency. The input SNR is set at 5dB. The synthetic signal 

is processed by the three methods and merely the frequency 

spectrum of decomposition is given due to our concern in 

frequency demixing. The input signal is shown in Fig.10 and 

the frequency spectrum of three decomposition methods is 

presented in Fig.11 ~Fig.13, respectively. 
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Fig. 10 The input signal and its frequency spectrum 
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 Fig. 11 The frequency spectrum of EMD 
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 Fig. 12 The frequency spectrum of EEMD 
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 Fig. 13 The frequency spectrum of proposed method 

 

From the Fig.11~Fig. 13, it can be observed that the mode 

mixing of the test signal after EMD is the most serious. Not 

only the same frequency component appears in different imfs, 

but also multiple frequency components appear in the same 

imf. That case has been alleviated in EEMD while the same 

frequency components still appear in imf2 and imf3. 

Obviously, it is not conducive to the extraction of the desired 

signal. However, in the Fig.13, we notice that the 

phenomenon of mode mixing is relived very well. The imf1 

and imf2 is dominated by noise and the three different 

frequencies are clearly separated in imf3~imf5. 

 

C. Real FMCW Radar Signal Verification 

To verify the application of the proposed method in 

real-life condition, we take two tests to achieve the different 

purpose. Firstly, we collect the echo signal to acquire the 

range information in real FMCW radar system. Then, we 

investigate the ability of reducing the noise from the echo 

signal.  

The original carrier frequency is set to be 24GHz, the 

modulated period is 10 s , the maximum frequency 

deviation is 2GHz, and the original distance from radar to 

target is 20m. The echo signal in receiver is presented in 

Fig.14. For the echo signal, the three methods are 

implemented to decompose the signal. The decomposition 

results of EMD, EEMD and the proposed method are shown 

in Fig.15 (a), Fig.15 (b) and Fig.15 (c), respectively. 
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Fig. 14 Realistic echo signal in FMCW 

(a) Echo signal in time domain 

(b) Echo signal in frequency domain 
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(c) 

Fig. 15 Decomposition results of echo signal with the three methods 

(a) Decomposition results of EMD 

(b) Decomposition results of EEMD 

(c) Decomposition results of the proposed method 

 

The echo signal contains amount of noise and serious 

ground clutter interference beside desired target information 

shown in the Fig.14. Thus, in order to acquire the precise 

target information, it is essential to separate the useful signal 

from interference source. From the Fig.15, we can notice that 

the echo signal is divided into five imfs in the frequency 

domain. The Fig.15 (a) and Fig.15 (b) show that the mode 
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mixing occurs in the imf2 or imf3. However, the target 

information is differentiated greatly from the noise and clutter 

in the Fig.15 (c). The first order is dominated by the system 

noise. The influence of clutter is reflected from imf3 to imf5. 

The range information of target is mainly contained in imf2. 

By designing a proper narrow band filter, it is easy to extract 

the range information. 

We continue to investigate the capability of denoising in 

the outdoor condition. The experimental environment is 

described as Fig.16. The distance from FMCW radar to land 

is 10m and the angle of incidence is 45°. The collected signal 

is processed by the three methods mentioned in this paper. 

Decompose the echo signal by the three methods and the 

results are shown in Fig.17~Fig.19. It is clear that the main 

difference is the high order components. The noise leads that 

the mode mixing occurs more easily during the whole 

procedure of decomposition. 

Discard the same high order noise and reconstruct all 

residues. The signals processed by three methods are 

presented in Fig.20 (a) ~ Fig.20 (c). In order to observe the 

characteristic of the processed signal more clearly, the signals 

which samples are from 5000 to 5200 are illustrated in Fig.20 

(d). It can be found that the signal processed by the proposed 

method is similar to original frequency modulated signal. By 

computing the SNR of the processed signals, the proposed 

method has the highest SNR with 15.678dB while the SNR of 

EMD and EEMD is 10.438dB and 12.653dB, respectively. 
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Fig. 16 Experimental scenario 
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 Fig. 17 Decomposition results of EMD 
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 Fig. 18 Decomposition results of EEMD 
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Fig. 19 Decomposition results of the proposed method 
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Fig. 20 Processing results of echo signal with the three methods 

(a) Processing results of EMD 

(b) Processing results of EEMD 

(c) Processing results of the proposed method 

(d) Partial signals (samples from 5000 to 5200) 

 

V. CONCLUSION 

In this paper, a MIMO system is proposed to improve the 

ability of demixing in EMD. The correlation between 

disparate imfs is utilized to reconstruct and decompose signal. 

Different from other remixing methods, the proposed 

algorithm only reconstructs two adjacent imfs once a time so 

that the overlapped information is greatly distinguished. 

Moreover, this method avoids the chosen of the noise 

parameters and ensemble number like EEMD. The simulation 

results show that the approach in this paper manifests better 

demixing performance. In real experiment of FMCW radar 

system, target information is also separated and extracted 

easily by this algorithm. 

Theoretically speaking, the proposed method is more 

convenient to achieve and can reduce more calculation time. 

It indicates that the method could pave the way for the 

application of rapid signal processing with the requirement of 

high precision. 

In the future, we will intend to apply the proposed method 

to more complex signals and improve the calculation 

efficiency ulteriorly so that the computational cost could be 

reduced to deal with the real-time signals. 
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